Selecting the ‘Sustainable’ Cow Using a Customized Breeding Index: Case Study on a Commercial UK Dairy Herd
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Modelled Current and Adjusted Herd
2.3. Feed Intake and Nutritional Requirements
2.4. Changes in Profit and Carbon Emissions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; GDP. Climate Change and the Global Dairy Cattle Sector—The Role of the Dairy Sector in a Low-Carbon Future; The Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Bell, M.J.; Garnsworthy, P.C.; Stott, A.W.; Pryce, J.E. Effects of changing cow production and fitness traits on profit and greenhouse gas emissions of UK dairy systems. J. Agric. Sci. 2015, 153, 138–151. [Google Scholar] [CrossRef]
- Bell, M.; Wall, E.; Russell, G.; Simm, G.; Stott, A. The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems. J. Dairy Sci. 2011, 94, 3662–3678. [Google Scholar] [CrossRef] [PubMed]
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Clay, N.; Garnett, T.; Lorimer, J. Dairy intensification: Drivers, impacts and alternatives. Ambio 2020, 49, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.F.; Bedere, N.; Douhard, F.; Oliveira, H.R.; Arnal, M.; Peñagaricano, F.; Schinckel, A.P.; Baes, C.F.; Miglior, F. Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 2021, 15, 100292. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.M.; Amer, P.R.; Hely, F.; van den Berg, I.; Pryce, J.E. Estimating methane coefficients to predict the environmental impact of traits in the Australian dairy breeding program. J. Dairy Sci. 2021, 104, 10979–10990. [Google Scholar] [CrossRef] [PubMed]
- Rauw, W.M. Immune response from a resource allocation perspective. Front. Genet. 2012, 3, 267. [Google Scholar] [CrossRef] [PubMed]
- del Prado, A.; Mas, K.; Pardo, G.; Gallejones, P. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain. Sci. Total Environ. 2013, 465, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; VanRaden, P.M. Symposium review: Possibilities in an age of genomics: The future of selection indices. J. Dairy Sci. 2018, 101, 3686–3701. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.J.; Eckard, R.J.; Haile-Mariam, M.; Pryce, J.E. The effect of changing cow production and fitness traits on net income and greenhouse gas emissions from Australian Dairy systems. J. Dairy Sci. 2013, 96, 7918–7931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggar-Danner, C.; Cole, J.B.; Pryce, J.E.; Gengler, N.; Heringstad, B.; Bradley, A.; Stock, K.F. Invited review: Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 2015, 9, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Stott, A.W.; Veerkamp, R.F.; Wassell, T.R. The economics of fertility in the dairy herd. Anim. Sci. 1999, 68, 49–57. [Google Scholar] [CrossRef]
- UK Greenhouse Gas Inventory (UKGGI). 1990 to 2010 Annual Report for Submission under the Framework Convention on Climate Change; Defra: London, UK, 2010.
- Intergovernmental Panel on Climate Change (IPCC). Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Chapter 2. [Google Scholar]
- Bell, M.J.; Eckard, R.; Moate, P.J.; Yan, T. Modelling the effect of diet composition on enteric methane emissions across sheep, beef cattle and dairy cows. Animals 2016, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.J.; Wilson, P. Estimated differences in economic and environmental performance of forage-based dairy herds across the UK. Food Energy Secur. 2018, 7, e00127. [Google Scholar] [CrossRef]
- Amer, P.R.; Hely, F.S.; Quinton, C.D.; Cromie, A.R. A methodology framework for weighting genetic traits that impact greenhouse gas emissions intensity into selection indexes. Animal 2018, 12, 5–11. [Google Scholar] [CrossRef] [PubMed]
- González-Recio, O.; López-Paredes, J.; Ouatahar, L.; Charfeddine, N.; Ugarte, E.; Alenda, R.; Jiménez-Montero, J.A. Mitigation of greenhouse gases in dairy cattle via genetic selection: 2. Incorporating methane emissions into the breeding goal. J. Dairy Sci. 2020, 103, 7210–7221. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, M.M.; Amer, P.R.; Shalloo, L.; Evans, R.D.; Byrne, T.J.; Buckley, F.; Berry, D.P. Development of an index to rank dairy females on expected lifetime profit. J. Dairy Sci. 2015, 98, 4225–4239. [Google Scholar] [CrossRef] [PubMed]
- Dunne, F.L.; Berry, D.P.; Kelleher, M.M.; Evans, R.D.; Walsh, S.W.; Amer, P.R. An index framework founded on the future profit potential of female beef cattle to aid the identification of candidates for culling. J. Anim. Sci. 2020, 98, skaa334. [Google Scholar] [CrossRef] [PubMed]
- van der Heide, E.M.M.; Veerkamp, R.F.; van Pelt, M.L.; Kamphuis, C.; Ducro, B.J. Predicting survival in dairy cattle by combining genomic breeding values and phenotypic information. J. Dairy Sci. 2020, 103, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.M.; Sunduimijid, B.; Amer, P.; van den Berg, I.; Pryce, J.E. A method for implementing methane breeding values in Australian dairy cattle. Anim. Prod. Sci. 2021, 61, 1781–1787. [Google Scholar] [CrossRef]
Trait | Units | Value |
---|---|---|
Milk volume | kg | 8909 |
Milk fat yield | kg | 347 |
Milk protein yield | kg | 285 |
Lifespan | lactations | 2.2 |
Somatic cell count | ‘000 cells/mL | 129 |
Calving interval | days | 368 |
Enteric CH4 1 | kg | 146 |
Manure CH4 | kg | 55 |
Manure N2O 2 | kg | 7 |
CO2 equivalent emissions | tonnes | 7.3 |
Value | |
---|---|
Income | GBP |
Milk sales 1 | 3029.24 |
Calves 2 | 66.97 |
Culls 3 | 141.70 |
Less | |
Replacements 4 | 877.70 |
Total Output | 2013.43 |
Variable costs | |
Feed | 1298.51 |
Dairy supplies 5 | 412.93 |
Health problems | 183.01 |
Fertility | 26.48 |
Total variable costs | 1920.93 |
Gross Margin | 439.28 |
Trait | Units | Average | Min | Max |
---|---|---|---|---|
Milk volume | kg | 74 (254) | −619 | 684 |
Milk fat | kg | 2.7 (11) | −27 | 30 |
Milk protein | kg | 3.2 (7.9) | −20 | 20 |
Somatic cell count | % | −1.8 (6.6) | −20 | 15 |
Lifespan | days | 52 (36) | −92 | 122 |
Fertility | days | 3.2 (3.9) | −11 | 12 |
Nutrient Content | Units | Replacement | Lactating Cow |
---|---|---|---|
Crude protein (CP) | g/kg DM | 142 | 203 |
Neutral detergent fibre (NDF) | g/kg DM | 483 | 367 |
Ether extract | g/kg DM | 49 | 42 |
Ash | g/kg DM | 78 | 67 |
Metabolisable energy (ME) | MJ/kg DM | 10.6 | 12.2 |
Feeding level 1 | 2.5 | 4.7 | |
Digestible organic matter in dry matter (DOMD) 1 | g/kg DM | 661 | 711 |
Organic matter digestibility (OMD) 1 | % of OM | 71.7 | 76.2 |
Digestible CP 1 | g/kg DM | 85 | 143 |
Methane 1 | g/kg DM | 21.1 | 18.8 |
Composition | |||
Pasture | % | 33 | 33 |
Conserved forage | % | 50 | 32 |
Concentrate | % | 17 | 35 |
Energy Requirement | Replacement | Lactating Cow |
---|---|---|
Emaint | 50.9 | 25.7 |
Ep | 15.3 | 0.1 |
El | 24.6 | 0.3 |
Epreg | 4.0 | 2.4 |
Eact | 5.1 | 2.6 |
Elact | 0.0 | 68.9 |
Total (Etotal MJ) | 38,890 | 76,556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, M.J.; Jauernik, G.-M. Selecting the ‘Sustainable’ Cow Using a Customized Breeding Index: Case Study on a Commercial UK Dairy Herd. Agriculture 2023, 13, 423. https://doi.org/10.3390/agriculture13020423
Bell MJ, Jauernik G-M. Selecting the ‘Sustainable’ Cow Using a Customized Breeding Index: Case Study on a Commercial UK Dairy Herd. Agriculture. 2023; 13(2):423. https://doi.org/10.3390/agriculture13020423
Chicago/Turabian StyleBell, Matt J., and Greta-Marie Jauernik. 2023. "Selecting the ‘Sustainable’ Cow Using a Customized Breeding Index: Case Study on a Commercial UK Dairy Herd" Agriculture 13, no. 2: 423. https://doi.org/10.3390/agriculture13020423
APA StyleBell, M. J., & Jauernik, G. -M. (2023). Selecting the ‘Sustainable’ Cow Using a Customized Breeding Index: Case Study on a Commercial UK Dairy Herd. Agriculture, 13(2), 423. https://doi.org/10.3390/agriculture13020423