Evaluation of the Quality and Possible Use of a New Generation of Agricultural Nets for Packing Bulk Materials in Terms of the Aspect of Reducing the Environmental Burden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Subject
2.2. Test Conditions
2.3. Measurement Methods
2.4. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dőring, T.F.; Kovacs, G.; Wolfe, M.S.; Murphy, K. Evolutionary plant breeding in cereals—Into new era. Sustainability 2011, 3, 1944–1971. [Google Scholar] [CrossRef]
- Gacek, E.S. Modyfikacje prac hodowlanych i doświadczalnictwa odmianowego dla potrzeb zrównoważonych, niskonakładowych i ekologicznych systemów gospodarowania w rolnictwie. Biul. Inst. Hod. I Aklim. Roślin 2017, 282, 139–150. (In Polish) [Google Scholar]
- Wicki, L. Postęp w plonowaniu odmian pszenicy ozimej i żyta w doświadczeniach odmianowych w Polsce. Rocz. Nauk. Stowarzyszenia Ekon. Rol. I Agrobiz. 2017, XIX, 224–230. (In Polish) [Google Scholar]
- Arseniuk, E.; Oleksiak, T. Postęp w hodowli głównych roślin uprawnych w Polsce i możliwości jego wykorzystania do 2020 roku. Stud. I Rap. IUNG-PIB 2009, 14, 293–306. (In Polish) [Google Scholar] [CrossRef]
- Mańkowski, D.R. Postęp biologiczny w hodowli, nasiennictwie i produkcji ziemniaka w Polsce. Część I. Przegląd ilościowych metod oceny postępu hodowlanego i odmianowego. Biul. Inst. Hod. I Aklim. Roślin 2009, 251, 153–173. (In Polish) [Google Scholar]
- Trethowan, R.M.; van Ginkel, M.; Rajaram, S. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci. 2002, 42, 1441–1446. [Google Scholar] [CrossRef]
- Ustun, A.; Allen, F.L.; English, B.C. Genetic progress in soybean of the U.S. Midsouth. Crop Sci. 2001, 41, 993–998. [Google Scholar] [CrossRef]
- Święcicki, W.K.; Surma, M.; Koziara, W.; Skrzypczak, G.; Szukała, J.; Bartkowiak-Broda, I.; Zimny, J.; Banaszak, Z.; Marciniak, K. Nowoczesne technologie w produkcji roślinnej—Przyjazne dla człowieka i środowiska. Pol. J. Agron. 2011, 7, 102–112. [Google Scholar]
- Mikołajczyk, K.; Dabert, M.; Nowakowska, J.; Podkowinski, J.; Poplawska, W.; Bartkowiak-Broda, I. Conversion of the RAPD OPC021150 marker of the Rfo restorer gene into a SCAR marker for rapid selection of oilseed rape. Plant Breed. 2008, 127, 647–649. [Google Scholar] [CrossRef]
- Dawson, J.C.; Rivière, P.; Berthellot, J.F.; Mercier, F.; de Kochko, P.; Galic, N.; Pin, S.; Serpolay, E.; Thomas, M.; Giuliano, S.; et al. Collaborative plant breeding for organic agricultural systems in developed countries. Sustainability 2011, 3, 1206–1223. [Google Scholar] [CrossRef]
- Murphy, K.M.; Lammer, D.; Lyon, S.R.; Carter, B.; Jones, S.S. Breeding for organic and low-input farming systems: An evolutionary-participatory breeding method for inbred cereal grains. Renew. Agric. Food Syst. 2005, 20, 48–55. [Google Scholar] [CrossRef]
- Finckh, M.R. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur. J. Plant Pathol. 2008, 121, 399–409. [Google Scholar] [CrossRef]
- Kotecki, A. Climate change for the European Green Deal. In Proceedings of the Scientific Conference: The Role of Agricultural Sciences in the Implementation of the Concept of a Sustainable Food System “from Farm to Fork”, Chełm, Poland, 7–8 June 2022. (In Polish). [Google Scholar]
- Hammond, G.; Jones, C.; Lowrie, F.; Tse, P. The Inventory of Carbon and Energy (ICE); University of Bath: Bath, UK, 2011; p. 128, © BSRIA BG 10/2011; ISBN 978 0 86022 703 8. [Google Scholar]
- Briassoulis, D.; Mistriotis, A.; Eleftherakis, D. Mechanical behaviour and properties of agricultural nets Part I: Testing methods for agricultural nets. Polym. Test. 2007, 26, 822–832. [Google Scholar] [CrossRef]
- Briassoulis, D.; Mistriotis, A.; Eleftherakis, D. Mechanical behaviour and properties of agricultural nets. Part II: Analysis of the performance of the main categories of agricultural nets. Polym. Test. 2007, 26, 970–984. [Google Scholar] [CrossRef]
- Castellano, S.; Scarascia Mugnozza, G.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic nets in agriculture: A general review of types and applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Chodak, I. High modulus polyethylene fibres: Preparation, properties and modification by crosslinking. Prog. Polym. Sci. 1998, 23, 1409–1442. [Google Scholar] [CrossRef]
- Ward, I.M. Recent developments in the science and technology of high modulus flexible polymers. Macromol. Symp. 1995, 100, 1–14. [Google Scholar] [CrossRef]
- Barham, P.J.; Keller, A. Review: High-strength polyethylene fibres from solution and gel spinning. J. Mater. Sci. 1985, 20, 2281-2032. [Google Scholar] [CrossRef]
- Tayyab, H.; Ibnelwaleed, A.H. Effect of short chain branching of LDPE on its miscibility with linear HDPE. Macromol. Mater. Eng. 2004, 289, 198–203. [Google Scholar] [CrossRef]
- Tama Polska Sp. z o.o. CPA Technical; Crop Packaging Association: Alton, UK, 2011; Volume 1, p. 4. (In Polish) [Google Scholar]
- Tama Polska Sp. z o.o. CPA Technical; Crop Packaging Association: Alton, UK, 2011; Volume 2, p. 4. (In Polish) [Google Scholar]
- Tama Polska Sp. z o.o. CPA Technical; Crop Packaging Association: Alton, UK, 2012; Volume 3, p. 4. (In Polish) [Google Scholar]
No | Round Baler Type | Bulk Material | ||||
---|---|---|---|---|---|---|
Dried GreenFodder | Spring Barley Straw | Winter Triticale Straw | Winter Wheat Straw | Winter Rye Straw | ||
1. | Sipma Z-569/1 Farna II | + | + | - | - | - |
2. | UNIA DF 1,7 Zd | + | - | - | - | - |
3. | UNIA Df 1,8 Dd | + | - | - | - | - |
4. | Sipma PS 1211 Farma PLUS | - | - | + | - | - |
5. | Warfama Z-543 | - | + | - | + | - |
6. | Metal-Fach Z-562 | - | - | - | + | + |
Trait of Net | Total | Harvesting Variant * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1.1 | 1.2 | 2 | 3 | 4 | 5.1 | 5.2 | 6.1 | 6.2 | ||
CF | 0.0059 | 0.0061 | 0.0008 | 0.0476 | 0.0056 | 0.0008 | 0.8290 | 0.1131 | 0.0382 | 0.2501 |
CB | 0.0020 | 0.1200 | 0.0552 | 0.0326 | 0.0803 | 0.0350 | 0.1255 | 0.1341 | 0.0140 | 0.2938 |
NL | 0.0000 | 0.0009 | + | + | 0.0000 | 0.0002 | + | + | + | + |
LEN 10 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0023 | 0.0004 | 0.0011 | 0.0056 | + | 0.0000 |
ELO | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0023 | 0.0004 | 0.0011 | 0.0042 | + | 0.0000 |
Variables | CF | CB | NL | LEN 10Δ | ELO |
---|---|---|---|---|---|
Bale number | 0.093653 | 0.044672 | −0.162239 | 0.156588 | 0.148954 |
Trait of Net | Unit | Machine and Bulk Material | No. of Bales | Mean | Minimum | Maximum | SD | SE |
---|---|---|---|---|---|---|---|---|
CF | cm | Sipma Z-569/1 Farma II dried green fodder | 14 | 121.57 | 120 | 123 | 0.8516 | 0.2276 |
CB | cm | 14 | 123.43 | 122 | 126 | 1.1579 | 0.3095 | |
NL | - | 14 | 2.4 | 2.3 | 2.5 | 0.0555 | 0.0148 | |
LEN 10Δ | cm | 14 | 61.43 | 61 | 62 | 0.5136 | 0.1373 | |
ELO | % | 14 | 7.77 | 7.02 | 8.77 | 0.8987 | 0.2402 | |
CF | cm | UNIA Df 1,8 Dd dried green fodder | 12 | 112.75 | 112 | 114 | 0.6216 | 0.1794 |
CB | cm | 12 | 113.08 | 112 | 115 | 0.9962 | 0.2876 | |
NL | - | 12 | 2.73 | 2.7 | 2.8 | 0.0452 | 0.0131 | |
LEN 10Δ | cm | 12 | 61.04 | 59 | 63 | 1.5442 | 0.4458 | |
ELO | % | 12 | 7.09 | 3.51 | 10.53 | 2.7081 | 0.7818 | |
CF | cm | UNIA DF 1,7 Zd dried green fodder | 12 | 117.67 | 117 | 118.5 | 0.5774 | 0.1667 |
CB | cm | 12 | 119.58 | 117.5 | 123 | 2.0542 | 0.593 | |
NL | - | 12 | 2.6 | 2.6 | 2.6 | 0 | 0 | |
LEN 10Δ | cm | 12 | 62.17 | 62 | 63 | 0.3257 | 0.094 | |
ELO | % | 12 | 9.06 | 8.77 | 10.53 | 0.5732 | 0.1655 |
Trait of Net | Unit | Machine and Bulk Material | No. of Bales | Mean | Minimum | Maximum | SD | SE |
---|---|---|---|---|---|---|---|---|
CF | cm | Sipma Z-569/1 Farma II spring barley straw | 30 | 121.07 | 120 | 123 | 0.9444 | 0.1724 |
CB | cm | 30 | 121.83 | 119 | 124 | 1.3667 | 0.2495 | |
NL | - | 30 | 2.2 | 2.2 | 2.2 | 0 | 0 | |
LEN 10Δ | cm | 30 | 61.73 | 61 | 62 | 0.3144 | 0.0574 | |
ELO | % | 30 | 8.3 | 7.02 | 8.77 | 0.5517 | 0.1007 | |
CF | cm | Warfama Z-543 spring barley straw | 12 | 120.58 | 116 | 125 | 2.4293 | 0.7013 |
CB | cm | 12 | 122.17 | 114 | 127 | 3.2427 | 0.9361 | |
NL | - | 12 | 2.5 | 2.5 | 2.5 | 0 | 0 | |
LEN 10Δ | cm | 12 | 61.67 | 61 | 62 | 0.4438 | 0.1281 | |
ELO | % | 12 | 8.19 | 7.02 | 8.77 | 0.777 | 0.2243 | |
CF | cm | Warfama Z-543 winter wheat straw | 12 | 122.58 | 120 | 126 | 1.6214 | 0.468 |
CB | cm | 12 | 123.21 | 120 | 126 | 2.1047 | 0.6076 | |
NL | - | 12 | 2.5 | 2.5 | 2.5 | 0 | 0 | |
LEN 10Δ | cm | 12 | 61.38 | 61 | 62 | 0.3108 | 0.0897 | |
ELO | % | 12 | 7.53 | 7.02 | 8.77 | 0.5836 | 0.1685 | |
CF | cm | Sipma PS 1211 FARMA PLUS winter triticale straw | 19 | 124.63 | 122 | 131 | 1.921 | 0.4407 |
CB | cm | 19 | 125 | 121 | 130 | 2.2361 | 0.5199 | |
NL | - | 19 | 2.64 | 2.2 | 3.5 | 0.4194 | 0.0962 | |
LEN 10Δ | cm | 19 | 62.32 | 62 | 63 | 0.342 | 0.0785 | |
ELO | % | 19 | 9.33 | 8.77 | 10.53 | 0.6019 | 0.1381 | |
CF | cm | Metal-Fach Z-562 winter rye straw | 20 | 117.38 | 116 | 119 | 0.8717 | 0.1949 |
CB | cm | 20 | 117.33 | 116 | 119 | 0.8626 | 0.1929 | |
NL | - | 20 | 2.8 | 2.8 | 2.8 | 0 | 0 | |
LEN 10Δ | cm | 20 | 61 | 61 | 61 | 0 | 0 | |
ELO | % | 20 | 7.02 | 7.02 | 7.02 | 0 | 0 | |
CF | cm | Metal-Fach Z-562 winter wheat straw | 17 | 116.29 | 114 | 120 | 1.6111 | 0.3907 |
CB | cm | 17 | 116.5 | 114 | 119 | 1.4361 | 0.3483 | |
NL | - | 17 | 2.8 | 2.8 | 2.8 | 0 | 0 | |
LEN 10Δ | cm | 17 | 60.82 | 60 | 61 | 0.393 | 0.0953 | |
ELO | % | 17 | 6.71 | 5.26 | 7.02 | 0.6916 | 0.1677 |
Round Balers—Bulk Material | N | Z/t | p |
---|---|---|---|
Total | 115 | 4.9885 | 0.0000 |
1.1 | 13 | 3.1798 | 0.0015 |
1.2 | 26 | 2.7430 | 0.0061 |
2 | 12 | 3.0594 | 0.0022 |
3 | 5 | 1.3484 | 0.1775 |
4 | 16 | 0.4395 | 0.6603 |
5.1 | 12 | T = −2.455 | 0.0320 |
5.2 | 12 | T = −0.7718 | 0.4565 |
6.1 | 9 | 0.00 | 1.0000 |
6.2 | 14 | T = −0.7318 | 0.4749 |
Coverage Front (CF) | General Hypothesis Test H (8. N = 148) = 121.1490 p = 0.000 | ||||||||
1.1 | 1.2 | 2 | 3 | 4 | 5.1 | 5.2 | 6.1 | 6.2 | |
1.1 | - | 1.0000 | 0.1949 | 0.0000 | 0.2361 | 1.0000 | 1.0000 | 0.018 | 0.0016 |
1.2 | 1.0000 | - | 0.0753 | 0.0000 | 0.0231 | 1.0000 | 1.0000 | 0.0018 | 0.0001 |
2 | 0.1949 | 0.0753 | - | 0.8696 | 0.0000 | 1 | 0.0046 | 1.0000 | 1.0000 |
3 | 0.0000 | 0.0000 | 0.8696 | - | 0.0000 | 0.0004 | 0.0000 | 1.0000 | 1.0000 |
4 | 0.2361 | 0.0231 | 0.0000 | 0.0000 | - | 0.05 | 1.0000 | 0.0000 | 0.0000 |
5.1 | 1.0000 | 1.0000 | 1.0000 | 0.0004 | 0.05 | - | 1.0000 | 0.2381 | 0.0329 |
5.2 | 1.0000 | 1.0000 | 0.0046 | 0.0000 | 1.0000 | 1.0000 | - | 0.0001 | 0.0000 |
6.1 | 0.0180 | 0.0018 | 1.0000 | 1.0000 | 0.0000 | 0.2381 | 0.0001 | - | 1.0000 |
6.2 | 0.0016 | 0.0001 | 1.0000 | 1.0000 | 0.0000 | 0.0329 | 0.0000 | 1.0000 | - |
Coverage back (CB) | General hypothesis test H (8. N = 148) = 114.7640 p = 0.000 | ||||||||
1.1 | 1.2 | 2 | 3 | 4 | 5.1 | 5.2 | 6.1 | 6.2 | |
1.1 | - | 1.0000 | 0.1415 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 |
1.2 | 1.0000 | - | 1.0000 | 0.0000 | 0.0664 | 1.0000 | 1.0000 | 0.0019 | 0.0003 |
2 | 0.1415 | 1.0000 | - | 0.0628 | 0.0016 | 1.0000 | 0.4442 | 1.0000 | 1.0000 |
3 | 0.0000 | 0.0000 | 0.0628 | - | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 |
4 | 1.0000 | 0.0664 | 0.0016 | 0.0000 | - | 1.0000 | 1.0000 | 0.0000 | 0.0000 |
5.1 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | - | 1.0000 | 0.0103 | 0.0022 |
5.2 | 1.0000 | 1.0000 | 0.4442 | 0.0000 | 1.0000 | 1.0000 | - | 0.0004 | 0.0001 |
6.1 | 0.0000 | 0.0019 | 1.0000 | 1.0000 | 0.0000 | 0.0103 | 0.0004 | - | 1.0000 |
6.2 | 0.0000 | 0.0003 | 1.0000 | 1.0000 | 0.0000 | 0.0022 | 0.0001 | 1.0000 | - |
Elongation (ELO) | General hypothesis test H (8. N = 148) = 89.82629 p = 0.0000 | ||||||||
1.1 | 1.2 | 2 | 3 | 4 | 5.1 | 5.2 | 6.1 | 6.2 | |
1.1 | - | 1.0000 | 0.0974 | 1.0000 | 0.0029 | 1.0000 | 1.0000 | 1.0000 | 0.6661 |
1.2 | 1.0000 | - | 1.0000 | 1.0000 | 0.1086 | 1.0000 | 0.9576 | 0.0005 | 0.0002 |
2 | 0.0974 | 1.0000 | - | 0.4719 | 1.0000 | 1.0000 | 0.0186 | 0.0000 | 0 |
3 | 1.0000 | 1.0000 | 0.4719 | - | 0.0329 | 1.0000 | 1.0000 | 0.4861 | 0.2511 |
4 | 0.0029 | 0.1086 | 1.0000 | 0.0329 | - | 0.2774 | 0.0004 | 0.0000 | 0.0000 |
5.1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.2774 | - | 1.0000 | 0.0634 | 0.0307 |
5.2 | 1.0000 | 0.9576 | 0.0186 | 1.0000 | 0.0004 | 1.0000 | - | 1.0000 | 1.0000 |
6.1 | 1.0000 | 0.0005 | 0.0000 | 0.4861 | 0.0000 | 0.0634 | 1.0000 | - | 1.0000 |
6.2 | 0.6661 | 0.0002 | 0.0000 | 0.2511 | 0.0000 | 0.0307 | 1.0000 | 1.0000 | - |
Year | Consumption of HDPE | HDPE Consumption without LT Technology | Saving HDPE | Reducing the Weight of Waste * |
---|---|---|---|---|
2017 | 6352 | 6795 | 443 | 885 |
2018 | 5589 | 6039 | 450 | 900 |
2019 | 5369 | 5841 | 473 | 945 |
2020 | 6453 | 7046 | 593 | 1185 |
2021 | 6001 | 6646 | 645 | 1290 |
2022 | 5565 | 6270 | 705 | 1410 |
Total | 35,329 | 38,636 | 3308 | 6615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalik, I.; Zawieja, B.; Rybacki, P.; Krzyżaniak, K. Evaluation of the Quality and Possible Use of a New Generation of Agricultural Nets for Packing Bulk Materials in Terms of the Aspect of Reducing the Environmental Burden. Agriculture 2023, 13, 367. https://doi.org/10.3390/agriculture13020367
Kowalik I, Zawieja B, Rybacki P, Krzyżaniak K. Evaluation of the Quality and Possible Use of a New Generation of Agricultural Nets for Packing Bulk Materials in Terms of the Aspect of Reducing the Environmental Burden. Agriculture. 2023; 13(2):367. https://doi.org/10.3390/agriculture13020367
Chicago/Turabian StyleKowalik, Ireneusz, Bogna Zawieja, Piotr Rybacki, and Krzysztof Krzyżaniak. 2023. "Evaluation of the Quality and Possible Use of a New Generation of Agricultural Nets for Packing Bulk Materials in Terms of the Aspect of Reducing the Environmental Burden" Agriculture 13, no. 2: 367. https://doi.org/10.3390/agriculture13020367
APA StyleKowalik, I., Zawieja, B., Rybacki, P., & Krzyżaniak, K. (2023). Evaluation of the Quality and Possible Use of a New Generation of Agricultural Nets for Packing Bulk Materials in Terms of the Aspect of Reducing the Environmental Burden. Agriculture, 13(2), 367. https://doi.org/10.3390/agriculture13020367