The Negligible Effect of Toxic Metal Accumulation in the Flowers of Melliferous Plants on the Mineral Composition of Monofloral Honeys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. ICP-OES Analysis
2.3. Translocation Factor (TF)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Heavy Metals and Mineral Nutrients in Plant
3.2. Heavy Metals and Mineral Nutrients in Honey
3.3. Interactions between Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bărbulescu, A.; Barbeș, L.; Dumitriu, C.Ş. Impact of Soil Pollution on Melliferous Plants. Toxics 2022, 10, 239. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Al-Khulaidi, A.; Al-Sagheer, N.A.; Nuru, A.; Tadesse, Y. Identification, characterization and mapping of honey bee flora of Al-Baha region of Saudi Arabia. J. Environ. Biol. 2020, 41, 613–622. [Google Scholar] [CrossRef]
- Bhalchandra, W.; Baviskar, R.K.; Nikam, T.B. Diversity of nectariferous and polleniferous bee flora at Anjaneri and Dugarwadi hills of Western Ghats of Nasik district (M.S.) India. J. Entomol. Zool. Stud. 2014, 2, 244–249. [Google Scholar]
- Ollerton, J. Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 353–376. [Google Scholar] [CrossRef] [Green Version]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Hung, K.-L.J.; Kingston, J.M.; Albrecht, M.; Holway, D.A.; Kohn, J.R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172140. [Google Scholar] [CrossRef] [Green Version]
- Jabłoński, B.; Kołtowski, Z. Nectar secretion and honey potential of honey-plants growing under Poland’s conditions—Part XV. J. Apic. Sci. 2005, 49, 59–63. [Google Scholar]
- Bogdanov, S. Contaminants of bee products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bargańska, Ż.; Ślebioda, M.; Namieśnik, J. Honey bees and their products: Bioindicators of environmental contamination. Crit. Rev. Environ. Sci. Technol. 2016, 46, 235–248. [Google Scholar] [CrossRef]
- Dżugan, M.; Wesołowska, M.; Zaguła, G.; Kaczmarski, M.; Czernicka, M.; Puchalski, C. Honeybees (Apis mellifera) as a biological barrier for contamination of honey by environmental toxic metals. Environ. Monit. Assess. 2018, 190, 101. [Google Scholar] [CrossRef]
- Tomczyk, M.; Zaguła., G.; Puchalski, C.; Dżugan, M. Transfer of some toxic metals from soil to honey depending on bee habitat conditions. Acta Univ. Cibiniensis Ser. E Food Tech. 2020, 24, 49–59. [Google Scholar] [CrossRef]
- Edo, C.; Fernández-Alba, A.R.; Vejsnæs, F.; van der Steen, J.J.M.; Fernández-Piñas, F.; Rosal, R. Honeybees as active samplers for microplastics. Sci. Total Environ. 2021, 767, 144481. [Google Scholar] [CrossRef] [PubMed]
- Martinello, M.; Manzinello, C.; Dainese, N.; Giuliato, I.; Gallina, A.; Mutinelli, F. The Honey Bee: An Active Biosampler of Environmental Pollution and a Possible Warning Biomarker for Human Health. Appl. Sci. 2021, 11, 6481. [Google Scholar] [CrossRef]
- Papa, G.; Maier, R.; Durazzo, A.; Lucarini, M.; Karabagias, I.K.; Plutino, M.; Bianchetto, E.; Aromolo, R.; Pignatti, G.; Ambrogio, A.; et al. The Honey Bee Apis mellifera: An Insect at the Interface between Human and Ecosystem Health. Biology 2022, 11, 233. [Google Scholar] [CrossRef]
- Yakovleva, S.N.; Fatkullin, R.R. Accumulation of heavy metals in melliferous plants in the territory of Nagaybaksky district of Chelyabinsk region. IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 012004. [Google Scholar] [CrossRef]
- Fatkullin, R.R. Heavy metals in a trophic chain “soil-plant-bee body-beekeeping products” in the conditions of a forest-steppe zone of the Southern Urals. Bull. Orenbg. State Agrar. Univ. 2017, 4, 271–273. [Google Scholar]
- Romeh, A.A. Potential risks from the accumulation of heavy metals in canola plants. Environ. Sci. Pollut. Res. 2021, 28, 52529–52546. [Google Scholar] [CrossRef]
- Siedlecka, A. Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc. Bot. Pol. 1995, 64, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Van Ginneken, L.; Meers, E.; Guisson, R.; Ruttens, A.; Elst, K.; Tack, F.M.G.; Vangronsveld, J.; Diels, L.; Dejonghe, W. Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J. Environ. Eng. Landsc. Manag. 2007, 15, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Gall, J.E.; Rajakaruna, N. The physiology, functional genomics, and applied ecology of heavy metal-tolerant brassicaceae. In Brassicaceae: Characterization, Functional Genomics and Health Benefits; Lang, M., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 121–148. [Google Scholar]
- Mourato, M.P.; Moreira, I.N.; Leitão, I.; Pinto, F.R.; Sales, J.R.; Martins, L.L. Effect of Heavy Metals in Plants of the Genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [Green Version]
- Zeremski, T.; Randelovic, D.; Jakovljevic, K.; Marjanovic; Jeromela, A.; Milic, S. Brassica Species in Phytoextractions: Real Potentials and Challenges. Plants 2021, 10, 2340. [Google Scholar] [CrossRef] [PubMed]
- Niedźwiecka, A.; Zamorska-Wojdyła, D. The bioaccumulation of heavy metals in Brassica napus L. in the area around Turów Power Station, Poland. E3S Web Conf. 2017, 17, 00065. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, W.; Tu, C.; Huang, H.; Zhang, J.C.; Fang, H.; Huo, H.; Lin, C. Relationships between soil properties and the accumulation of heavy metals in different Brassica campestris L. growth stages in a Karst mountainous area. Ecotoxicol. Environ. Saf. 2020, 206, 111150. [Google Scholar] [CrossRef] [PubMed]
- Handzel, A.; Królczyk, J.B.; Latawiec, A.E.; Pluta, K.; Malina, D.; Sobczak-Kupiec, A. Determination of element contents and physicochemical properties of selected soils. Infrastruct. Ecol. Rural Areas 2017, 2, 419–432. (In Polish) [Google Scholar] [CrossRef]
- Czarnowska, K.; Milewska, A. The content of heavy metals in an indicator plant (Taraxacum officinale) in Warsaw. Pol. J. Environ. Stud. 2000, 9, 125–128. [Google Scholar]
- Petrova, S.; Yurukova, L.; Velcheva, I. Taraxacum ofcinale as a biomonitor of metals and toxic elements (Plovdiv, Bulgaria). Bulg. J. Agric. Sci. 2013, 19, 241–247. [Google Scholar]
- Degórska, A. An assessment of urban habitat contamination with selected heavy metals within the city of Katowice using the common dandelion (Taraxacum officinale Web.) as a bioindicator. Environ. Socio-Econ. Stud. 2013, 1, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk-Szabela, D.; Lisowska, K.; Wolf, W.M. Hysteresis of heavy metals uptake induced in Taraxacum officinale by thiuram. Sci. Rep. 2021, 11, 20151. [Google Scholar] [CrossRef] [PubMed]
- Kano, N.; Hori, T.; Zhang, H.; Miyamoto, N.; Anak, D.E.V.; Mishima, K. Study on the Behavior and Removal of Cadmium and Zinc Using Taraxacum officinale and Gazania under the Application of Biodegradable Chelating Agents. Appl. Sci. 2021, 11, 1557. [Google Scholar] [CrossRef]
- Hammami, H.; Parsa, M.; Mohassel, M.H.R.; Rahimi, S.; Mijani, S. Weeds ability to phytoremediate cadmium-contaminated soil. Int. J. Phytoremediation 2016, 18, 48–53. [Google Scholar] [CrossRef]
- Ligocki, M.; Tarasewicz, Z.; Zygmunt, A.; Aniśko, M. The common dandelion (Taraxacum officinale) as an indicator of anthropogenic toxic metal pollution of environment. Acta Sci. Pol. Zootech. 2011, 10, 73–82. [Google Scholar]
- Reszel, R.; Reszel, H.; Pęcak, J.; Hadam, B. The content of sulfur and heavy metals in soils of agricultural land and plants of protected areas of the Podkarpackie Voivodship. In Progress in Environmental Engineering; Tomaszek, J.A., Ed.; Rzeszów University of Technology Publishing House: Rzeszów, Poland, 2003; pp. 435–445. (In Polish) [Google Scholar]
- Bielecka, A.; Królak, E. Selected Features of Canadian Goldenrod That Predispose the Plant to Phytoremediation. J Ecol. Eng. 2019, 20, 88–93. [Google Scholar] [CrossRef]
- Amtmann, M. The chemical relationship between the scent features of goldenrod (Solidago canadensis L.) flower and its unifloral honey. J. Food Compos. Anal. 2009, 23, 122–129. [Google Scholar] [CrossRef]
- Dżugan, M.; Zaguła, G.; Wesołowska, M.; Sowa, P.; Puchalski, C. Levels of toxic and essential metals in varietal honeys from Podkarpacie. J. Elem. 2017, 22, 1039–1048. [Google Scholar] [CrossRef]
- Oroian, M.; Prisacaru, A.; Hretcanu, E.C.; Stroe, S.G.; Leahu, A.; Buculei, A. Heavy metals profile in honey as a potential indicator of botanical and geographical origin. Int. J. Food Prop. 2016, 19, 1825–1836. [Google Scholar] [CrossRef]
- Ligor, M.; Kowalkowski, T.; Buszewski, B. Comparative Study of the Potentially Toxic Elements and Essential Microelements in Honey Depending on the Geographic Origin. Molecules 2022, 27, 5474. [Google Scholar] [CrossRef] [PubMed]
- Uršulin-Trstenjak, N.; Levanić, D.; Primorac, L.; Bošnir, J.; Vahčić, N.; Šarić, G. Mineral Profile of Croatian Honey and Differences Due to its Geographical Origin. Czech J. Food Sci. 2015, 33, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Purcarea, C.; Dzugan, M.; Wesolowska, M.; Chis, A.M.; Zagula, G.; Teusdea, A.C.; Puchalski, C. A Comparative Study of Metal Content in Selected Polish and Romanian Honey Samples. Rev. Chim. 2017, 68, 1163–1169. [Google Scholar] [CrossRef]
- Bridges, C.C.; Zalups, R.K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharm. 2005, 204, 274–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monchanin, C.; Drujont, E.; Devaud, J.M.; Lihoreau, M.; Barron, A.B. Metal pollutants have additive negative effects on honey bee cognition. J. Exp. Biol. 2021, 224, jeb241869. [Google Scholar] [CrossRef]
- Hladun, K.R.; Smith, B.H.; Mustard, J.A.; Morton, R.R.; Trumble, J.T. Selenium Toxicity to Honey Bee (Apis mellifera L.) Pollinators: Effects on Behaviors and Survival. PLoS ONE 2012, 7, e34137. [Google Scholar] [CrossRef] [PubMed]
- Dubey, V.K.; Sahoo, S.K.; Sujatha, B.; Das, A. Impact of Heavy Metals on Honey Bees. Vigyan Varta 2022, 3, 101–103. [Google Scholar]
- Nisbet, C.; Guler, A.; Ormancı, N.; Cenesiz, S. Preventive action of zinc against heavy metals toxicity in honeybee. Afr. J. Biochem. Res. 2018, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Di, N.; Zhang, Z.; Hladun, K.R.; Rust, M.; Chen, Y.F.; Zhu, Z.Y.; Liu, T.X.; Trumble, J.T. Joint effects of cadmium and copper on Apis mellifera forgers and larvae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 237, 108839. [Google Scholar] [CrossRef] [PubMed]
- De Castro, C.S.; Arruda, A.F.; Da Cunha, L.R.; SouzaDe, J.R.; Braga, J.W.; Dórea, J.G. Toxic metals (Pb and Cd) and their respective antagonists (Ca and Zn) in infant formulas and milk marketed in Brasilia, Brazil. Int. J. Environ. Res. Public Health 2010, 7, 4062–4077. [Google Scholar] [CrossRef] [PubMed]
Element | Rapeseed (n = 15) (Brassica napus L. var. napus) | Dandelion (n = 15) (Taraxacum officinale) | Goldenrod (n = 15) (Solidago canadensis) | ||||
---|---|---|---|---|---|---|---|
Plant | Honey | Plant | Honey | Plant | Honey | ||
harmful elements | |||||||
Cd | mean ± SD | 0.168 ± 0.100 a | 0.009 ± 0.008 b | 0.410 ± 0.262 a | 0.015 ± 0.014 b | 0.575 ± 0.323 a | 0.007 ± 0.006 b |
min-max | 0.040–0.370 | n.d.–0.019 | 0.060–0.940 | n.d.–0.038 | 0.070–1.040 | n.d.–0.019 | |
Pb | mean ± SD | 0.030 ± 0.053 b | 0.024 ± 0.037 b | 0.561 ± 0.291 a | 0.044 ± 0.043 b | 0.635 ± 0.167 a | 0.037 ± 0.031 b |
min–max | n.d.–0.180 | n.d.–0.095 | 0.130–0.890 | n.d.–0.112 | 0.370–0.830 | n.d.–0.093 | |
Hg | mean ± SD | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
min–max | |||||||
Al | mean ± SD | 41.51 ± 19.50 bc | 0.414 ± 0.307 d | 321.81 ± 155.32 a | 1.819 ± 2.094 cd | 103.21 ± 40.84 ab | 0.590 ± 0.386 d |
min–max | 21.38–83.04 | n.d.-0.850 | 156.74–593.14 | 0.154–7.519 | 31.86–157.25 | 0.120–1.569 | |
Ni | mean ± SD | 0.668 ± 1.501 | 0.200 ± 0.168 | 1.141 ± 1.804 | 0.132 ± 0.153 | 0.388 ± 0.366 | 0.255 ± 0.236 |
min–max | n.d.-5.370 | n.d.-0.483 | n.d.-5.480 | n.d.-0.429 | n.d.-0.910 | n.d.-0.635 | |
Tl | mean ± SD | 0.267 ± 0.218 ab | 0.155 ± 0.254 b | 0.247 ± 0.426 ab | 0.147 ± 0.213 b | 0.495 ± 0.381 a | 0.271 ± 0.377 ab |
min–max | 0.020–0.730 | n.d.-0.681 | n.d.-1.150 | n.d.-0.583 | 0.040–1.280 | n.d.-0.959 | |
macroelements | |||||||
K | mean ± SD | 21571 ± 4637 a | 340.25 ± 95.17 b | 26430 ± 11526 a | 1055 ± 257.6 b | 17014 ± 2608 a | 803.88 ± 306.83 b |
min–max | 15084–31528 | 215.36–508.01 | 5260–37284 | 699.13–1476 | 13515–22158 | 438.63–1310 | |
Ca | mean ± SD | 14465 ± 5536 a | 55.09 ± 8.22 c | 9217 ± 3106 ab | 82.20 ± 26.90 c | 10059 ± 1186 a | 105.81 ± 19.68 bc |
min–max | 9544–25417 | 41.73–68.56 | 5799–14919 | 41.95–123.06 | 7901–11997 | 79.79–143.45 | |
Mg | mean ± SD | 2900 ± 576 a | 22.10 ± 4.18 c | 2344 ± 700 a | 30.33 ± 9.80 c | 2124 ± 444 ab | 36.22 ± 6.22 bc |
min–max | 2030–3982 | 16.67–28.59 | 1051–3252 | 12.57–50.44 | 1565–3053 | 23.91–46.09 | |
microelements | |||||||
Mn | mean ± SD | 40.27 ± 16.22 a | 0.53 ± 0.31 b | 60.60 ± 35.33 a | 2.56 ± 2.51 b | 289.24 ± 167.14 a | 1.21 ± 0.45 b |
min–max | 21.71–65.15 | 0.20–1.24 | 19.92–129.20 | 0.31–6.66 | 101.81–564.89 | 0.55–1.86 | |
Fe | mean ± SD | 76.61 ± 25.05 a | 1.44 ± 2.35 b | 163.47 ± 71.28 a | 1.77 ± 2.79 b | 101.88 ± 42.97 a | 1.67 ± 2.30 b |
min–max | 50.02–139.20 | n.d.–6.04 | 90.47–320.48 | n.d.–8.04 | 56.37–217.08 | n.d.–6.90 | |
Zn | mean ± SD | 35.48 ± 11.19 a | 0.42 ± 0.29 b | 40.18 ± 19.02 a | 0.79 ± 0.38 b | 54.67 ± 24.96 a | 1.05 ± 0.70 b |
min–max | 20.09–53.82 | n.d.-0.99 | 18.81–95.68 | 0.31–1.48 | 21.45–97.46 | 0.34–2.35 | |
Cu | mean ± SD | 5.52 ± 1.75 ab | 0.05 ± 0.06 c | 10.40 ± 3.81 a | 0.28 ± 0.25 bc | 7.13 ± 2.10 a | 0.15 ± 0.11 c |
min–max | 3.08–8.75 | n.d.–0.21 | 4.08–17.35 | 0.05–0.83 | 3.46–10.67 | n.d.–0.37 | |
Se | mean ± SD | 0.09 ± 0.18 | 0.13 ± 0.13 | 0.11 ± 0.17 | 0.12 ± 0.17 | 0.19 ± 0.26 | 0.21 ± 0.16 |
min–max | n.d.–0.61 | n.d.–0.36 | n.d.–0.53 | n.d.–0.48 | n.d.–0.77 | 0.01–0.49 |
Element | Al | Cd | Ni | Pb | Tl | Ca | Cu | Fe | K | Mg | Mn | Se | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | - | 0.349 | 0.179 | 0.692 | −0.117 | −0.462 | 0.516 | 0.790 | 0.186 | −0.369 | 0.116 | 0.138 | 0.134 |
Cd | 0.349 | - | 0.123 | 0.512 | 0.378 | −0.670 | 0.349 | 0.213 | −0.228 | −0.123 | 0.571 | 0.213 | 0.463 |
Ni | 0.179 | 0.123 | - | 0.164 | 0.191 | −0.290 | 0.110 | 0.001 | −0.089 | 0.065 | 0.060 | 0.044 | 0.127 |
Pb | 0.692 | 0.512 | 0.164 | - | 0.132 | −0.553 | 0.412 | 0.505 | −0.179 | −0.527 | 0.424 | 0.281 | 0.275 |
Tl | −0.117 | 0.378 | 0.191 | 0.132 | - | 0.067 | −0.362 | −0.253 | −0.710 | −0.344 | 0.654 | 0.340 | 0.370 |
Ca | −0.462 | −0.670 | −0.290 | −0.553 | 0.067 | - | −0.248 | −0.222 | 0.082 | 0.269 | −0.064 | −0.129 | −0.012 |
Cu | 0.516 | 0.349 | 0.110 | 0.412 | −0.362 | −0.248 | - | 0.582 | 0.580 | 0.233 | −0.010 | −0.086 | 0.421 |
Fe | 0.790 | 0.213 | 0.001 | 0.505 | −0.253 | −0.222 | 0.582 | - | 0.420 | −0.165 | −0.058 | 0.039 | 0.267 |
K | 0.186 | −0.228 | −0.089 | −0.179 | −0.710 | 0.082 | 0.580 | 0.420 | - | 0.493 | −0.562 | −0.387 | −0.072 |
Mg | −0.369 | −0.123 | 0.065 | −0.527 | −0.344 | 0.269 | 0.233 | −0.165 | 0.493 | - | −0.419 | −0.292 | 0.000 |
Mn | 0.116 | 0.571 | 0.060 | 0.424 | 0.654 | −0.064 | −0.010 | −0.058 | −0.562 | −0.419 | - | 0.183 | 0.459 |
Se | 0.138 | 0.213 | 0.044 | 0.281 | 0.340 | −0.129 | −0.086 | 0.039 | −0.387 | −0.292 | 0.183 | - | 0.228 |
Zn | 0.134 | 0.463 | 0.127 | 0.275 | 0.370 | −0.012 | 0.421 | 0.267 | −0.072 | 0.000 | 0.459 | 0.228 | - |
Element | Al | Cd | Ni | Pb | Tl | Ca | Cu | Fe | K | Mg | Mn | Se | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | - | 0.197 | −0.090 | 0.240 | 0.166 | 0.211 | 0.354 | 0.218 | 0.371 | 0.260 | 0.209 | −0.135 | 0.291 |
Cd | 0.197 | - | 0.060 | −0.096 | 0.017 | 0.161 | 0.047 | 0.353 | 0.077 | 0.070 | 0.200 | 0.209 | −0.062 |
Ni | −0.090 | 0.060 | - | −0.077 | 0.142 | 0.056 | 0.207 | 0.082 | −0.051 | 0.064 | 0.093 | 0.302 | −0.013 |
Pb | 0.240 | −0.096 | −0.077 | - | 0.339 | 0.179 | 0.343 | 0.055 | 0.329 | 0.332 | 0.386 | 0.048 | 0.434 |
Tl | 0.166 | 0.017 | 0.142 | 0.339 | - | 0.112 | 0.061 | −0.081 | 0.149 | 0.183 | 0.215 | 0.299 | 0.400 |
Ca | 0.211 | 0.161 | 0.056 | 0.179 | 0.112 | - | 0.432 | 0.070 | 0.557 | 0.756 | 0.471 | 0.243 | 0.548 |
Cu | 0.354 | 0.047 | 0.207 | 0.343 | 0.061 | 0.432 | - | 0.301 | 0.644 | 0.543 | 0.481 | −0.011 | 0.533 |
Fe | 0.218 | 0.353 | 0.082 | 0.055 | −0.081 | 0.070 | 0.301 | - | 0.147 | 0.096 | 0.204 | −0.068 | −0.003 |
K | 0.371 | 0.077 | −0.051 | 0.329 | 0.149 | 0.557 | 0.644 | 0.147 | - | 0.482 | 0.598 | 0.133 | 0.584 |
Mg | 0.260 | 0.070 | 0.064 | 0.332 | 0.183 | 0.756 | 0.543 | 0.096 | 0.482 | - | 0.685 | 0.086 | 0.478 |
Mn | 0.209 | 0.200 | 0.093 | 0.386 | 0.215 | 0.471 | 0.481 | 0.204 | 0.598 | 0.685 | - | 0.184 | 0.432 |
Se | −0.135 | 0.209 | 0.302 | 0.048 | 0.299 | 0.243 | −0.011 | −0.068 | 0.133 | 0.086 | 0.184 | - | 0.267 |
Zn | 0.291 | −0.062 | −0.013 | 0.434 | 0.400 | 0.548 | 0.533 | −0.003 | 0.584 | 0.478 | 0.432 | 0.267 | - |
Element | Rapeseed | Dandelion | Goldenrod |
---|---|---|---|
Cd | 0.08 ± 0.11 a | 0.04 ± 0.05 | 0.02 ± 0.02 b |
Pb | 0.32 ± 0.06 a | 0.08 ± 0.07 b | 0.06 ± 0.11 b |
Al | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 |
Ni | 0.39 ± 0.03 a | 0.06 ± 0.06 b | 0.01 ± 0.07 b |
Tl | 0.84 ± 1.05 | 0.66 ± 1.24 | 0.67 ± 1.42 |
K | 0.01 ± 0.01 a | 0.06 ± 0.07 b | 0.05 ± 0.02 b |
Ca | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.01 |
Mg | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.01 ± 0.01 |
Mn | 0.01 ± 0.01 b | 0.05 ± 0.05 a | 0.01 ± 0.00 b |
Fe | 0.03 ± 0.04 | 0.01 ± 0.02 | 0.02 ± 0.03 |
Zn | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.03 |
Cu | 0.01 ± 0.01 | 0.04 ± 0.04 | 0.02 ± 0.02 |
Se | 1.32 ± 0.80 | 0.67 ± 0.96 | 1.96 ± 2.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, M.; Zaguła, G.; Kaczmarski, M.; Puchalski, C.; Dżugan, M. The Negligible Effect of Toxic Metal Accumulation in the Flowers of Melliferous Plants on the Mineral Composition of Monofloral Honeys. Agriculture 2023, 13, 273. https://doi.org/10.3390/agriculture13020273
Tomczyk M, Zaguła G, Kaczmarski M, Puchalski C, Dżugan M. The Negligible Effect of Toxic Metal Accumulation in the Flowers of Melliferous Plants on the Mineral Composition of Monofloral Honeys. Agriculture. 2023; 13(2):273. https://doi.org/10.3390/agriculture13020273
Chicago/Turabian StyleTomczyk, Monika, Grzegorz Zaguła, Mateusz Kaczmarski, Czesław Puchalski, and Małgorzata Dżugan. 2023. "The Negligible Effect of Toxic Metal Accumulation in the Flowers of Melliferous Plants on the Mineral Composition of Monofloral Honeys" Agriculture 13, no. 2: 273. https://doi.org/10.3390/agriculture13020273
APA StyleTomczyk, M., Zaguła, G., Kaczmarski, M., Puchalski, C., & Dżugan, M. (2023). The Negligible Effect of Toxic Metal Accumulation in the Flowers of Melliferous Plants on the Mineral Composition of Monofloral Honeys. Agriculture, 13(2), 273. https://doi.org/10.3390/agriculture13020273