Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Molecular Markers
2.1. Sequence-Tagged-Site (STS) Marker
2.2. Simple Sequence Repeats (SSRs) Marker
2.3. Single Nucleotide Polymorphism (SNP) Markers
- GBS-SNP
- SNP arrays
2.4. Exome Capture
2.5. SNP-Converted Markers
- KASP
- CAPS
- STARP
2.6. Genotyping by Target Sequencing (GBTS)
3. Loci and Markers of Potential Applications in MAS
3.1. Loci for Resistance to Biotic Stresses
Traits | QTL/Gene | Marker Name | Marker Type | Source | Reference |
---|---|---|---|---|---|
Resistance to biotic stresses | |||||
FHB | Fhb1 | TaHRC-GSM, TaHRC-KASP | Gene specific, KASP | Sumai3 | [66,67] |
QFhb-2DL | KASP10238, KASP12056 | KASP | Ji5265 | [68] | |
Powdery mildew | Pm60 | M-Pm60-S1, M-Pm60-S2 | / | Triticum urartu | [70] |
QPm.caas-3BS | Str-IWB41105 | STARP | Zhou8452B | [35] | |
Leaf rust | Lr22a | Kwh636, Kwh637 and Kwh638 | KASP | RL4495 | [74] |
QLr-2BS | BS00092275_51 Kukri_c36783_91 | KASP | Zhoumai22 | [75] | |
Stripe rust | QYr.AYH-5BL | KASP_AX-109337325, KASP_AX-110400764 | KASP | Anyuehong | [76] |
Stem rust | Sr13 | KASPSr13, rwgsnp37 | KASP/STARP | tetraploid wheat | [77] |
Resistance to abiotic stresses | |||||
Drought | TaWRKY51 | AS, B-Hpa11 | Indel/CAPS | / | [78] |
Cold | Fr-A2 | S1862541, S1298957, S1051014 | KASP | / | [79] |
qCT5A.3 | k5A4692, k5A7728 | KASP | / | [80] | |
Lodging | TaCOMT-3B | TaCOMT-3BM | Indel | / | [81] |
Loci for yield-related traits | |||||
TKW | TaTAP46 | / | KASP | / | [82] |
TaSDIR1 | / | dCAPS | / | [83] | |
QGw4B.4 | TaGW-4B | CAPS | Shannong 01-35 | [84] | |
SL/SC | QSc/Sl.cib-5A, QSc/Sl.cib-6A | KASP_AX_110462709, KASP_AX-109308935 | KASP | Chunmai42 | [85] |
FT | FT-D1 | SFT-D1 | STARP | Nongda4332 | [86] |
SNPS | TaCol-B5 | TaCOL-B5 | CAPS | CItr 17600 | [87] |
Loci for grain quality | |||||
GPC | GPC | Kgpc-2B, Kgpc-2D, Kgpc-4A | KASP | / | [88] |
Glu-D1 null | Glu-D1 | gwm642 | SSR | Nap Hal | [89] |
Black point resistance | QBp.caas-3BL | / | KASP | Zhong892 | [90] |
PHST | Qphs.ahau-1A | IA1142 | CAPS | / | [91] |
Qphs.ahau-3B | WS5431 | dCAPS | / | [91] | |
Qphs.ahau-6B | EX06323 | CAPS | / | [91] |
3.2. Loci for Resistance to Abiotic Stresses
3.3. Loci for Yield-Related Traits
3.4. Loci for Grain Quality
4. Cases of MAS in wheat breeding
Genes for MAS | Receptor | Marker Type | Reference |
---|---|---|---|
Fhb1 | Quaiu, Munal, Super 152, Jimai 22, Zhoumai 16 | KASP [67] | [66] |
Pm21 | Ningchun4, Ningchun47, Ningchun50 | EST-STS | [116] |
Yr59 | Chuanmai 42, Jimai 22, Xinmai 26, Zhengmai 9023 | SSR | [117] |
Yr70/Lr76, Lr37/Yr17/Sr38, Gpc-B1/Yr36, QPhs.ccsu-3A.1, QGw.ccsu-1A.3, Lr24/Sr24 and Glu-A1-1/Glu-A1-2 | PBW343 | SSR/CAPS | [118] |
ML91260, Yr26, Dx5 + Dy10 | Xiaoyan22 | SSR | [119] |
Bx7OE, Gpc-B1 | CWHWS | SSR/CAPS | [120] |
Ax2*/Bx7OE/Dx5 | JM22 | SSR | [121] |
5. Considerations in the Application of MAS
6. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Zheng, Y.; Wang, Y.; Wang, S.; Wang, T.; Wang, C.; Chen, Y.; Zhang, K.; Zhang, N.; Dong, Z.; et al. A HST1-like gene controls tiller angle through regulating endogenous auxin in common wheat. Plant Biotechnol. J. 2023, 21, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, A.; Xia, X. From markers to genome-based breeding in wheat. Theor. Appl. Genet. 2019, 132, 767–784. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, B.; Yao, Y.; Guo, Z.; Jia, H.; Kong, L.; Zhang, A.; Ma, W.; Ni, Z.; Xu, S.; et al. Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci. 2022, 65, 1718–1775. [Google Scholar] [CrossRef]
- Peng, J.; Richards, D.; Hartley, N.; Murphy, G.; Devos, K.; Flintham, J.; Beales, J.; Fish, L.J.; Worland, A.J.; Pelica, F.; et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 1999, 400, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Loukoianov, A.; Tranquilli, G.; Helguera, M.; Fahima, T.; Dubcovsky, J. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 2003, 100, 6263–6268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohler, V.; Lukman, R.; Ortiz-Islas, S.; William, M.; Worland, A.J.; van Beem, J.; Wenzel, G. Genetic and physical mapping of photoperiod insensitive gene Ppd-B1 in common wheat. Euphytica 2004, 138, 33–40. [Google Scholar] [CrossRef]
- Simmonds, J.; Scott, P.; Brinton, J.; Mestre, T.C.; Bush, M.; Blanco, A.D.; Dubcovsky, J.; Uauy, C. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor. Appl. Genet. 2016, 129, 1099–1112. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M.; Afzal, F.; Gul, A.; Amir, R.; Subhani, A.; Ahmed, Z.; Mahmood, Z.; Xia, X.; Rasheed, A.; He, Z. Molecular characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions. Front. Plant Sci. 2019, 10, 717. [Google Scholar] [CrossRef]
- Anderson, J.A. Marker-assisted selection for Fusarium head blight resistance in wheat. Int. J. Food Microbiol. 2007, 119, 51–53. [Google Scholar] [CrossRef]
- Kuchel, H.F.R.; Hollamby, G.; Reinheimer, J.L.; Jefferies, S.P. The challenges of integrating new technologies into a wheat breeding programme. In 11th International Wheat Genetics Symposium, Proceedings of 11th International Wheat Genet Symposium, Brisbane, Australia, 24–29 August 2008; Appels, R., Eastwood, R., Lagudah, E., Langridge, P., Mackay, M., McIntyre, L., Sharp, P., Eds.; Sydney University Press: Sydney, Australia, 2008; pp. 1–5. [Google Scholar]
- Liu, S.; Banik, M.; Yu, K.; Park, S.J.; Poysa, V.; Guan, Y. Marker-assisted selection (MAS) in major cereal and legume crop breeding: Current progress and future directions. Int. J. Plant Breed. 2007, 1, 74–88. [Google Scholar]
- Paux, E.; Sourdille, P.; Mackay, I.; Feuillet, C. Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnol. Adv. 2012, 30, 1071–1088. [Google Scholar] [CrossRef] [PubMed]
- Devos, K.M.; Gale, M.D. The use of random amplified polymorphic DNA markers in wheat. Theor. Appl. Genet. 1992, 84, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Pandurangan, S.W.C.; Nilsen, K.; Kumar, S. Introduction to Marker-Assisted Selection in Wheat Breeding. In Accelerated Breeding of Cereal Crops; Springer Protocols Handbooks; Bilichak, A., Laurie, J.D., Eds.; Humana: New York, NY, USA, 2022. [Google Scholar]
- Geng, H.; Shi, J.; Fuerst, E.P.; Wei, J.; Morris, C.F. Physical mapping of Peroxidase genes and development of functional markers for TaPod-D1 on bread wheat chromosome 7D. Front. Plant Sci. 2019, 10, 523. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Yao, R.; Sun, D.; Sun, B.; Feng, Y.; Zhang, W.; Zhang, M. Development of V chromosome alterations and physical mapping of molecular markers specific to Dasypyrum villosum. Mol. Breed. 2017, 37, 67. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Lu, Y.; Liu, Q.; Yang, X.; Li, X.; Li, L. A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences. Sci. Rep. 2017, 7, 11942. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cao, Q.; Zhang, J.; Wang, S.; Chen, C.; Wang, C.; Zhang, H.; Wang, Y.; Ji, W. Cytogenetic analysis and molecular marker development for a new wheat–Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Front. Plant Sci. 2020, 11, 1282. [Google Scholar] [CrossRef]
- Gupta, P.K.; Varshney, R.K. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 2000, 113, 163–185. [Google Scholar] [CrossRef]
- Wu, P.; Hu, J.; Zou, J.; Qiu, D.; Qu, Y.; Li, Y.; Li, T.; Zhang, H.; Yang, L.; Liu, H.; et al. Fine mapping of the wheat powdery mildew resistance gene Pm52 using comparative genomics analysis and the Chinese Spring reference genomic sequence. Theor. Appl. Genet. 2019, 132, 1451–1461. [Google Scholar] [CrossRef]
- Zheng, W.Y.; Zhao, L.; Li, Y.M.; Li, J.; Zhu, Z.H.; Yao, D.N. Association analysis between Lipoxygenase activity and SSR markers in wheat grains. Cereal Res. Commun. 2021, 50, 297–303. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Z.; Du, Z.; Che, M.; Zhang, Y.; Quan, W.; Wang, Y.; Jiang, X.; Zhang, Z. Detection and validation of a novel major QTL for resistance to Fusarium head blight from Triticum aestivum in the terminal region of chromosome 7DL. Theor. Appl. Genet. 2019, 132, 241–255. [Google Scholar] [CrossRef]
- Khan, M.K.; Pandey, A.; Choudhary, S.; Hakki, E.E.; Akkaya, M.S.; Thomas, G. From RFLP to DArT: Molecular tools for wheat (Triticum spp.) diversity analysis. Genet. Resour. Crop Ev. 2014, 61, 1001–1032. [Google Scholar] [CrossRef]
- Lehnert, H.; Berner, T.; Lang, D.; Beier, S.; Stein, N.; Himmelbach, A.; Kilian, B.; Keilwagen, J. Insights into breeding history, hotspot regions of selection, and untapped allelic diversity for bread wheat breeding. Plant J. 2022, 112, 897–918. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, N.R.; Qureshi, N.; Pourkheirandish, N. Genotyping by Sequencing Advancements in Barley. Front. Plant Sci. 2022, 13, 931423. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yuan, Y.; Wang, H.; Yu, D.; Liu, Y.; Zhang, A.; Gowda, M.; Nair, S.K.; Hao, Z.; Lu, Y.; et al. Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding. Sci. Rep. 2020, 10, 16308. [Google Scholar] [CrossRef]
- Reyes, V.P.; Kitonv, J.K.; Nishiuchi, S.; Makihara, D.; Doi, K. Utilization of Genotyping-by-Sequencing (GBS) for Rice Pre-Breeding and Improvement: A Review. Life 2022, 12, 1752. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Xu, Y.; Liu, X.; Zhao, L.; Bernardo, A.; Li, Y.; Liu, G.; Chen, M.S.; Cao, L.; Hu, Z.; et al. The Hessian fly recessive resistance gene h4 mapped to chromosome 1A of the wheat cultivar ‘Java’ using genotyping-by-sequencing. Theor. Appl. Genet. 2020, 133, 2927–2935. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liu, X.; Xu, Y.; Bernardo, A.; Chen, M.; Li, Y.; Niu, F.; Zhao, L.; Bai, G. Reassigning Hessian fly resistance genes H7 and H8 to chromosomes 6A and 2B of the wheat cultivar ‘Seneca’ using genotyping-by-sequencing. Crop Sci. 2020, 60, 1488–1498. [Google Scholar] [CrossRef]
- Liu, Y.; Salsman, E.; Fiedler, J.D.; Hegstad, J.B.; Green, A.; Mergoum, M.; Zhong, S.; Li, X. Genetic mapping and prediction analysis of FHB resistance in a hard red spring wheat breeding population. Front. Plant Sci. 2019, 10, 1007. [Google Scholar] [CrossRef] [Green Version]
- Tomar, V.; Singh, D.; Dhillon, G.S.; Singh, R.P.; Poland, J.; Joshi, A.K.; Singh, P.K.; Bhati, P.K.; Kumar, S.; Rahman, M.; et al. New QTLs for spot blotch disease resistance in wheat (Triticum aestivum L.) using genome-wide association mapping. Front. Genet. 2021, 11, 613217. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Sun, Y.; Li, D.; Gao, D.; Zhan, K.; Cheng, S. Identification of quantitative trait loci for Fusarium head blight (FHB) resistance in the cross between wheat landrace N553 and elite cultivar Yangmai 13. Mol. Breed. 2021, 41, 24. [Google Scholar] [CrossRef]
- Mu, J.; Huang, S.; Liu, S.; Zeng, Q.; Dai, M.; Wang, Q.; Wu, J.; Yu, S.; Kang, Z.; Han, D. Genetic architecture of wheat stripe rust resistance revealed by combining QTL mapping using SNP-based genetic maps and bulked segregant analysis. Theor. Appl. Genet. 2019, 132, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Li, Y.; Guo, H.; Xie, Y.; Zhao, L.; Gu, J.; Zhao, S.; Ding, Y.; Liu, L. Genetic mapping by integration of 55K SNP array and KASP markers reveals candidate genes for important agronomic traits in hexaploid wheat. Front. Plant Sci. 2021, 12, 628478. [Google Scholar] [CrossRef] [PubMed]
- Jia, A.; Ren, Y.; Gao, F.; Yin, G.; Liu, J.; Guo, L.; Zheng, J.; He, Z.; Xia, X. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. Theor. Appl. Genet. 2018, 131, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, W.; Zhang, N.; Chen, M.; Zheng, S.; Zhao, C.; Han, J.; Liu, J.; Zhang, X.; Song, L.; et al. Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2018, 131, 2677–2698. [Google Scholar] [CrossRef] [PubMed]
- Winfield, M.O.; Allen, A.M.; Burridge, A.J.; Barker, G.L.A.; Benbow, H.R.; Wilkinson, P.A.; Coghill, J.; Waterfall, C.; Davassi, A.; Scopes, G.; et al. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 2016, 14, 1195–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, A.M.; Winfield, M.O.; Burridge, A.J.; Downie, R.C.; Benbow, H.R.; Barker, G.L.A.; Wilkinson, P.A.; Coghill, J.; Waterfall, C.; Davassi, A.; et al. Characterization of a wheat breeders’ array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol. J. 2017, 15, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Dong, Z.; Zhao, L.; Ren, Y.; Zhang, N.; Chen, F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020, 18, 1354–1360. [Google Scholar] [CrossRef]
- Yang, Y.; Basnet, B.R.; Ibrahim, A.M.H.; Rudd, J.C.; Chen, X.; Bowden, R.L.; Xue, Q.; Wang, S.; Johnson, C.D.; Metz, R.; et al. Developing KASP markers on a major stripe rust resistance QTL in a popular wheat TAM 111 using 90K array and genotyping-by-sequencing SNPs. Crop Sci. 2019, 59, 165–175. [Google Scholar] [CrossRef]
- Tan, C.; Yu, H.; Yang, Y.; Xu, X.; Chen, M.; Rudd, J.; Xue, Q.; Ibrahim, A.M.; Garza, L.; Wang, S.; et al. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor. Appl. Genet. 2017, 130, 1867–1884. [Google Scholar] [CrossRef]
- Schneeberger, K. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat. Rev. Genet. 2014, 15, 662–676. [Google Scholar] [CrossRef]
- He, F.; Pasam, R.; Shi, F.; Kant, S.; Keeble-Gagnere, G.; Kay, P.; Forrest, K.; Fritz, A.; Hucl, P.; Wiebe, K.; et al. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 2019, 51, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, Y.; Beier, S.; Jiang, Y.; Thorwarth, P.H.; Longin, C.F.; Ganal, M.; Himmelbach, A.; Reif, J.C.; Schulthess, A.W. Exome association analysis sheds light onto leaf rust (Puccinia triticina) resistance genes currently used in wheat breeding (Triticum aestivum L.). Plant Biotechnol. J. 2020, 18, 1396–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobo, N.; Wanjugi, H.; Lagudah, E.; Dubcovsky, J. A high-resolution map of wheat QYr.ucw-1BL, an adult plant stripe rust resistance locus in the same chromosomal region as Yr29. Plant Genome. 2019, 12, 180055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, Y.; Howell, T.; Vasquez-Gross, H.; de Haro, L.A.; Dubcovsky, J.; Pearce, S. Mapping causal mutations by exome sequencing in a wheat TILLING population: A tall mutant case study. Mol. Genet. Genom. 2018, 293, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Zhang, L.; Chen, Z.; Xia, C.; Gu, Y.; Wang, J.; Li, D.; Xie, Z.; Zhang, Q.; Zhang, X.; et al. Combining a new exome capture panel with an effective varBScore Algorithm accelerates BSA-based gene cloning in wheat. Front. Plant Sci. 2020, 11, 1249. [Google Scholar] [CrossRef]
- Kaur, B.; Mavi, G.S.; Gill, M.S.; Saini, D.K. Utilization of KASP technology for wheat improvement. Cereal Res. Commun. 2020, 48, 409–421. [Google Scholar] [CrossRef]
- Hrubá, M. dCAPS method: Advantages, troubles and solution. Plant Soil Environ. 2007, 53, 417–420. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.M.; Chao, W.S.; Ma, G.J.; Xu, S.S.; Qi, L.L. An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theor. Appl. Genet. 2017, 130, 597–607. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; He, Z.; Dreisigacker, S.; Wen, W.; Jin, H.; Zhai, S.; Li, F.; Gao, F.; Liu, J.; et al. Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. Theor. Appl. Genet. 2020, 133, 2431–2450. [Google Scholar] [CrossRef]
- Rasheed, A.; Hao, Y.; Xia, X.; Khan, A.; Xu, Y.; Varshney, R.K.; He, Z. Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Mol. Plant 2017, 10, 1047–1064. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Wang, H.; Tao, J.; Ren, Y.; Xu, C.; Wu, K.; Zou, C.; Zhang, J.; Xu, Y. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol. Breed. 2019, 39, 37. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Q.; Zheng, H.; Xu, Y.; Sang, Z.; Guo, Z.; Peng, H.; Zhang, C.; Lan, H.; Wang, Y.; et al. Genotyping by target sequencing (GBTS) and its applications. Sci. Agric. Sin. 2020, 53, 15. [Google Scholar]
- Hou, J.; Liu, Y.; Hao, C.; Li, T.; Liu, H.; Zhang, X. Starch metabolism in wheat: Gene variation and association analysis reveal additive effects on kernel weight. Front Plant. Sci. 2020, 11, 562008. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Li, H.; Wang, J.; Zhao, J.; Zheng, X.; Wu, B.; Du, W.; Wang, J.; Zheng, J. Analysis of genetic regions related to field grain number per spike from Chinese wheat founder parent Linfen 5064. Front Plant. Sci. 2022, 12, 808136. [Google Scholar] [CrossRef] [PubMed]
- Arabzai, M.G.; Gul, H. Application techniques of molecular marker and achievement of marker assisted selection (MAS) in three major crops rice, wheat and maize. Int. J. Appl. Sci. Biotechnol. 2021, 8, 82–93. [Google Scholar] [CrossRef]
- Gupta, P.K.; Langridge, P.; Mir, R.R. Marker-assisted wheat breeding: Present status and future possibilities. Mol. Breed. 2010, 26, 145–161. [Google Scholar] [CrossRef]
- Cao, S.; Xu, D.; Hanif, M.; Xia, X.; He, Z. Genetic architecture underpinning yield component traits in wheat. Theor. Appl. Genet. 2020, 133, 1811–1823. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z.; Appels, R.; Xia, X. Functional markers in wheat: Current status and future prospects. Theor. Appl. Genet. 2012, 125, 1–10. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Liu, S.; Hall, M.D.; Griffey, C.A.; McKendry, A.L. Meta-Analysis of QTL Associated with Fusarium Head Blight Resistance in Wheat. Crop Sci. 2009, 49, 1955–1968. [Google Scholar] [CrossRef]
- Bai, G.; Su, Z.; Cai, J. Wheat resistance to Fusarium head blight. Can. J. Plant Pathol. 2018, 40, 336–346. [Google Scholar] [CrossRef]
- Cuthbert, P.A.; Somers, D.J.; Thomas, J.; Cloutier, S.; Brulé-Babel, A. Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2006, 112, 1465. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, X.; Hou, Y.; Cai, J.; Shen, X.; Zhou, T.; Xu, H.; Ohm, H.W.; Wang, H.; Li, A.; et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor. Appl. Genet. 2015, 128, 2301–2316. [Google Scholar] [CrossRef]
- Hao, Y.; Rasheed, A.; Zhu, Z.; Wulff, B.B.H.; He, Z. Harnessing wheat Fhb1 for Fusarium resistance. Trends Plant Sci. 2020, 25, 1–3. [Google Scholar] [CrossRef]
- Su, Z.; Jin, S.; Zhang, D.; Bai, G. Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theor. Appl. Genet. 2018, 131, 2371–2380. [Google Scholar] [CrossRef]
- Li, H.; Zhang, F.; Zhao, J.; Bai, G.; Amand, P.S.; Bernardo, A.; Ni, Z.; Sun, Q.; Su, Z. Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse. Theor. Appl. Genet. 2022, 135, 1867–1877. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, R.A.; Dubcovsky, J.; Rogers, W.J.; Xia, X.C.; Raupp, W.J.V. Catalogue of gene symbols for wheat. Annu. Wheat Newsl. 2022, 68, 68–81. [Google Scholar]
- Zhao, F.; Li, Y.; Yang, B.; Yuan, H.; Jin, C.; Zhou, L.; Pei, H.; Zhao, L.; Li, Y.; Zhou, Y.; et al. Powdery mildew disease resistance and marker-assisted screening at the Pm60 locus in wild diploid wheat Triticum urartu. Crop J. 2020, 8, 252–259. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, N.; Wang, H.; Shi, X.; Li, F.; Zhang, Q.; Wang, W.; Guo, W.; Hu, Z.; Li, H.; et al. Fine mapping of a powdery mildew resistance gene MlIW39 derived from wild emmer wheat (Triticum turgidum ssp. dicoccoides). Theor. Appl. Genet. 2021, 134, 2469–2479. [Google Scholar] [CrossRef]
- Wang, W.; He, H.; Gao, H.; Xu, H.; Song, W.; Zhang, X.; Zhang, L.; Song, J.; Liu, C.; Liu, K.; et al. Characterization of the powdery mildew resistance gene in wheat breeding line KN0816 and its evaluation in marker-assisted selection. Plant Dis. 2021, 105, 4042–4050. [Google Scholar] [CrossRef]
- Du, X.; Xu, W.; Peng, C.; Li, C.; Zhang, Y.; Hu, L. Identification and validation of a novel locus, Qpm-3BL, for adult plant resistance to powdery mildew in wheat using multilocus GWAS. BMC Plant Biol. 2021, 21, 357. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.S.; McCallum, B.D.; Hiebert, C.W. Development of single nucleotide polymorphism-based functional molecular markers from the Lr22a gene sequence in wheat (Triticum aestivum). Plant Breed. 2022, 141, 204–211. [Google Scholar] [CrossRef]
- Zhang, P.; Yan, X.; Gebrewahid, T.W.; Zhou, Y.; Yang, E.; Xia, X.; He, Z.; Li, Z.; Liu, D. Genome-wide association mapping of leaf rust and stripe rust resistance in wheat accessions using the 90K SNP array. Theor. Appl. Genet. 2021, 134, 1233–1251. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Yao, F.; Guan, F.; Cheng, Y.K.; Duan, L.; Zhao, X.; Li, H.; Pu, Z.; Li, W.; Jiang, Q.; et al. A stable QTL on chromosome 5BL combined with Yr18 conferring high-level adult-plant resistance to stripe rust in Chinese wheat landrace Anyuehong. Phytopathology 2021, 111, 1594–1601. [Google Scholar] [CrossRef]
- Gill, B.K.; Klindworth, D.L.; Rouse, M.N.; Zhang, J.; Zhang, Q.; Sharma, J.S.; Chu, C.; Long, Y.; Chao, S.; Olivera, P.D.; et al. Function and evolution of allelic variations of Sr13 conferring resistance to stem rust in tetraploid wheat (Triticum turgidum L.). Plant J. 2021, 106, 1674–1691. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, Y.F.; Li, C.A.; Chen, X.; Yang, L.L.; Zhang, J.; Wang, J.Y.; Li, L.; Reynolds, M.P.; Jing, R.L.; et al. Transcription factor TaWRKY51 is a positive regulator in root architecture and grain yield contributing traits. Front. Plant Sci. 2021, 12, 734614. [Google Scholar] [CrossRef]
- Pang, Y.; Wu, Y.; Liu, C.; Li, W.; Amand, P., St.; Bernardo, A.; Wang, D.; Dong, L.; Yuan, X.; Zhang, H.; et al. High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat. Theor. Appl. Genet. 2021, 134, 2857–2873. [Google Scholar] [CrossRef]
- Würschum, T.; Longin, C.F.H.; Hahn, V.; Tucker, M.R.; Leiser, W.L. Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. Plant J. 2017, 89, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.P.; Xiao, Y.G.; Yan, J.; Liu, J.D.; Wen, W.E.; Zhang, Y.; Xia, X.C.; He, Z.H. Characterization of TaCOMT genes associated with stem lignin content in common wheat and development of a gene-specific marker. J. Integr. Agric. 2019, 18, 939–947. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Geng, Y.; Wang, Y.; Liu, Y.; Li, H.; Hao, C.; Wang, H.; Shang, X.; Zhang, X. Identification and development of a KASP functional marker of TaTAP46-5A associated with kernel weight in wheat (Triticum aestivum). Plant Breed. 2021, 140, 585–594. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Mao, X.; Zhang, J.; Liu, Y.; Xie, Q.; Yang, X.; Chang, X.; Li, C.; Zhang, X.; et al. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J. Exp. Bot. 2020, 71, 5377–5388. [Google Scholar] [CrossRef]
- Duan, X.; Yu, H.; Ma, W.; Sun, J.; Zhao, Y.; Yang, R.; Ning, T.; Li, Q.; Liu, Q.; Guo, T.; et al. A major and stable QTL controlling wheat thousand grain weight: Identification, characterization, and CAPS marker development. Mol Breed. 2020, 40, 68. [Google Scholar] [CrossRef]
- Li, T.; Deng, G.; Su, Y.; Yang, Z.; Tang, Y.; Wang, J.; Qiu, X.; Pu, X.; Li, J.; Liu, Z.; et al. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor. Appl. Genet. 2021, 134, 3625–3641. [Google Scholar] [CrossRef]
- Chen, Z.; Ke, W.; He, F.; Chai, L.; Cheng, X.; Xu, H.; Wang, X.; Du, D.; Zhao, Y.; Chen, X.; et al. A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol. J. 2022, 20, 920–933. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, H.; Li, T.; Wu, J.; Nagarajan, R.; Lei, L.; Powers, C.; Kan, C.; Hua, W.; Liu, Z.; et al. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science 2022, 376, 180–183. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, P.; Wu, L.; He, Y.; Li, C.; Ma, H.; Zhang, X. Linkage and association mapping and Kompetitive allele-specific PCR marker development for improving grain protein content in wheat. Theor. Appl. Genet. 2021, 134, 3563–3575. [Google Scholar] [CrossRef]
- Ram, S.; Devi, R.; Singh, R.B.; Narwal, S.; Singh, B.; Singh, G.P. Identification of codominant marker linked with Glu-D1 double null and its utilization in improving wheat for biscuit making quality. J. Cereal Sci. 2019, 90, 102853. [Google Scholar] [CrossRef]
- Liu, C.; Song, J.; Liu, S.; Liu, J.; Xu, D.; Tian, X.; Bian, Y.; Dong, Y.; Wang, F.; Wang, R.; et al. Molecular mapping and characterization of QBp.caas-3BL for black point resistance in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2021, 134, 3279–3286. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, S.; Wei, W.; Xie, H.; Liu, K.; Zhang, C.; Wu, Z.; Jiang, H.; Cao, J.; Zhao, L.; et al. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2019, 132, 2947–2963. [Google Scholar] [CrossRef]
- Kumar, S.; Bhardwaj, S.C.; Gangwar, O.P.; Sharma, A.; Qureshi, N.; Kumaran, V.V.; Khan, H.; Prasad, P.; Miah, H.; Singh, G.P.; et al. Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theor. Appl. Genet. 2021, 134, 849–858. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, X.; Wang, F.; He, Y.; Feng, L.; Jiang, B.; Hao, M.; Ning, S.; Yuan, Z.; Wu, J.; et al. Development and validation of gene-specific KASP markers for YrAS2388R conferring stripe rust resistance in wheat. Euphytica 2021, 217, 206. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Quan, W.; Zhang, X.; Feng, J.; Ren, J.; Jiang, X.; Zhang, Z. Mapping of a QTL with major effect on reducing leaf rust severity at the adult plant growth stage on chromosome 2BL in wheat landrace Hongmazha. Theor. Appl. Genet. 2021, 134, 1363–1376. [Google Scholar] [CrossRef] [PubMed]
- Li, C.N.; Li, L.; Reynolds, M.P.; Wang, J.Y.; Chang, X.P.; Mao, X.G.; Jing, R.L. Recognizing the hidden half in wheat: Root system attributes associated with drought tolerance. J. Exp. Bot. 2021, 72, 5117–5133. [Google Scholar] [CrossRef]
- Ma, J.; Luo, W.; Zhang, H.; Zhou, X.H.; Qin, N.N.; Wei, Y.M.; Liu, Y.X.; Jiang, Q.T.; Chen, G.Y.; Zheng, Y.L.; et al. Identification of quantitative trait loci for seedling root traits from Tibetan semi-wild wheat (Triticum aestivum subsp tibetanum). Genome 2017, 60, 1068–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleury, D.; Jefferies, S.; Kuchel, H.; Langridge, P. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 2010, 61, 3211–3222. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.U.; Sher, M.A.; Saddique, M.A.; Ali, Z.; Khan, M.A.; Mao, X.G.; Irshad, A.; Sajjad, M.; Ikram, R.M.; Naeem, M.; et al. Development and exploitation of KASP Assays for genes underpinning drought tolerance among wheat cultivars from Pakistan. Front. Genet. 2021, 12, 684702. [Google Scholar] [CrossRef] [PubMed]
- Sihag, P.; Sagwal, V.; Kumar, A.; Balyan, P.; Mir, R.R.; Dhankher, O.P.; Kumar, U. Discovery of miRNAs and development of heat-responsive miRNA-SSR markers for characterization of wheat germplasm for terminal heat tolerance breeding. Front. Genet. 2021, 12, 699420. [Google Scholar] [CrossRef]
- Yan, L.; Loukoianov, A.; Blechl, A.; Tranquill, G.; Ramakrishna, W.; SanMiguel, P.; Bennetzen, J.L.; Echenique, V.; Dubcovsky, J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 2004, 303, 1640–1644. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Fu, D.; Li, C.; Blechl, A.; Tranquilli, G.; Bonafede, M.; Sanchez, A.; Valarik, M.; Yasuda, S.; Dubcovsky, J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 2006, 103, 19581–19586. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Xie, L.; Fu, L.; Xu, D.; Fu, C.; Wang, D.; Chen, X.; Xia, X.; Chen, Q.; He, Z.; et al. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front. Plant Sci. 2017, 8, 1379. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Li, T.; Wang, Y.; Hao, C.; Liu, H.; Zhang, X. ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding. Plant Biotechnol. J. 2017, 15, 1533–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Li, H.; Hao, C.; Wang, K.; Wang, Y.; Qin, L.; An, D.; Li, T.; Zhang, X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol. J. 2020, 18, 1330–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Yan, Y.; Wu, T.T.; Zhang, G.L.; Yin, H.; Chen, W.; Wang, S.; Chang, F.; Gou, J.Y. Cloning of wheat keto-acyl thiolase 2B reveals a role of jasmonic acid in grain weight determination. Nat. Commun. 2020, 11, 6266. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Yang, W.; Shan, Q.; Sun, L.; Wang, D.; Sajjad, M.; Li, X.; Sun, J.; Liu, D.; Zhan, K.; et al. TaCKX gene family, at large, is associated with thousand-grain weight and plant height in common wheat. Theor. Appl. Genet. 2020, 133, 3151–3163. [Google Scholar] [CrossRef]
- Li, F.J.; He, Z.H.; Liu, J.D.; Jin, H.; Cao, S.H.; Geng, H.W.; Yan, J.; Zhang, P.Z.; Wan, Y.X.; Xia, X.C. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theor. Appl. Genet. 2018, 131, 1903–1924. [Google Scholar] [CrossRef]
- Song, J.; Xu, D.; Dong, Y.; Li, F.; Bian, Y.; Li, L.; Luo, X.; Fei, S.; Li, L.; Zhao, C.; et al. Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theor. Appl. Genet. 2022, 135, 3237–3246. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, L.; Liu, D.; Zeng, J.; Cao, S.; Xia, X.; Yan, J.; Song, X.; He, Z.; Zhang, Y. Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat. Theor. Appl. Genet. 2021, 134, 3731–3741. [Google Scholar] [CrossRef] [PubMed]
- Tura, H.; Edwards, J.; Gahlaut, V.; Garcia, M.; Sznajder, B.; Baumann, U.; Shahinnia, F.; Reynolds, M.; Langridge, P.; Balyan, H.S.; et al. QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor. Appl. Genet. 2020, 133, 239–257. [Google Scholar] [CrossRef]
- Altpeter, F.; Popelka, J.C.; Wieser, H. Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour. Plant Mol. Biol. 2004, 54, 783–792. [Google Scholar] [CrossRef]
- Payne, P.I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1987, 38, 141–153. [Google Scholar] [CrossRef]
- Rasheed, A.; Wen, W.; Gao, F.; Zhai, S.; Jin, H.; Liu, J.; Guo, Q.; Zhang, Y.; Dreisigacker, S.; Xia, X.; et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor. Appl. Genet. 2016, 129, 1843–1860. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Balyan, H.S.; Sharma, S.; Kumar, R. Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects. Theor. Appl. Genet. 2021, 134, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, K.B.; Rani, S.; Kumar, M.; Gupta, V.; Babu, P.H.; Bainsla, N.K.; Yadav, R. Enhancing the nutritional quality of major food crops through conventional and genomics-assisted breeding. Front. Nutr. 2020, 7, 533453. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Zhang, S.; Li, S.; Wang, J.; Chen, H.; Wang, K.; Lin, Z.; Wei, Y.; Du, L.; Yan, Y. Improvement of three commercial spring wheat varieties for powdery mildew resistance by marker-assisted selection. Crop Prot. 2019, 125, 104889. [Google Scholar] [CrossRef]
- Zhang, M.; Fang, T.; Zhou, X.; Chen, X.; Li, X.; Feng, J.; Yang, S.; Kang, Z. Combination of marker-assisted backcross selection of Yr59 and phenotypic selection to improve stripe rust resistance and agronomic performance in four elite wheat cultivars. Agronomy 2022, 12, 497. [Google Scholar] [CrossRef]
- Gautam, T.; Dhillon, G.S.; Saripalli, G.; Rakhi; Singh, V.P.; Prasad, P.; Kaur, S.; Chhuneja, P.; Sharma, P.K.; Balyan, H.S.; et al. Marker-assisted pyramiding of genes/QTL for grain quality and rust resistance in wheat (Triticum aestivum L.). Mol. Breed. 2020, 40, 49. [Google Scholar] [CrossRef]
- Zheng, W.; Li, S.; Liu, Z.; Zhou, Q.; Feng, Y.; Chai, S. Molecular marker assisted gene stacking for disease resistance and quality genes in the dwarf mutant of an elite common wheat cultivar Xiaoyan22. BMC Genet. 2020, 21, 45. [Google Scholar] [CrossRef]
- Brar, G.S.; Pozniak, C.J.; Briggs, C.; Hucl, P.J. Combined selection of Gpc-B1 and Glu-B1 locus encoding the Bx7OE subunit for improving end-use quality of hard white wheat. J. Cereal Sci. 2021, 100, 103260. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, C.; Bi, C.; Zhou, S.; Dong, F.; Liu, Y.; Yang, F.; Jiao, B.; Zhao, H.; Lyu, M.; et al. Establishment and application of multiplex PCR systems based on molecular markers for HMW-GSs in wheat. Agriculture 2022, 12, 556. [Google Scholar] [CrossRef]
- William, H.M.; Trethowan, R.; Crosby-Galvan, E.M. Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica 2007, 157, 307–319. [Google Scholar] [CrossRef]
- Miedaner, T.; Korzun, V. Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 2012, 102, 560–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langridge, P.; Lagudah, E.S.; Holton, T.A.; Appels, R.; Sharp, P.L.; Chalmers, K.J. Trends in genetic and genome analyses in wheat: A review. Aust. J. Agric. Res. 2001, 52, 1043–1077. [Google Scholar] [CrossRef]
- Ling, H.Q.; Ma, B.; Shi, X.; Liu, H.; Dong, L.; Sun, H.; Cao, Y.; Gao, Q.; Zheng, S.; Li, Y.; et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 2018, 557, 424–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Zhao, S.; Kong, X.; Li, Y.; Zhao, G.; He, W.; Appels, R.; Pfeifer, M.; Tao, Y.; Zhang, X.; et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 2013, 496, 91–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Xin, M.; Wang, Z.; Yao, Y.; Hu, Z.; Song, W.; Yu, K.; Chen, Y.; Wang, X.; Guan, P.; et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 2020, 11, 5085. [Google Scholar] [CrossRef]
- Walkowiak, S.; Gao, L.; Monat, C.; Haberer, G.; Kassa, M.T.; Brinton, J.; Ramirez-Gonzalez, R.H.; Kolodziej, M.C.; Delorean, E.; Thambugala, D.; et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 2020, 588, 277–283. [Google Scholar] [CrossRef]
- Shi, X.; Cui, F.; Han, X.; He, Y.; Zhao, L.; Zhang, N.; Zhang, H.; Zhu, H.; Liu, Z.; Ma, B.; et al. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol. Plant 2022, 15, 1440–1456. [Google Scholar] [CrossRef]
- Nave, M.; Taş, M.; Raupp, J.; Tiwari, V.K.; Ozkan, H.; Poland, J.; Hale, I.; Komatsuda, T.; Distelfeld, A. The independent domestication of Timopheev’s wheat: Insights from haplotype analysis of the Brittle rachis 1 (BTR1-A) gene. Genes 2021, 12, 338. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, H.; Zhang, J.; Guo, H.; Zhou, C.; Xie, Y.; Zhao, L.; Gu, J.; Zhao, S.; Ding, Y.; et al. Genome-wide and exome-capturing sequencing of a gamma-ray-induced mutant reveals biased variations in common wheat. Front. Plant Sci. 2022, 12, 793496. [Google Scholar] [CrossRef]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.D.; Asyraf Md Hatta, M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Wang, H.B.; Chen, G.D.; Yan, G.J.; Liu, C.J. A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 2013, 191, 311–316. [Google Scholar] [CrossRef]
- Cha, J.K.; O’Connor, K.; Alahmad, S.; Lee, J.H.; Dinglasan, E.; Park, H.; Lee, S.M.; Hirsz, D.; Kwon, S.W.; Kwon, Y.; et al. Speed vernalization to accelerate generation advance in winter cereal crops. Mol. Plant 2022, 15, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Wang, R.; Yang, X.; Zhang, A.; Liu, D. Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat (Triticum aestivum L.). Agriculture 2023, 13, 642. https://doi.org/10.3390/agriculture13030642
Song L, Wang R, Yang X, Zhang A, Liu D. Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat (Triticum aestivum L.). Agriculture. 2023; 13(3):642. https://doi.org/10.3390/agriculture13030642
Chicago/Turabian StyleSong, Liqiang, Ruihui Wang, Xueju Yang, Aimin Zhang, and Dongcheng Liu. 2023. "Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat (Triticum aestivum L.)" Agriculture 13, no. 3: 642. https://doi.org/10.3390/agriculture13030642
APA StyleSong, L., Wang, R., Yang, X., Zhang, A., & Liu, D. (2023). Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat (Triticum aestivum L.). Agriculture, 13(3), 642. https://doi.org/10.3390/agriculture13030642