Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of the Database
2.2. Construction of the N2 Model
2.3. Construction of the RS2 Model
2.4. Evaluation Criteria for the N2 and RS2 Models
2.5. Sensitivity Analysis of the Neural Network
3. Results
3.1. Overall Assessment of the Predictive Quality of the N2 and RS2 Models
3.2. Evaluation of Neural Network Sensitivity Analysis
3.3. Comparative Analysis of N2 and RS2 Models Based on Model Evaluation Criteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Szparaga, A.; Kuboń, M.; Kocira, S.; Czerwińska, E.; Pawłowska, A.; Hara, P.; Kobus, Z.; Kwaśniewski, D. Towards sustainable agriculture-agronomic and economic effects of biostimulant use in common bean cultivation. Sustainability 2019, 11, 4575. [Google Scholar] [CrossRef] [Green Version]
- Rokhafrouz, M.; Latifi, H.; Abkar, A.A.; Wojciechowski, T.; Czechlowski, M.; Naieni, A.S.; Maghsoudi, Y.; Niedbała, G. Simplified and Hybrid Remote Sensing-Based Delineation of Management Zones for Nitrogen Variable Rate Application in Wheat. Agriculture 2021, 11, 1104. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production. Sci. Rep. 2018, 8, 3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khavse, R.; Singh, R.; Manikandan, N.; Chaudhary, J. Influence of Temperature on Rapeseed-Mustard Yield at Selected Locations in Chhattisgarh State. Curr. World Environ. 2014, 9, 1034–1036. [Google Scholar] [CrossRef] [Green Version]
- Kakati, N.; Deka, R.L.; Das, P.; Goswami, J.; Khanikar, P.G.; Saikia, H. Forecasting yield of rapeseed and mustard using multiple linear regression and ANN techniques in the Brahmaputra valley of Assam, North East India. Theor. Appl. Climatol. 2022, 150, 1201–1215. [Google Scholar] [CrossRef]
- Chergui, N.; Kechadi, M.-T.; McDonnell, M. The Impact of Data Analytics in Digital Agriculture: A Review. In Proceedings of the 2020 International Multi-Conference on: “Organization of Knowledge and Advanced Technologies” (OCTA), Tunis, Tunisia, 6–8 February 2020; IEEE: New York, NY, USA, 2020; pp. 1–13. [Google Scholar]
- Niedbała, G.; Kurek, J.; Świderski, B.; Wojciechowski, T.; Antoniuk, I.; Bobran, K. Prediction of Blueberry (Vaccinium corymbosum L.) Yield Based on Artificial Intelligence Methods. Agriculture 2022, 12, 2089. [Google Scholar] [CrossRef]
- He, L.; Fang, W.; Zhao, G.; Wu, Z.; Fu, L.; Li, R.; Majeed, Y.; Dhupia, J. Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods. Comput. Electron. Agric. 2022, 195, 106812. [Google Scholar] [CrossRef]
- Hara, P.; Piekutowska, M.; Niedbała, G. Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data. Land 2021, 10, 609. [Google Scholar] [CrossRef]
- Yildirim, T.; Moriasi, D.N.; Starks, P.J.; Chakraborty, D. Using Artificial Neural Network (ANN) for Short-Range Prediction of Cotton Yield in Data-Scarce Regions. Agronomy 2022, 12, 828. [Google Scholar] [CrossRef]
- Ali, A.; Rondelli, V.; Martelli, R.; Falsone, G.; Lupia, F.; Barbanti, L. Management Zones Delineation through Clustering Techniques Based on Soils Traits, NDVI Data, and Multiple Year Crop Yields. Agriculture 2022, 12, 231. [Google Scholar] [CrossRef]
- Wang, J.; Si, H.; Gao, Z.; Shi, L. Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products. Agriculture 2022, 12, 1707. [Google Scholar] [CrossRef]
- Johnson, M.D.; Hsieh, W.W.; Cannon, A.J.; Davidson, A.; Bédard, F. Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 2016, 218–219, 74–84. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, A.; Frausto-Solis, J.; Ojeda-Bustamante, W. Attribute Selection Impact on Linear and Nonlinear Regression Models for Crop Yield Prediction. Sci. World J. 2014, 2014, 509429. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Kim, M.; Kim, Y.; Jo, M.; Kim, B.; Sung, K.; Lv, S. Constructing Italian ryegrass yield prediction model based on climatic data by locations in South Korea. Grassl. Sci. 2017, 63, 184–195. [Google Scholar] [CrossRef]
- Niedbala, G.; Kozlowski, R.J. Application of artificial neural networks for multi-criteria yield prediction of winter wheat. J. Agric. Sci. Technol. 2019, 21, 51–61. [Google Scholar]
- Piekutowska, M.; Niedbała, G.; Piskier, T.; Lenartowicz, T.; Pilarski, K.; Wojciechowski, T.; Pilarska, A.A.; Czechowska-Kosacka, A. The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest. Agronomy 2021, 11, 885. [Google Scholar] [CrossRef]
- Niedbała, G.; Wróbel, B.; Piekutowska, M.; Zielewicz, W.; Paszkiewicz-Jasińska, A.; Wojciechowski, T.; Niazian, M. Application of Artificial Neural Networks Sensitivity Analysis for the Pre-Identification of Highly Significant Factors Influencing the Yield and Digestibility of Grassland Sward in the Climatic Conditions of Central Poland. Agronomy 2022, 12, 1133. [Google Scholar] [CrossRef]
- Aubakirova, G.; Ivel, V.; Gerassimova, Y.; Moldakhmetov, S.; Petrov, P. Application of artificial neural network for wheat yield forecasting. East. Eur. J. Enterp. Technol. 2022, 3, 31–39. [Google Scholar] [CrossRef]
- Shamsabadi, E.E.; Sabouri, H.; Soughi, H.; Sajadi, S.J. Using of Molecular Markers in Prediction of Wheat (Triticum aestivum L.) Hybrid Grain Yield Based on Artificial Intelligence Methods and Multivariate Statistics. Russ. J. Genet. 2022, 58, 603–611. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L.; Archontoulis, S.V. A CNN-RNN Framework for Crop Yield Prediction. Front. Plant Sci. 2020, 10, 1750. [Google Scholar] [CrossRef]
- Sabatino, L.; D’Anna, F.; Iapichino, G.; Moncada, A.; D’Anna, E.; De Pasquale, C. Interactive Effects of Genotype and Molybdenum Supply on Yield and Overall Fruit Quality of Tomato. Front. Plant Sci. 2019, 9, 1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, M. Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques. Agriculture 2019, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Nazir, A.; Ullah, S.; Saqib, Z.A.; Abbas, A.; Ali, A.; Iqbal, M.S.; Hussain, K.; Shakir, M.; Shah, M.; Butt, M.U. Estimation and Forecasting of Rice Yield Using Phenology-Based Algorithm and Linear Regression Model on Sentinel-II Satellite Data. Agriculture 2021, 11, 1026. [Google Scholar] [CrossRef]
- Feizi, H.; Sattari, M.T.; Prasad, R.; Apaydin, H. Comparative analysis of deep and machine learning approaches for daily carbon monoxide pollutant concentration estimation. Int. J. Environ. Sci. Technol. 2023, 20, 1753–1768. [Google Scholar] [CrossRef]
- Meerasri, J.; Sothornvit, R. Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes. Case Stud. Therm. Eng. 2022, 33, 101942. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, L.; Yu, Z.; Liu, H.; Zhang, L.; Gong, X.; Sun, H. Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model. Plants 2022, 11, 1923. [Google Scholar] [CrossRef]
- Niedbała, G. Application of artificial neural networks for multi-criteria yield prediction ofwinter rapeseed. Sustainability 2019, 11, 533. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowski, T.; Niedbala, G.; Czechlowski, M.; Nawrocka, J.R.; Piechnik, L.; Niemann, J. Rapeseed seeds quality classification with usage of VIS-NIR fiber optic probe and artificial neural networks. In Proceedings of the 2016 International Conference on Optoelectronics and Image Processing (ICOIP), Warsaw, Poland, 10–12 June 2016; IEEE: Warsaw, Poland, 2016; pp. 44–48. [Google Scholar]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Ballesteros, R.; Intrigliolo, D.S.; Ortega, J.F.; Ramírez-Cuesta, J.M.; Buesa, I.; Moreno, M.A. Vineyard yield estimation by combining remote sensing, computer vision and artificial neural network techniques. Precis. Agric. 2020, 21, 1242–1262. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Sun, L.; Sibaldelli, R.N.R.; Junior, V.F.; Furlaneti, W.X.; Chen, R.; Sun, Z.; Wuyun, D.; Chen, Z.; Nanni, M.R.; et al. Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. Precis. Agric. 2022, 23, 1093–1123. [Google Scholar] [CrossRef]
- Niedbała, G.; Kurasiak-Popowska, D.; Stuper-Szablewska, K.; Nawracała, J. Application of Artificial Neural Networks to Analyze the Concentration of Ferulic Acid, Deoxynivalenol, and Nivalenol in Winter Wheat Grain. Agriculture 2020, 10, 127. [Google Scholar] [CrossRef] [Green Version]
- Chergui, N. Durum wheat yield forecasting using machine learning. Artif. Intell. Agric. 2022, 6, 156–166. [Google Scholar] [CrossRef]
- Phan, P.; Chen, N.; Xu, L.; Dao, D.M.; Dang, D. NDVI Variation and Yield Prediction in Growing Season: A Case Study with Tea in Tanuyen Vietnam. Atmosphere 2021, 12, 962. [Google Scholar] [CrossRef]
- Bouras, E.H.; Jarlan, L.; Er-Raki, S.; Balaghi, R.; Amazirh, A.; Richard, B.; Khabba, S. Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco. Remote Sens. 2021, 13, 3101. [Google Scholar] [CrossRef]
- Taşan, S.; Cemek, B.; Taşan, M.; Cantürk, A. Estimation of eggplant yield with machine learning methods using spectral vegetation indices. Comput. Electron. Agric. 2022, 202, 107367. [Google Scholar] [CrossRef]
- Jeevaganesh, R.; Harish, D.; Priya, B. A Machine Learning-based Approach for Crop Yield Prediction and Fertilizer Recommendation. In Proceedings of the 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 28–30 April 2022; IEEE: New York, NY, USA, 2022; pp. 1330–1334. [Google Scholar]
- Tugrul, B.; Elfatimi, E.; Eryigit, R. Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review. Agriculture 2022, 12, 1192. [Google Scholar] [CrossRef]
- Dayal, M.; Gupta, M.; Gupta, M.; Bara, A.R.; Chaubey, C. Introduction to Machine Learning Methods With Application in Agriculture. In Applying Drone Technologies and Robotics for Agricultural Sustainability; IGI Global: Hershey, PA, USA, 2023; pp. 184–203. [Google Scholar]
- Dhillon, M.S.; Dahms, T.; Kuebert-Flock, C.; Rummler, T.; Arnault, J.; Steffan-Dewenter, I.; Ullmann, T. Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape. Front. Remote Sens. 2023, 3, 1010978. [Google Scholar] [CrossRef]
- Khalifani, S.; Darvishzadeh, R.; Azad, N.; Seyed Rahmani, R. Prediction of sunflower grain yield under normal and salinity stress by RBF, MLP and, CNN models. Ind. Crops Prod. 2022, 189, 115762. [Google Scholar] [CrossRef]
- Maya Gopal, P.S.; Bhargavi, R. A novel approach for efficient crop yield prediction. Comput. Electron. Agric. 2019, 165, 104968. [Google Scholar] [CrossRef]
- Tadeusiewicz, R. Elementarne Wprowadzenie Do Techniki Sieci Neuronowych z Przykładowymi Programami; Akademicka Oficyna Wydawnicza PLJ: Warsaw, Poland, 1998. [Google Scholar]
- Li, X.; Hu, T.; Gong, P.; Du, S.; Chen, B.; Li, X.; Dai, Q. Mapping Essential Urban Land Use Categories in Beijing with a Fast Area of Interest (AOI)-Based Method. Remote Sens. 2021, 13, 477. [Google Scholar] [CrossRef]
- Sabzi-Nojadeh, M.; Niedbała, G.; Younessi-Hamzekhanlu, M.; Aharizad, S.; Esmaeilpour, M.; Abdipour, M.; Kujawa, S.; Niazian, M. Modeling the Essential Oil and Trans-Anethole Yield of Fennel (Foeniculum vulgare Mill. var. vulgare) by Application Artificial Neural Network and Multiple Linear Regression Methods. Agriculture 2021, 11, 1191. [Google Scholar] [CrossRef]
- Abrosimov, M.; Brovko, A. High Generalization Capability Artificial Neural Network Architecture Based on RBF-Network. In Proceedings of the ICIT 2019: Recent Research in Control Engineering and Decision Making, Saratov, Russia, 7–8 February 2019; Springer: Cham, Switzerland, 2019; pp. 67–78. [Google Scholar]
- Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhojani, S.H.; Bhatt, N. Wheat crop yield prediction using new activation functions in neural network. Neural Comput. Appl. 2020, 32, 13941–13951. [Google Scholar] [CrossRef]
- Bazrafshan, O.; Ehteram, M.; Dashti Latif, S.; Feng Huang, Y.; Yenn Teo, F.; Najah Ahmed, A.; El-Shafie, A. Predicting crop yields using a new robust Bayesian averaging model based on multiple hybrid ANFIS and MLP models. Ain Shams Eng. J. 2022, 13, 101724. [Google Scholar] [CrossRef]
- Torsoni, G.B.; de Oliveira Aparecido, L.E.; dos Santos, G.M.; Chiquitto, A.G.; da Silva Cabral Moraes, J.R.; de Souza Rolim, G. Soybean yield prediction by machine learning and climate. Theor. Appl. Climatol. 2023, 151, 1709–1725. [Google Scholar] [CrossRef]
- Soroush, F.; Ehteram, M.; Seifi, A. Uncertainty and spatial analysis in wheat yield prediction based on robust inclusive multiple models. Environ. Sci. Pollut. Res. 2022, 30, 20887–20906. [Google Scholar] [CrossRef] [PubMed]
- Heng, S.Y.; Ridwan, W.M.; Kumar, P.; Ahmed, A.N.; Fai, C.M.; Birima, A.H.; El-Shafie, A. Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction. Sci. Rep. 2022, 12, 10457. [Google Scholar] [CrossRef]
- Hara, P.; Piekutowska, M.; Niedbała, G. Prediction of Protein Content in Pea (Pisum sativum L.) Seeds Using Artificial Neural Networks. Agriculture 2022, 13, 29. [Google Scholar] [CrossRef]
- Research Centre for Cultivar Testing (COBORU). Available online: https://coboru.gov.pl/ (accessed on 20 October 2022).
- Niedbała, G.; Tratwal, A.; Piekutowska, M.; Wojciechowski, T.; Uglis, J. A Framework for Financing Post-Registration Variety Testing System: A Case Study from Poland. Agronomy 2022, 12, 325. [Google Scholar] [CrossRef]
- Zintegrowana Platforma Edukacyjna. Available online: https://zpe.gov.pl/a/cechy-klimatu-polski/DbdxuNIhI (accessed on 10 January 2023).
- Wiatr, K. Rośliny rolnicze. In Metodyka Badania Wartości Gospodarczej Odmian (WGO) Roślin Uprawnych; Centralny Ośrodek Badania Odmian Roślin Uprawnych: Słupia Wielka, Poland, 1998. [Google Scholar]
- Niedbała, G.; Kurasiak-Popowska, D.; Piekutowska, M.; Wojciechowski, T.; Kwiatek, M.; Nawracała, J. Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta. Agriculture 2022, 12, 754. [Google Scholar] [CrossRef]
- Vojnov, B.; Jaćimović, G.; Šeremešić, S.; Pezo, L.; Lončar, B.; Krstić, Đ.; Vujić, S.; Ćupina, B. The Effects of Winter Cover Crops on Maize Yield and Crop Performance in Semiarid Conditions—Artificial Neural Network Approach. Agronomy 2022, 12, 2670. [Google Scholar] [CrossRef]
- Geetha, M.C.S.; Elizabeth Shanthi, I. Forecasting the Crop Yield Production in Trichy District Using Fuzzy C-Means Algorithm and Multilayer Perceptron (MLP). Int. J. Knowl. Syst. Sci. 2020, 11, 83–98. [Google Scholar] [CrossRef]
- Pentoś, K.; Mbah, J.T.; Pieczarka, K.; Niedbała, G.; Wojciechowski, T. Evaluation of Multiple Linear Regression and Machine Learning Approaches to Predict Soil Compaction and Shear Stress Based on Electrical Parameters. Appl. Sci. 2022, 12, 8791. [Google Scholar] [CrossRef]
- Gorzelany, J.; Belcar, J.; Kuźniar, P.; Niedbała, G.; Pentoś, K. Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning. Agriculture 2022, 12, 200. [Google Scholar] [CrossRef]
- Shankar, T.; Malik, G.C.; Banerjee, M.; Dutta, S.; Praharaj, S.; Lalichetti, S.; Mohanty, S.; Bhattacharyay, D.; Maitra, S.; Gaber, A.; et al. Prediction of the Effect of Nutrients on Plant Parameters of Rice by Artificial Neural Network. Agronomy 2022, 12, 2123. [Google Scholar] [CrossRef]
- Khan, S.N.; Li, D.; Maimaitijiang, M. A Geographically Weighted Random Forest Approach to Predict Corn Yield in the US Corn Belt. Remote Sens. 2022, 14, 2843. [Google Scholar] [CrossRef]
- Arroyo, Á.; Cambra, C.; Basurto, N.; Rad, C.; Navarro, M.; Herrero, Á. Regression Techniques to Predict the Growth of Potato Tubers. In Proceedings of the 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022), Salamanca, Spain, 5–7 September 2022; Springer: Cham, Switzerland, 2023; pp. 217–225. [Google Scholar]
- Tadeusiewicz, R.; Szaleniec, M. Leksykon Sieci Neuronowych; Fundacja na Rzecz Promocji Nauki Polskiej: Wrocław, Poland, 2015. [Google Scholar]
- Zhang, Q.; Wang, K.; Han, Y.; Liu, Z.; Yang, F.; Wang, S.; Zhao, X.; Zhao, C. A crop variety yield prediction system based on variety yield data compensation. Comput. Electron. Agric. 2022, 203, 107460. [Google Scholar] [CrossRef]
- Piekutowska, M.; Adamski, M.; Czechowska-Kosacka, A.; Wójcik Oliveira, K.; Niedbała, G.; Wojciechowski, T.; Czechlowski, M. Modeling methods of predicting potato yield—Examples and possibilities of application. J. Res. Appl. Agric. Eng. 2018, 63, 176. [Google Scholar]
- Elbeltagi, A.; Zhang, L.; Deng, J.; Juma, A.; Wang, K. Modeling monthly crop coefficients of maize based on limited meteorological data: A case study in Nile Delta, Egypt. Comput. Electron. Agric. 2020, 173, 105368. [Google Scholar] [CrossRef]
- Gené-Mola, J.; Gregorio, E.; Auat Cheein, F.; Guevara, J.; Llorens, J.; Sanz-Cortiella, R.; Escolà, A.; Rosell-Polo, J.R. Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow. Comput. Electron. Agric. 2020, 168, 105121. [Google Scholar] [CrossRef]
- Ronchetti, G.; Manfron, G.; Weissteiner, C.J.; Seguini, L.; Nisini Scacchiafichi, L.; Panarello, L.; Baruth, B. Remote sensing crop group-specific indicators to support regional yield forecasting in Europe. Comput. Electron. Agric. 2023, 205, 107633. [Google Scholar] [CrossRef]
- Atamanyuk, I.; Havrysh, V.; Nitsenko, V.; Diachenko, O.; Tepliuk, M.; Chebakova, T.; Trofimova, H. Forecasting of Winter Wheat Yield: A Mathematical Model and Field Experiments. Agriculture 2022, 13, 41. [Google Scholar] [CrossRef]
- Kumari, P.; Mishra, G.C.; Srivastava, C.P. Statistical models for forecasting pigeonpea yield in Varanasi region. J. Agrometeorol. 2016, 18, 306–310. [Google Scholar] [CrossRef]
- Sousa, A.M.d.C.B.d.; Silva, V.B.d.; Lopes, Â.C.d.A.; Gomes, R.L.F.; Carvalho, L.C.B. Prediction of grain yield, adaptability, and stability in landrace varieties of lima bean (Phaseolus lunatus L.). Crop Breed. Appl. Biotechnol. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Ang, Y.; Shafri, H.Z.M.; Lee, Y.P.; Bakar, S.A.; Abidin, H.; Mohd Junaidi, M.U.U.; Hashim, S.J.; Che’Ya, N.N.; Hassan, M.R.; Lim, H.S.; et al. Oil palm yield prediction across blocks from multi-source data using machine learning and deep learning. Earth Sci. Inform. 2022, 15, 2349–2367. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Tao, F.; Aboelenein, R.; Amer, A. Improving Winter Wheat Yield Forecasting Based on Multi-Source Data and Machine Learning. Agriculture 2022, 12, 571. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, D.; Bai, H.; Tang, J.; Liu, D.L.; Qi, Y.; Shen, Y. The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms. Agriculture 2022, 13, 99. [Google Scholar] [CrossRef]
- Li, Y.; Guan, K.; Yu, A.; Peng, B.; Zhao, L.; Li, B.; Peng, J. Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the U.S. Field Crops Res. 2019, 234, 55–65. [Google Scholar] [CrossRef]
- Filippi, P.; Whelan, B.M.; Vervoort, R.W.; Bishop, T.F.A. Mid-season empirical cotton yield forecasts at fine resolutions using large yield mapping datasets and diverse spatial covariates. Agric. Syst. 2020, 184, 102894. [Google Scholar] [CrossRef]
- Ruan, G.; Li, X.; Yuan, F.; Cammarano, D.; Ata-UI-Karim, S.T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Improving wheat yield prediction integrating proximal sensing and weather data with machine learning. Comput. Electron. Agric. 2022, 195, 106852. [Google Scholar] [CrossRef]
- Skrzyczyńska, J.; Gąsiorowska, B. Uprawa Roślin; UPW: Wrocław, Poland, 2020; pp. 49–210. [Google Scholar]
- Lamichaney, A.; Parihar, A.K.; Hazra, K.K.; Dixit, G.P.; Katiyar, P.K.; Singh, D.; Singh, A.K.; Kumar, N.; Singh, N.P. Untangling the Influence of Heat Stress on Crop Phenology, Seed Set, Seed Weight, and Germination in Field Pea (Pisum sativum L.). Front. Plant Sci. 2021, 12, 635868. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W. Technologia Nawożenia Roślin Uprawnych—Fizjologia Plonowania; Tom 1 Olei.; Powszechne Wydawnictwo Rolnicze i Lesne: Poznań, Poland, 2021. [Google Scholar]
- Kotecki, A. Uprawa Roślin Tom III.; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2020. [Google Scholar]
- Singh, A.K.; Srivastava, C.P. Effect of plant types on grain yield and lodging resistance in pea (Pisum sativum L.). Indian J. Genet. Plant Breed. 2015, 75, 69. [Google Scholar] [CrossRef]
- Wysokinski, A.; Lozak, I. The Dynamic of Nitrogen Uptake from Different Sources by Pea (Pisum sativum L.). Agriculture 2021, 11, 81. [Google Scholar] [CrossRef]
- Pandey, J.; Devadasu, E.; Saini, D.; Dhokne, K.; Marriboina, S.; Raghavendra, A.S.; Subramanyam, R. Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. Plant J. 2023, 113, 60–74. [Google Scholar] [CrossRef] [PubMed]
Symbol | Unit of Measure | Description of the Variable | The Scope of Data |
---|---|---|---|
Independent Variables | |||
RAIN | mm | Rainfall in the period from sowing to 14 July | 96.9–312.4 |
SUN | h | Sum of insolation that occurred in the period from sowing to 14 July | 630.5–1051.5 |
TEMP | °C | Average daily air temperature in the period from sowing to 14 July | 11.0–17.5 |
N_F | kg/ha | Amount of nitrogen introduced into the soil with mineral fertilizers | 10–90 |
P2O5_F | kg/ha | Amount of phosphorus incorporated into the soil with mineral fertilizers | 0–80 |
K2O_F | kg/ha | Amount of potassium introduced into the soil with mineral fertilizers | 0–119 |
SOWI | days | Date of sowing of field peas—defined as number of days since the beginning of the year | 83–102 |
P_EMER | days | Pea crop emergence—defined as number of days since the beginning of the year | 96–133 |
HAR | days | Date of harvesting of field pea plants—defined as the number of days from 1 January | 184–221 |
FLOWE | days | Flowering onset date—number of days from the beginning of the year | 126–169 |
INI_MA | days | Maturity onset date—defined as the number of days from 1 January | 167–211 |
TECH_M | days | Technical maturity date—number of days since the beginning of the year | 171–216 |
P_HIG | cm | Height of plants | 43–156 |
WEGW | days | Number of plant growing days | 87–137 |
PH | - | Soil reaction (pH) | 5.5–7.5 |
P2O5_C | Range from 0 to 4 * | Phosphorus (V) oxide content of the soil | 0–4 |
K2O_C | Range from 0 to 4 * | Potassium oxide content of the soil | 0–4 |
MGO_C | Range from 0 to 4 * | Magnesium oxide content of the soil | 0–4 |
GEN | Feature coded 101 to 111 | Variety of peas | – |
Dependent Variable | |||
YIELD | t·ha−1 | Pea seed yield | 2.30–8.02 |
Subsets | Teaching | Validation | Testing |
---|---|---|---|
Size of error | 0.0556 | 0.0590 | 0.0679 |
Quality | 0.3576 | 0.3645 | 0.4311 |
Epochs of learning | |||
Back-propagation method of error | 100 | ||
Coupled gradients method | 110b * |
Quality Parameter | Value |
---|---|
Average | 4.504 |
Standard deviation | 1.106 |
Average error | 0.015 |
Error deviation | 0.389 |
Average absolute error | 0.305 |
Deviation quotient | 0.352 |
Correlation coefficient r | 0.936 |
Factor | MLR: r = 0.7656 R2 = 0.5788 Standard Error of Estimate = 0.7184 | |||||
---|---|---|---|---|---|---|
Beta | Standard Error Beta | b | Standard Error b | p | Significance | |
Free Term | − | − | −2.207 | 2.018 | 0.274282 | − |
HAR | −0.086 | 0.136 | −0.010 | 0.017 | 0.526117 | − |
P2O5_C | 0.177 | 0.026 | 0.215 | 0.031 | 0.000000 | + |
N_F | −0.1166 | 0.030 | −0.012 | 0.003 | 0.000108 | + |
P_EMER | −0.480 | 0.046 | −0.089 | 0.009 | 0.000000 | + |
INI_MA | 1.027 | 0.124 | 0.123 | 0.015 | 0.000000 | + |
TEMP | 0.398 | 0.080 | 0.283 | 0.057 | 0.000001 | + |
RAIN | −0.343 | 0.030 | −0.007 | 0.001 | 0.000000 | + |
SUN | −0.225 | 0.029 | −0.003 | 0.000 | 0.000000 | + |
P2O5_F | 0.370 | 0.040 | 0.022 | 0.002 | 0.000000 | + |
PH | 0.209 | 0.029 | 0.481 | 0.068 | 0.000000 | + |
K2O_C | 0.143 | 0.029 | 0.169 | 0.035 | 0.000001 | + |
FLOWE | −0.199 | 0.040 | −0.040 | 0.008 | 0.000001 | + |
MGO_C | −0.144 | 0.031 | −0.150 | 0.032 | 0.000004 | + |
GEN | −0.089 | 0.021 | −0.031 | 0.007 | 0.000017 | + |
P_HIG | 0.077 | 0.030 | 0.005 | 0.002 | 0.010286 | + |
TECH_M | −0.200 | 0.114 | −0.024 | 0.013 | 0.078386 | − |
WEGW | 0.358 | 0.167 | 0.034 | 0.0158 | 0.032558 | + |
K2O_F | 0.067 | 0.038 | 0.003 | 0.002 | 0.081382 | − |
Variable | Quotient | Rank |
---|---|---|
INI_MA | 2.378 | 1 |
HAR | 1.677 | 2 |
RAIN | 1.575 | 3 |
TEMP | 1.471 | 4 |
P_EMER | 1.468 | 5 |
MGO_C | 1.395 | 6 |
SOWI | 1.387 | 7 |
K2O_C | 1.356 | 8 |
P2O5_F | 1.333 | 9 |
WEGE | 1.261 | 10 |
P_HIG | 1.170 | 11 |
PH | 1.136 | 12 |
TECH_M | 1.129 | 13 |
K2O_F | 1.112 | 14 |
P2O5_C | 1.110 | 15 |
GEN | 1.079 | 16 |
SUN | 1.052 | 17 |
FLOWE | 1.052 | 18 |
N-F | 1.045 | 19 |
Error Type | N2 Model | RS2 Model |
---|---|---|
RAE | 0.094 | 1.361 |
RMS | 0.443 | 6.401 |
MAE | 0.347 | 6.361 |
MAPE | 7.976 | 148.585 |
MAX | 1.398 | 7.739 |
MAXP | 48.050 | 237.384 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, P.; Piekutowska, M.; Niedbała, G. Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks. Agriculture 2023, 13, 661. https://doi.org/10.3390/agriculture13030661
Hara P, Piekutowska M, Niedbała G. Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks. Agriculture. 2023; 13(3):661. https://doi.org/10.3390/agriculture13030661
Chicago/Turabian StyleHara, Patryk, Magdalena Piekutowska, and Gniewko Niedbała. 2023. "Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks" Agriculture 13, no. 3: 661. https://doi.org/10.3390/agriculture13030661
APA StyleHara, P., Piekutowska, M., & Niedbała, G. (2023). Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks. Agriculture, 13(3), 661. https://doi.org/10.3390/agriculture13030661