Pest Localization Using YOLOv5 and Classification Based on Quantum Convolutional Network
Abstract
:1. Introduction
- ▪ The YOLOv5 is designed based on optimal learning parameters for the recognition of pests in RGB images.
- ▪ The novel quantum machine learning model is designed on the selected layers and trained on the selected hyperparameters that help with the accurate classification of Paddy with/without pest images.
2. Related Work
3. Material and Methods
3.1. Localization of Pests Using the YOLOv5 Model
3.2. Classification of Paddy with Pest/Paddy without Pest
4. Results and Discussion
4.1. Experiment#1: Localization of Pest Images Using the YOLOv5 Model
4.2. Experiment#2: Classification of Pest Images Based on Proposed Quantum Neural Network
4.3. Statistical Analysis for Classification Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lacey, L.; Grzywacz, D.; Shapiro-Ilan, D.; Frutos, R.; Brownbridge, M.; Goettel, M. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Vreysen, M.; Robinson, A.; Hendrichs, J.; Kenmore, P. Area-wide integrated pest management (AW-IPM): Principles, practice and prospects. In Area-Wide Control of Insect Pests: From Research to Field Implementation; Springer: Berlin/Heidelberg, Germany, 2007; pp. 3–33. [Google Scholar]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Detecting and classifying pests in crops using proximal images and machine learning: A review. AI 2020, 1, 312–328. [Google Scholar] [CrossRef]
- Smith, M. Scouting: The Tip of the IPM Spear. EDIS 2019, 2019, 24–27. [Google Scholar]
- Orchi, H.; Sadik, M.; Khaldoun, M. On using artificial intelligence and the internet of things for crop disease detection: A contemporary survey. Agriculture 2022, 12, 9. [Google Scholar] [CrossRef]
- Miranda, J.L.; Gerardo, B.D.; Tanguilig, B.T., III. Pest detection and extraction using image processing techniques. Int. J. Comput. Commun. Eng. 2014, 3, 189. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Yang, Z.; Li, M.; Sun, C.; Yang, X. Classification and detection of insects from field images using deep learning for smart pest management: A systematic review. Ecol. Inform. 2021, 66, 101460. [Google Scholar] [CrossRef]
- Shafkat, I. Intuitively Understanding Convolutions for Deep Learning. 2018. Available online: https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1 (accessed on 6 June 2020).
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Javed, M.H.; Noor, M.H.; Khan, B.Y.; Noor, N.; Arshad, T. K-means based automatic pests detection and classification for pesticides spraying. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 236–240. [Google Scholar]
- Thar, S.P.; Ramilan, T.; Farquharson, R.J.; Pang, A.; Chen, D. An empirical analysis of the use of agricultural mobile applications among smallholder farmers in Myanmar. Electron. J. Inf. Syst. Dev. Ctries 2021, 87, e12159. [Google Scholar] [CrossRef]
- Singh, P.; Verma, A.; Alex, J.S.R. Disease and pest infection detection in coconut tree through deep learning techniques. Comput. Electron. Agric. 2021, 182, 105986. [Google Scholar] [CrossRef]
- Karar, M.E.; Alsunaydi, F.; Albusaymi, S.; Alotaibi, S. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alex. Eng. J. 2021, 60, 4423–4432. [Google Scholar] [CrossRef]
- Malathi, V.; Gopinath, M. Classification of pest detection in paddy crop based on transfer learning approach. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 552–559. [Google Scholar] [CrossRef]
- He, J.; Chen, K.; Pan, X.; Zhai, J.; Lin, X. Advanced biosensing technologies for monitoring of agriculture pests and diseases: A review. J. Semicond. 2023, 44, 023104. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Dang, L.M.; Moon, H. An efficient attention module for instance segmentation network in pest monitoring. Comput. Electron. Agric. 2022, 195, 106853. [Google Scholar] [CrossRef]
- Wang, R.; Jiao, L.; Xie, C.; Chen, P.; Du, J.; Li, R. S-RPN: Sampling-balanced region proposal network for small crop pest detection. Comput. Electron. Agric. 2021, 187, 106290. [Google Scholar] [CrossRef]
- Wei, D.; Chen, J.; Luo, T.; Long, T.; Wang, H. Classification of crop pests based on multi-scale feature fusion. Comput. Electron. Agric. 2022, 194, 106736. [Google Scholar] [CrossRef]
- Bollis, E.; Maia, H.; Pedrini, H.; Avila, S. Weakly supervised attention-based models using activation maps for citrus mite and insect pest classification. Comput. Electron. Agric. 2022, 195, 106839. [Google Scholar] [CrossRef]
- Luo, Q.; Wan, L.; Tian, L.; Li, Z. Saliency guided discriminative learning for insect pest recognition. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Rimal, K.; Shah, K.; Jha, A. Advanced multi-class deep learning convolution neural network approach for insect pest classification using TensorFlow. Int. J. Environ. Sci. Technol. 2022, 20, 4003–4016. [Google Scholar] [CrossRef]
- Alsanea, M.; Habib, S.; Khan, N.F.; Alsharekh, M.F.; Islam, M.; Khan, S. A Deep-Learning Model for Real-Time Red Palm Weevil Detection and Localization. J. Imaging 2022, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Du, J.; Jiao, L.; Wang, F.; Liu, K.; Teng, Y.; Wang, R. Automatic Crop Pest Detection Oriented Multiscale Feature Fusion Approach. Insects 2022, 13, 554. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Zhang, J.; Dong, S.; Zheng, S.; Liu, L. MSR-RCNN: A multi-class crop pest detection network based on a multi-scale super-resolution feature enhancement module. Front. Plant Sci. 2022, 13, 810546. [Google Scholar] [CrossRef] [PubMed]
- Chodey, M.D.; Noorullah Shariff, C. Hybrid deep learning model for in-field pest detection on real-time field monitoring. J. Plant Dis. Prot. 2022, 129, 635–650. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Q.; Lin, J.; Hu, Z.; Lei, X.; Xiang, Y. 3D Locating System for Pests’ Laser Control Based on Multi-Constraint Stereo Matching. Agriculture 2022, 12, 766. [Google Scholar] [CrossRef]
- Ung, H.T.; Ung, H.Q.; Nguyen, B.T. An efficient insect pest classification using multiple convolutional neural network based models. arXiv 2021, arXiv:2107.12189. [Google Scholar]
- Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 2019, 164, 104906. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khoshtaghaza, M.H.; Minaei, S.; Jamshidi, B. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 2017, 137, 52–58. [Google Scholar] [CrossRef]
- Ren, F.; Liu, W.; Wu, G. Feature reuse residual networks for insect pest recognition. IEEE Access 2019, 7, 122758–122768. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Xie, C.; Yang, P.; Wang, F.; Sudirman, S.; Liu, W. PestNet: An end-to-end deep learning approach for large-scale multi-class pest detection and classification. IEEE Access 2019, 7, 45301–45312. [Google Scholar] [CrossRef]
- Pattnaik, G.; Shrivastava, V.K.; Parvathi, K. Transfer learning-based framework for classification of pest in tomato plants. Appl. Artif. Intell. 2020, 34, 981–993. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Rustia, D.J.A.; Lin, T.-T. Generative adversarial network based image augmentation for insect pest classification enhancement. IFAC-Pap. 2019, 52, 1–5. [Google Scholar] [CrossRef]
- Dey, A.; Bhoumik, D.; Dey, K.N. Automatic detection of whitefly pest using statistical feature extraction and image classification methods. Int. Res. J. Eng. Technol. 2016, 3, 950–959. [Google Scholar]
- Kasinathan, T.; Uyyala, S.R. Machine learning ensemble with image processing for pest identification and classification in field crops. Neural Comput. Appl. 2021, 33, 7491–7504. [Google Scholar] [CrossRef]
- Haridasan, A.; Thomas, J.; Raj, E.D. Deep learning system for paddy plant disease detection and classification. Environ. Monit. Assess. 2023, 195, 120. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.; Maleva, T.; Soloviev, V. YOLOv5 versus YOLOv3 for apple detection. In Cyber-Physical Systems: Modelling and Intelligent Control; Springer: Berlin/Heidelberg, Germany, 2021; pp. 349–358. [Google Scholar]
- Solawetz, J.; Nelson, J. How to Train YOLOv5 on a Custom Dataset. Volume 19. 2020. Available online: https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/ (accessed on 10 December 2022).
- Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural networks. Nat. Commun. 2020, 11, 808. [Google Scholar] [CrossRef] [Green Version]
- Langenfeld, S.; Morin, O.; Körber, M.; Rempe, G. A network-ready random-access qubits memory. Npj Quantum Inf. 2020, 6, 86. [Google Scholar] [CrossRef]
- Gyurik, C.; Dunjko, V. Structural risk minimization for quantum linear classifiers. Quantum 2023, 7, 893. [Google Scholar] [CrossRef]
- Wu, X.; Zhan, C.; Lai, Y.-K.; Cheng, M.-M.; Yang, J. Ip102: A large-scale benchmark dataset for insect pest recognition. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8787–8796. [Google Scholar]
- Couliably, S.; Kamsu-Foguem, B.; Kamissoko, D.; Traore, D. Explainable deep convolutional neural networks for insect pest recognition. J. Clean. Prod. 2022, 371, 133638. [Google Scholar] [CrossRef]
- Albattah, W.; Masood, M.; Javed, A.; Nawaz, M.; Albahli, S. Custom CornerNet: A drone-based improved deep learning technique for large-scale multiclass pest localization and classification. Complex Intell. Syst. 2022, 1–18. [Google Scholar] [CrossRef]
- Feng, F.; Dong, H.; Zhang, Y.; Zhang, Y.; Li, B. MS-ALN: Multiscale Attention Learning Network for Pest Recognition. IEEE Access 2022, 10, 40888–40898. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Y.; Huang, H.; Pei, H.; Sheng, J.; Yang, P. Pest region detection in complex backgrounds via contextual information and multi-scale mixed attention mechanism. Agriculture 2022, 12, 1104. [Google Scholar] [CrossRef]
- Li, M.; Cheng, S.; Cui, J.; Li, C.; Li, Z.; Zhou, C.; Lv, C. High-Performance Plant Pest and Disease Detection Based on Model Ensemble with Inception Module and Cluster Algorithm. Plants 2023, 12, 200. [Google Scholar] [CrossRef] [PubMed]
- Murugan, D. Paddy Doctor: A Visual Image Dataset for Paddy Disease Classification. arXiv 2022, arXiv:2205.11108. [Google Scholar]
- Debnath, O.; Saha, H.N. An IoT-based intelligent farming using CNN for early disease detection in rice paddy. Microprocess. Microsyst. 2022, 94, 104631. [Google Scholar] [CrossRef]
- Anwar, Z.; Masood, S. Exploring Deep Ensemble Model for Insect and Pest Detection from Images. Procedia Comput. Sci. 2023, 218, 2328–2337. [Google Scholar] [CrossRef]
- Gong, H.; Liu, T.; Luo, T.; Guo, J.; Feng, R.; Li, J.; Ma, X.; Mu, Y.; Hu, T.; Sun, Y. Based on FCN and DenseNet Framework for the Research of Rice Pest Identification Methods. Agronomy 2023, 13, 410. [Google Scholar] [CrossRef]
Epochs | 400 |
Batch size | 8 |
Optimizer | Sgdm |
Anchors | (10, 13, 16, 30, 33, 23) (30, 61, 62, 45, 59, 119) (116, 90, 156, 198, 373, 326) |
Classes | 2 |
Optimizer | Adam |
---|---|
Batch-size | 16 |
Epochs | 100 |
Split criteria | 5- and 10-fold |
Type of Layer | Shape of Output |
---|---|
Dense | (None, 4) |
Keras | (None, 4) |
Dense | (None, 4) |
P | R | 0.5-mAP | 0.5:0.95-mAP |
---|---|---|---|
0.988 | 0.868 | 0.920 | 0.766 |
0.982 | 0.874 | 0.927 | 0.769 |
0.982 | 0.874 | 0.922 | 0.770 |
0.990 | 0.862 | 0.919 | 0.767 |
0.986 | 0.863 | 0.919 | 0.761 |
0.985 | 0.865 | 0.921 | 0.763 |
0.984 | 0.864 | 0.920 | 0.774 |
0.987 | 0.868 | 0.926 | 0.772 |
0.986 | 0.872 | 0.921 | 0.770 |
0.984 | 0.875 | 0.923 | 0.765 |
0.990 | 0.873 | 0.924 | 0.769 |
0.989 | 0.873 | 0.930 | 0.772 |
0.988 | 0.872 | 0.925 | 0.770 |
0.986 | 0.874 | 0.922 | 0.770 |
0.983 | 0.877 | 0.925 | 0.777 |
0.982 | 0.879 | 0.923 | 0.771 |
0.987 | 0.876 | 0.923 | 0.769 |
0.987 | 0.877 | 0.922 | 0.774 |
0.986 | 0.876 | 0.918 | 0.777 |
0.984 | 0.876 | 0.923 | 0.773 |
0.988 | 0.876 | 0.925 | 0.764 |
0.986 | 0.874 | 0.927 | 0.776 |
0.986 | 0.874 | 0.922 | 0.772 |
0.986 | 0.876 | 0.925 | 0.775 |
0.986 | 0.876 | 0.926 | 0.779 |
0.988 | 0.874 | 0.922 | 0.772 |
0.986 | 0.873 | 0.925 | 0.775 |
0.987 | 0.873 | 0.927 | 0.778 |
0.988 | 0.875 | 0.927 | 0.776 |
0.989 | 0.874 | 0.924 | 0.778 |
0.991 | 0.874 | 0.923 | 0.776 |
0.992 | 0.872 | 0.922 | 0.778 |
0.988 | 0.873 | 0.925 | 0.779 |
0.986 | 0.874 | 0.927 | 0.779 |
0.986 | 0.875 | 0.927 | 0.779 |
0.986 | 0.873 | 0.925 | 0.781 |
0.982 | 0.876 | 0.923 | 0.780 |
0.981 | 0.881 | 0.927 | 0.781 |
0.984 | 0.878 | 0.924 | 0.779 |
0.988 | 0.877 | 0.927 | 0.779 |
0.986 | 0.878 | 0.927 | 0.781 |
Mean: 0.987 | 0.877 | 0.927 | 0.783 |
Ref | Year | Dataset | Results |
---|---|---|---|
[44] | 2022 | IP102 | 55.05 F1-score |
[45] | 2022 | 57.23 mAP | |
[46] | 2022 | 67.82 F1-score | |
[47] | 2022 | 77.04 mAP | |
[48] | 2023 | 85.2 mAP | |
Proposed Model | 0.93 F1-score 0.92 mAP |
Cross-Validation | Classes | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
5-fold cross-validation | Paddy with pest | 99.31% | 0.99 | 1.00 | 0.99 |
Paddy without pest | 99.31% | 1.00 | 0.99 | 0.99 | |
10-fold cross-validation | Paddy with pest | 99.56% | 0.99 | 0.99 | 0.99 |
Paddy without pest | 99.56% | 1.00 | 1.00 | 1.00 |
0 | 1 | 2 | 3 | 4 | Mean/Variation |
---|---|---|---|---|---|
0.98 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 ± 0.00 |
0-fold | 1-fold | 2-fold | 3-fold | 4-fold | 5-fold | 6-fold | 7-fold | 8-fold | 9-fold | Mean/Variation |
---|---|---|---|---|---|---|---|---|---|---|
0.96 | 0.95 | 0.95 | 0.95 | 0.96 | 0.96 | 0.95 | 0.96 | 0.95 | 0.97 | 0.96 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, J.; Anjum, M.A.; Zahra, R.; Sharif, M.I.; Kadry, S.; Sevcik, L. Pest Localization Using YOLOv5 and Classification Based on Quantum Convolutional Network. Agriculture 2023, 13, 662. https://doi.org/10.3390/agriculture13030662
Amin J, Anjum MA, Zahra R, Sharif MI, Kadry S, Sevcik L. Pest Localization Using YOLOv5 and Classification Based on Quantum Convolutional Network. Agriculture. 2023; 13(3):662. https://doi.org/10.3390/agriculture13030662
Chicago/Turabian StyleAmin, Javeria, Muhammad Almas Anjum, Rida Zahra, Muhammad Imran Sharif, Seifedine Kadry, and Lukas Sevcik. 2023. "Pest Localization Using YOLOv5 and Classification Based on Quantum Convolutional Network" Agriculture 13, no. 3: 662. https://doi.org/10.3390/agriculture13030662
APA StyleAmin, J., Anjum, M. A., Zahra, R., Sharif, M. I., Kadry, S., & Sevcik, L. (2023). Pest Localization Using YOLOv5 and Classification Based on Quantum Convolutional Network. Agriculture, 13(3), 662. https://doi.org/10.3390/agriculture13030662