Profiling of Fatty Acids and Rumen Ecosystem of Sheep Fed on a Palm Kernel Cake-Based Diet Substituted with Corn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design of Study
2.2. Sampling and Incubations Procedures of In Vitro Experiment
2.3. Rumen Fermentation Assessment
- CH4 = amount (mmol) of methane produced
- (A) = concentration (mmol) of acetate
- (B) = concentration (mmol) of butyrate
- (P) = concentration (mmol) of propionate
2.4. Microbial Populations and Quantification
2.5. Fatty Acid Analysis
- (CFA) i = % concentration of unsaturated fatty acid at 0 h incubation
- (CFA) f = % concentration of unsaturated fatty acid at 72 h incubation
2.6. Statistical Analysis
3. Results
3.1. Evacuation and Fermentations of Rumen
3.2. Volatile Fatty Acid
3.3. The Rumen Microbial Profile
3.4. Fatty Acid Composition of Rumen Liquor
4. Discussion
4.1. Evacuation and Fermentations of Rumen
4.2. Volatile Fatty Acid
4.3. Rumen Microbial Profile
4.4. Fatty Acid Profile of Rumen
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, R.D.X.; Oliveira, R.L.; Macome, F.M.; Bagaldo, A.R.; Silva, M.C.A.D.; Ribeiro, C.V.D.M.; Carvalho, G.G.P.D.; Lanna, D.P.D. Meat Quality of Lambs Fed on Palm Kernel Meal, a By-Product of Biodiesel Production. Asian Australas. J. Anim. Sci. 2011, 24, 1399–1406. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abdullah, R.B.; Embong, W.K.W.; Nakagawa, T.; Akashi, R. Effect of palm kernel cake as protein source in a concentrate diet on intake, digestibility and live weight gain of goats fed Napier grass. Trop. Anim. Health Prod. 2013, 45, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Alimon, A. The nutritive value of palm kernel cake for animal feed. Palm Oil Dev. 2004, 40, 12–14. [Google Scholar]
- Chanjula, P.; Mesang, A.; Pongprayoon, S. Effects of dietary inclusion of palm kernel cake on nutrient utilization, rumen fermentation characteristics and microbial populations of goats fed Paspalum plicatulum hay-based diet. Sonklanakarin J. Sci. Technol. 2010, 32, 527. [Google Scholar]
- Xu, N.; Wang, D.; Wang, B.; Wang, J.; Liu, J. Different endosperm structures in wheat and corn affected in vitro rumen fermentation and nitrogen utilization of rice straw-based diet. Animal 2019, 13, 1607–1613. [Google Scholar] [CrossRef]
- Saeed, O.A.; Sazili, A.Q.; Akit, H.; Ebrahimi, M.; Alimon, A.R.; Samsudin, A.A. Effects of corn supplementation on meat quality and fatty acid composition of Dorper lambs fed PKC-Urea treated rice straw. BMC Veter. Res. 2019, 15, 233. [Google Scholar] [CrossRef] [Green Version]
- Saeed, O.A.; Kee, L.T.; Sazili, A.Q.; Akit, H.; Jahromi, M.F.; Alimon, A.R.; Samsudin, A.A. Effects of corn supplementation on the antioxidant activity, selected minerals, and gene expression of selenoprotein and metallothionein in serum, liver, and kidney of sheep-fed palm kernel cake: Urea-treated rice straw diets. 3 Biotech 2019, 9, 146. [Google Scholar] [CrossRef]
- Saeed, O.A.; Sazili, A.Q.; Akit, H.; Alimon, A.R.; Mazlan, M.; Samsudin, A.A. The Growth Efficiency and Carcass Characteristics of Dorper Sheep Treated by Corn Inclusion as Energy into Palm Kernel Cake Based-Diet. Trop. Anim. Sci. J. 2018, 41, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Adeyemi, K.D.; Ebrahimi, M.; Samsudin, A.A.; Alimon, A.R.; Karim, R.; Karsani, S.A.; Sazili, A.Q. Influence of Carotino oil on in vitro rumen fermentation, metabolism and apparent biohydrogenation of fatty acids. Anim. Sci. J. 2015, 86, 270–278. [Google Scholar] [CrossRef]
- Parsons, T.; Maita, Y.; Lalli, C.M. Amanual of Chemical and Biological Methods for Seawater Analysis; Pergamon: Oxford, UK, 1984; Volume 1, p. 173. [Google Scholar]
- Cottyn, B.G.; Boucque, C.V. Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem. 1968, 16, 105–107. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.-P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Saeed, O.A.; Sazili, A.Q.; Akit, H.; Alimon, A.R.; Samsudin, A.A.B. Effect of corn supplementation on purine derivatives and rumen fermentation in sheep fed PKC and urea-treated rice straw. Trop. Anim. Health Prod. 2018, 50, 1859–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Dos Santos, R.D.C.; Gomes, D.I.; Alves, K.S.; Mezzomo, R.; Oliveira, L.R.S.; Cutrim, D.O.; Sacramento, S.B.M.; de Moura Lima, E.; de Carvalho, F.F.R. Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake. Asian Australas. J. Anim. Sci. 2017, 30, 865–871. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, A.A.; Romanzini, E.P.; Costa, D.F.A.; Barbero, R.P.; Azenha, M.V.; Lage, J.F.; Ruggieri, A.C.; Reis, R.A. Citrus pulp replacing corn in the supplement decreased fibre digestibility with no impacts on performance of cattle grazing marandu palisade grass in the wet-dry transition period. Animals 2022, 12, 822. [Google Scholar] [CrossRef]
- Xie, G.; Li, Z.; Ran, Q.; Wang, H.; Zhang, J. Over-expression of mutated ZmDA 1 or ZmDAR 1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnol. J. 2018, 16, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, M.M.; Alhidary, I.; Albaadani, H.H.; Alobre, M.; Khan, R.U.; Aljumaah, R.S. Effect of Palm Kernel Meal and Malic Acid on Rumen Characteristics of Growing Naemi Lambs Fed Total Mixed Ration. Animals 2019, 9, 408. [Google Scholar] [CrossRef] [Green Version]
- Buranakarl, C.; Thammacharoen, S.; Semsirmboon, S.; Sutayatram, S.; Chanpongsang, S.; Chaiyabutr, N.; Katoh, K. Effects of replacement of para-grass with oil palm compounds on body weight, food intake, nutrient digestibility, rumen functions and blood parameters in goats. Asian Australas. J. Anim. Sci. 2020, 33, 921–929. [Google Scholar] [CrossRef]
- Kawashima, T.; Sumamal, W.; Pholsen, P.; Chaithiang, R.; Hayashi, Y. Ruminal Degradation of Sugarcane Stalk. Asian Australas J. Anim. Sci. 2003, 16, 1280–1284. [Google Scholar] [CrossRef]
- Berk, E.; Hamzalıoğlu, A.l.; Gökmen, V. Investigations on the Maillard reaction in sesame (Sesamum indicum L.) seeds induced by roasting. J. Agric. Food Chem. 2019, 67, 4923–4930. [Google Scholar] [CrossRef] [PubMed]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamuad, L.L.; Kim, S.H.; Biswas, A.A.; Yu, Z.; Cho, K.-K.; Kim, S.-B.; Lee, K.; Lee, S.S. Rumen fermentation and microbial community composition influenced by live Enterococcus faecium supplementation. Amb. Express 2019, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: New York, NY, USA, 1994. [Google Scholar]
- Gao, R.; Luo, Y.; Xu, S.; Wang, M.; Sun, Z.; Wang, L.; Yu, Z. Effects of replacing ensiled-alfalfa with fresh-alfalfa on dynamic fermentation characteristics, chemical compositions, and protein fractions in fermented total mixed ration with different additives. Animals 2021, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal 2020, 14, s78–s86. [Google Scholar] [CrossRef] [Green Version]
- Bharanidharan, R.; Arokiyaraj, S.; Baik, M.; Ibidhi, R.; Lee, S.J.; Lee, Y.; Nam, I.S.; Kim, K.H. In Vitro Screening of East Asian Plant Extracts for Potential Use in Reducing Ruminal Methane Production. Animals 2021, 11, 1020. [Google Scholar] [CrossRef]
- Atasoy, M.; Eyice, O.; Schnürer, A.; Cetecioglu, Z. Volatile fatty acids production via mixed culture fermentation: Revealing the link between pH, inoculum type and bacterial composition. Bioresour. Technol. 2019, 292, 121889. [Google Scholar] [CrossRef]
- Dias, F.N. Supplementation of palm kernel expeller to grazing dairy farms in New Zealand: A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Animal Science at Massey University, Palmerston North, New Zealand. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2010. [Google Scholar]
- Williams, A.; Coleman, G. The rumen protozoa. In The Rumen Microbial Ecosystem; Springer: Berlin/Heidelberg, Germany, 1997; pp. 73–139. [Google Scholar]
- Zhang, C.; Li, M.; Al-Marashdeh, O.; Gan, L.; Zhang, C.; Zhang, G. Performance, rumen fermentation, and gastrointestinal microflora of lambs fed pelleted or unpelleted total mixed ration. Anim. Feed Sci. Technol. 2019, 253, 22–31. [Google Scholar] [CrossRef]
- Majewska, M.P.; Miltko, R.; Bełżecki, G.; Kędzierska, A.; Kowalik, B. Protozoa population and carbohydrate fermentation in sheep fed diet with different plant additives. Anim. Biosci. 2021, 34, 1146–1156. [Google Scholar] [CrossRef]
- Abubakr, A.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Ivan, M. Effect of Feeding Palm Oil By-Products Based Diets on Total Bacteria, Cellulolytic Bacteria and Methanogenic Archaea in the Rumen of Goats. PLoS ONE 2014, 9, e95713. [Google Scholar] [CrossRef] [PubMed]
- Francisco, A.E.; Santos-Silva, J.M.; Portugal, A.P.V.; Alves, S.P.; Bessa, R.J.B. Relationship between rumen ciliate protozoa and biohydrogenation fatty acid profile in rumen and meat of lambs. PLoS ONE 2019, 14, e0221996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Zhang, Q.; Wang, X.; Zhong, H.; Zhu, J. Effects of initial microbial community structure on the performance of solid-state anaerobic digestion of corn stover. J. Clean. Prod. 2020, 260, 121007. [Google Scholar] [CrossRef]
- Fu, S.-F.; Liu, R.; Sun, W.-X.; Zhu, R.; Zou, H.; Zheng, Y.; Wang, Z.-Y. Enhancing energy recovery from corn straw via two-stage anaerobic digestion with stepwise microaerobic hydrogen fermentation and methanogenesis. J. Clean. Prod. 2020, 247, 119651. [Google Scholar] [CrossRef]
- Bhatta, R.; Saravanan, M.; Baruah, L.; Prasad, C. Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J. Appl. Microbiol. 2015, 118, 557–564. [Google Scholar] [CrossRef]
- Roque, B.M.; Brooke, C.G.; Ladau, J.; Polley, T.; Marsh, L.J.; Najafi, N.; Pandey, P.; Singh, L.; Kinley, R.; Salwen, J.K. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Anim. Microbiome 2019, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Machmüller, A.; Soliva, C.R.; Kreuzer, M. Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. Br. J. Nutr. 2003, 90, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, N.; Hutagalung, R. Rumen fermentation, urease activity and performance of cattle given palm kernel cake-based diet. Anim. Feed Sci. Technol. 1988, 20, 79–86. [Google Scholar] [CrossRef]
- Abdullah, N.; Hanita, H.; Ho, Y.; Kudo, H.; Jalaludin, S.; Ivan, M. The effects of bentonite on rumen protozoal population and rumen fluid characteristics of sheep fed palm kernel cake. Asian Australas. J. Anim. Sci. 1995, 8, 249–254. [Google Scholar] [CrossRef]
- Machmüller, A.; Kreuzer, M. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Can. J. Anim. Sci. 1999, 79, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Conte, G.; Dimauro, C.; Serra, A.; Macciotta, N.P.P.; Mele, M. A canonical discriminant analysis to study the association between milk fatty acids of ruminal origin and milk fat depression in dairy cows. J. Dairy Sci. 2018, 101, 6497–6510. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.; Savyasachi, S.; Reddy, L.P.A.; Sreedhar, R.V. Physico-chemical Characterization, Profiling of Total Lipids and Triacylglycerol Molecular Species of Omega-3 Fatty Acid Rich B. arvensis Seed Oil from India. J. Oleo Sci. 2019, 68, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Siurana, A.; Ferret, A.; Rodriguez, M.; Vlaeminck, B.; Fievez, V.; Calsamiglia, S. Strategies to modify the ruminal biohydrogenation of polyunsaturated fatty acids and the production of trans-10, cis-12 C18: 2 in vitro. Anim. Feed Sci. Technol. 2018, 235, 158–165. [Google Scholar] [CrossRef]
- Abubakr, A.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Ivan, M. Effect of Feeding Palm Oil By-Products Based Diets on Muscle Fatty Acid Composition in Goats. PLoS ONE 2015, 10, e0119756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devillard, E.; McIntosh, F.M.; Newbold, C.J.; Wallace, R.J. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Br. J. Nutr. 2006, 96, 697–704. [Google Scholar] [PubMed]
- Beam, T.; Jenkins, T.; Moate, P.; Kohn, R.; Palmquist, D. Effects of Amount and Source of Fat on the Rates of Lipolysis and Biohydrogenation of Fatty Acids in Ruminal Contents. J. Dairy Sci. 2000, 83, 2564–2573. [Google Scholar] [CrossRef]
- Harfoot, C.; Hazlewood, G. Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem; Hobson, P.N., Ed.; Elsevier Applied Science: London, UK, 1997; pp. 382–426. [Google Scholar]
- Jenkins, T.C.; Wallace, R.J.; Moate, P.; Mosley, E.E. Board-Invited Review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A. Pattern of Polyunsaturated Fatty Acid Biohydrogenation as Influenced by Dietary Tannin. JITV 2014, 19, 8–14. [Google Scholar]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High Fiber Cakes from Mediterranean Multipurpose Oilseeds as Protein Sources for Ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [Green Version]
Item | Corn Concentration (%) | ||
---|---|---|---|
C0% | C1% | C2% | |
Rice straw urea treated | 20 | 20 | 20 |
PKC | 75.3 | 70.3 | 65.3 |
Protected fat (Megalac) | 3 | 3 | 3 |
Corn | 0 | 5 | 10 |
CaCO3 | 1 | 1 | 1 |
NaCl | 0.5 | 0.5 | 0.5 |
Vitamin premix | 0.2 | 0.2 | 0.2 |
Total | 100 | 100 | 100 |
Chemical composition: | |||
DM | 91.78 | 91.66 | 91.55 |
Ash | 13.80 | 12.72 | 12.74 |
OM | 86.19 | 87.27 | 87.26 |
CP | 15.42 | 14.88 | 14.09 |
EE | 5.3 | 5.1 | 4.33 |
CF | 26.6 | 24.50 | 20.83 |
NDF | 62.36 | 60.06 | 55.66 |
ADF | 45.60 | 40.96 | 37.30 |
ADL | 6.56 | 6.10 | 5.43 |
Gross energy (MJ/kg DM) | 16.89 | 17.29 | 17.65 |
Calculation: | |||
Hemicellulose | 16.76 | 19.10 | 18.36 |
Cellulose | 39.03 | 34.86 | 31.86 |
NFE | 40.44 | 41.11 | 48.39 |
ME (MJ/kg DM) | 7.36 | 8.23 | 8.92 |
TDN (%) | 43.91 | 49.24 | 53.46 |
Diets | |||
---|---|---|---|
Fatty Acids | C0% | C1% | C2% |
C12:0 | 8.11 | 4.74 | 5.57 |
C14:0 | 5.88 | 6.32 | 3.94 |
C15:0 | 3.67 | 2.43 | 2.68 |
C15:1 | 0.63 | 0.26 | 0.73 |
C16:0 | 31.97 | 35.43 | 39.97 |
C16:1 n-9 | 0.33 | 0.39 | 0.37 |
C18:0 | 14.14 | 14.74 | 7.59 |
C18:1n9 | 31.44 | 31.71 | 36.01 |
C18:2n6 | 3.16 | 3.10 | 2.55 |
C18:3n-3 | 1.27 | 1.09 | 1.29 |
ΣSFA | 63.78 | 63.68 | 59.77 |
ΣUFA | 36.21 | 36.31 | 40.22 |
ΣMUFA | 32.41 | 32.37 | 37.12 |
Σn-3 PUFA | 1.27 | 1.09 | 1.29 |
Σ n-6 PUFA | 3.16 | 3.10 | 2.55 |
Σ PUFA | 4.43 | 4.20 | 3.83 |
n-6:n-3 Ratio | 2.71 | 2.85 | 2.18 |
UFA:SFA | 0.56 | 0.57 | 0.67 |
Poly:Sat Ratio | 0.07 | 0.06 | 0.07 |
Parameters | C0% | C1% | C2% | SEM | p-Value |
---|---|---|---|---|---|
Rumen full (kg) | 5.30 | 4.96 | 5.16 | 0.15 | 0.18 |
Rumen empty (kg) | 0.66 | 0.80 | 0.87 | 0.05 | 0.43 |
Omasum & Reticulum full (g) | 100.00 | 116.67 | 113.33 | 13.54 | 0.89 |
Omasum & Reticulum empty (g) | 100.0 | 100.0 | 100.0 | 0.01 | 0.93 |
Abomasum full (g) | 180.00 b | 293.33 a | 230.00 b | 18.02 | 0.001 |
Abomasum empty (g) | 170.00 b | 200.00 ab | 210.67 a | 8.83 | 0.05 |
Intestine full (kg) | 1.30 a | 1.18 b | 1.33 ab | 0.03 | 0.05 |
Intestine empty (kg) | 0.86 b | 1.11 ab | 1.21 a | 0.09 | 0.05 |
Parameters | C0% | C1% | C2% | SEM | p-Value |
---|---|---|---|---|---|
IVDMD | 51.78 | 44.37 | 49.91 | 1.25 | 0.46 |
IVOMD | 80.54 | 85.04 | 82.97 | 1.82 | 0.61 |
CH4 (mmol/L) | 3.36 a | 2.95 b | 2.81 b | 0.16 | 0.01 |
NH3-N (mg/dL) | |||||
0 h | 23.76 | 23.86 | 25.46 | 1.98 | 0.67 |
72 h | 36.79 | 35.69 | 32.79 | 1.78 | 0.95 |
pH | |||||
0 h | 6.80 | 6.69 | 6.75 | 0.02 | 0.34 |
72 h | 6.83 | 6.79 | 6.81 | 0.01 | 0.67 |
Parameter | C0% | C1% | C2% | SEM | p-Value |
---|---|---|---|---|---|
Total VFA | |||||
0 h | 12.77 | 12.87 | 12.80 | 0.38 | 0.42 |
72 h | 13.61 | 14.67 | 16.86 | 0.51 | 0.51 |
Acetate | |||||
0 h | 6.11 | 6.19 | 6.50 | 0.16 | 0.46 |
72 h | 7.20 | 6.48 | 7.99 | 0.04 | 0.51 |
Propionate | |||||
0 h | 3.56 | 4.05 | 4.23 | 0.67 | 0.59 |
72 h | 2.94 b | 3.12 ab | 4.53 a | 0.31 | 0.05 |
Butyrate | |||||
0 h | 3.36 | 3.62 | 3.47 | 0.68 | 0.93 |
72 h | 2.22 b | 2.62 ab | 3.52 a | 0.22 | 0.05 |
C2: C3 | |||||
0 h | 1.68 | 1.74 | 1.78 | 0.10 | 0.54 |
72 h | 2.06 | 1.75 | 2.06 | 0.07 | 0.20 |
Item | Diets | ||||
---|---|---|---|---|---|
Species | C0% | C1% | C2% | SEM | p-Value |
Total bacteria (×1010) | |||||
24 h | 11.58 | 11.60 | 11.29 | 0.06 | 0.08 |
F. succinogenes (×109) | |||||
24 h | 7.75 | 7.01 | 7.50 | 0.16 | 0.46 |
R. albus (×106) | |||||
24 h | 7.86 | 6.77 | 7.78 | 0.30 | 0.27 |
R. flavefaciens (×107) | |||||
24 h | 6.84 | 7.46 | 6.91 | 0.14 | 0.17 |
Methanogenic archaea (×109) | |||||
24 h | 5.56 a | 4.12 b | 5.12 a | 0.18 | 0.001 |
Total protozoa (×105) | |||||
24 h | 4.37 b | 5.72 a | 5.87 a | 0.24 | 0.001 |
Fatty Acids | C0% | C1% | C2% | SEM | p-Value |
---|---|---|---|---|---|
C12:0 | 3.79 | 3.97 | 3.80 | 0.16 | 0.91 |
C14:0 | 3.94 | 3.97 | 4.15 | 0.15 | 0.86 |
C15:0 | 0.36 b | 0.52 ab | 0.64 a | 0.05 | 0.05 |
C15:1 | 0.44 | 0.59 | 0.58 | 0.04 | 0.27 |
C16:0 | 40.72 | 37.34 | 35.63 | 1.02 | 0.10 |
C16:1n-7 | 0.35 | 0.39 | 0.23 | 0.03 | 0.12 |
C16:1n-9 | 0.20 | 0.19 | 0.38 | 0.04 | 0.15 |
C18:0 | 33.10 | 32.21 | 36.70 | 0.93 | 0.09 |
C18:1 c 9 | 10.01 | 11.54 | 10.04 | 0.59 | 0.54 |
C18:1 t-11 | 1.33 b | 3.17 a | 2.09 ab | 0.28 | 0.05 |
C18:2n-6 | 2.01 | 1.78 | 2.39 | 0.19 | 0.50 |
CLAc9 t-11 | 0.85 | 0.74 | 0.94 | 0.06 | 0.52 |
CLAc12 t-10 | 0.56 | 0.79 | 0.68 | 0.07 | 0.53 |
C18:3n-3 | 1.54 | 1.28 | 1.20 | 0.09 | 0.37 |
C20:4n-6 | 0.32 | 0.29 | 0.31 | 0.01 | 0.86 |
C20:5n-3 | 0.09 | 0.52 | 0.12 | 0.09 | 0.09 |
C22:5n-3 | 0.53 | 0.45 | 0.51 | 0.02 | 0.30 |
C22:6n-3 | 0.24 | 0.23 | 0.23 | 0.01 | 0.93 |
ΣSFA | 81.93 | 78.02 | 80.94 | 0.96 | 0.25 |
ΣUFA | 18.07 | 21.97 | 19.05 | 0.96 | 0.25 |
ΣMUFA | 12.33 | 13.32 | 16.45 | 0.85 | 0.10 |
ΣPUFA n-3 | 2.42 | 2.49 | 2.07 | 0.12 | 0.37 |
ΣPUFA n-6 | 2.33 | 2.08 | 2.60 | 0.20 | 0.65 |
ΣPUFA | 4.75 | 4.57 | 4.67 | 0.27 | 0.97 |
Σ Trans FA | 1.33 c | 3.17 a | 2.09 b | 0.28 | 0.05 |
ΣCLA | 1.41 | 1.54 | 1.63 | 0.12 | 0.80 |
n-6:n-3 | 0.98 | 0.81 | 1.24 | 0.09 | 0.14 |
UFA:SFA | 0.22 | 0.28 | 0.23 | 0.01 | 0.22 |
PUFA:SFA Ratio | 0.06 | 0.05 | 0.05 | 0.004 | 0.95 |
Fatty Acids | C0% | C1% | C2% | SEM | p-Value |
---|---|---|---|---|---|
C12:0 | 3.53 a | 2.24 b | 3.05 a | 0.24 | 0.05 |
C14:0 | 2.62 | 2.74 | 2.97 | 0.07 | 0.12 |
C15:0 | 2.51 | 2.81 | 2.94 | 0.11 | 0.34 |
C15:1 | 0.91 b | 1.24 a | 1.19 a | 0.06 | 0.05 |
C16:0 | 16.96 b | 24.34 a | 23.56 a | 1.49 | 0.001 |
C16:1n-7 | 1.17 | 1.44 | 0.79 | 0.18 | 0.46 |
C16:1n-9 | 1.16 | 0.60 | 1.14 | 0.16 | 0.34 |
C18:0 | 49.64 a | 39.68 b | 40.20 b | 2.19 | 0.05 |
C18:1 c 9 | 3.32 b | 4.91 a | 4.73 a | 0.32 | 0.001 |
C18:1 t-11 | 1.89 b | 3.05 a | 2.77 a | 0.23 | 0.05 |
C18:2n-6 | 10.27 | 12.56 | 10.91 | 0.66 | 0.43 |
CLAc9 t-11 | 1.39 | 1.12 | 1.39 | 0.18 | 0.85 |
CLAc12 t-10 | 0.81 | 1.11 | 0.91 | 0.10 | 0.59 |
C18:3n-3 | 1.23 | 0.93 | 1.53 | 0.23 | 0.69 |
C20:4n-6 | 0.60 b | 0.90 a | 0.59 b | 0.07 | 0.07 |
C20:5n-3 | 1.40 | 0.55 | 1.21 | 0.21 | 0.27 |
C22:5n-3 | 0.55 a | 0.30 b | 0.28 b | 0.05 | 0.05 |
C22:6n-3 | 0.91 | 0.69 | 0.99 | 0.08 | 0.44 |
ΣSFA | 75.26 | 71.83 | 72.72 | 0.93 | 0.37 |
ΣUFA | 24.73 | 28.16 | 27.27 | 0.93 | 0.37 |
ΣMUFA | 8.46 b | 11.24 a | 10.64 a | 0.54 | 0.01 |
ΣPUFA n-3 | 4.10 | 2.48 | 4.02 | 0.37 | 0.10 |
ΣPUFA n-6 | 10.87 | 13.46 | 11.50 | 0.72 | 0.39 |
ΣPUFA | 14.97 | 15.94 | 15.52 | 0.60 | 0.87 |
Σ Trans FA | 1.89 b | 3.05 a | 2.77 a | 0.23 | 0.05 |
ΣCLA | 2.20 | 2.23 | 2.31 | 0.20 | 0.98 |
n-6:n-3 | 2.63 b | 5.43 a | 2.94 b | 0.59 | 0.05 |
UFA:SFA | 0.33 | 0.39 | 0.37 | 0.01 | 0.35 |
PUFA: SFA Ratio | 0.20 | 0.22 | 0.21 | 0.009 | 0.69 |
Apparent biohydrogenation (%) | |||||
C18:1n9 | 87.01 a | 80.79 b | 81.50 b | 1.25 | 0.001 |
C18:2n-6c | 47.73 | 36.05 | 44.44 | 3.36 | 0.43 |
C18:3n-3 | 63.65 | 72.63 | 54.82 | 4.17 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, O.A.; Sani, U.M.; Sazili, A.Q.; Akit, H.; Alimon, A.R.; Samsudin, A.A. Profiling of Fatty Acids and Rumen Ecosystem of Sheep Fed on a Palm Kernel Cake-Based Diet Substituted with Corn. Agriculture 2023, 13, 643. https://doi.org/10.3390/agriculture13030643
Saeed OA, Sani UM, Sazili AQ, Akit H, Alimon AR, Samsudin AA. Profiling of Fatty Acids and Rumen Ecosystem of Sheep Fed on a Palm Kernel Cake-Based Diet Substituted with Corn. Agriculture. 2023; 13(3):643. https://doi.org/10.3390/agriculture13030643
Chicago/Turabian StyleSaeed, Osama A., Umar M. Sani, Awis Q. Sazili, Henny Akit, Abdul R. Alimon, and Anjas A. Samsudin. 2023. "Profiling of Fatty Acids and Rumen Ecosystem of Sheep Fed on a Palm Kernel Cake-Based Diet Substituted with Corn" Agriculture 13, no. 3: 643. https://doi.org/10.3390/agriculture13030643
APA StyleSaeed, O. A., Sani, U. M., Sazili, A. Q., Akit, H., Alimon, A. R., & Samsudin, A. A. (2023). Profiling of Fatty Acids and Rumen Ecosystem of Sheep Fed on a Palm Kernel Cake-Based Diet Substituted with Corn. Agriculture, 13(3), 643. https://doi.org/10.3390/agriculture13030643