Maize Stem Contour Extraction and Diameter Measurement Based on Adaptive Threshold Segmentation in Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Color Image Processing
2.2.1. Color Space Selection
2.2.2. Image Segmentation
2.3. Measurement Method of the Stem Diameter of Maize
2.4. Experimental Platform
2.5. Evaluation Indicators
2.5.1. Image Evaluation for Contour Extraction
2.5.2. Evaluation Metrics for Stem Diameter Error
3. Results
3.1. Comparison of Different Contour Extraction Methods
3.2. Error Analysis of Stem Diameter Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andorf, C.; Beavis, W.D.; Hufford, M.; Smith, S.; Suza, W.P.; Wang, K.; Woodhouse, M.; Yu, J.; Lübberstedt, T. Technological advances in maize breeding: Past, present and future. Theor. Appl. Genet. 2019, 132, 817–849. [Google Scholar] [CrossRef] [Green Version]
- Pratap, A.; Gupta, S.; Nair, R.M.; Schafleitner, R.; Basu, P.; Singh, C.M.; Prajapati, U.; Gupta, A.K.; Nayyar, H.; Mishra, A.K.; et al. Using plant phenomics to exploit the gains of genomics. Agronomy 2019, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Lin, Z.; Li, X.; Zhao, Y.; Zhao, B.; Wu, G.; Ma, X.; Wang, H.; Xie, Y.; Li, Q.; et al. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 2020, 52, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wang, J.; Guo, X.; Yang, W.; Zhao, C. High-throughput phenotyping: Breaking through the bottleneck in future crop breeding. Crop. J. 2021, 9, 633–645. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant. 2020, 13, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Tu, K.; Wen, S.; Cheng, Y.; Xu, Y.; Pan, T.; Hou, H.; Gu, R.; Wang, J.; Wang, F.; Sun, Q. A model for genuineness detection in genetically and phenotypically similar maize variety seeds based on hyperspectral imaging and machine learning. Plant Methods 2022, 18, 81. [Google Scholar] [CrossRef]
- Qiu, Q.; Sun, N.; Bai, H.; Wang, N.; Fan, Z.; Wang, Y.; Meng, Z.; Li, B.; Cong, Y. Field-based high-throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a “Phenomobile”. Front. Plant. Sci. 2019, 10, 554. [Google Scholar] [CrossRef] [Green Version]
- Qiu, R.; Zhang, M.; He, Y. Field estimation of maize plant height at jointing stage using an RGB-D camera. Crop. J. 2022, 10, 1274–1283. [Google Scholar] [CrossRef]
- Xue, J.; Gao, S.; Li, L.; Xu, H.; Ming, B.; Wang, K.; Hou, P.; Xie, R.; Li, S. Synergistic development of maize stalk as a strategy to reduce lodging risk. Agron. J. 2020, 112, 4962–4975. [Google Scholar] [CrossRef]
- Shang, Q.; Zhang, D.; Li, R.; Wang, K.; Cheng, Z.; Zhou, Z.; Hao, Z.; Pan, J.; Li, X.; Shi, L. Mapping quantitative trait loci associated with stem-related traits in maize (Zea mays L.). Plant. Mol. Biol. 2020, 104, 583–595. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Shao, C.; Han, Y.; He, Y.; Yin, Z. Genetic Architecture of Maize Stalk Diameter and Rind Penetrometer Resistance in a Recombinant Inbred Line Population. Genes 2022, 13, 579. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, W.; Zhou, F.; Peng, Y.; Wang, N. Mechanical properties of maize fibre bundles and their contribution to lodging resistance. Biosyst. Eng. 2016, 151, 298–307. [Google Scholar] [CrossRef]
- Mousavi, S.M.N.; Illés, Á.; Bojtor, C.; Nagy, J. The impact of different nutritional treatments on maize hybrids morphological traits based on stability statistical methods. Emir. J. Food Agric. 2020, 32, 666–672. [Google Scholar] [CrossRef]
- Miao, Y.; Peng, C.; Wang, L.; Qiu, R.; Li, H.; Zhang, M. Measurement method of maize morphological parameters based on point cloud image conversion. Comput. Electron. Agric. 2022, 199, 107174. [Google Scholar] [CrossRef]
- Bao, Y.; Tang, L.; Srinivasan, S.; Schnable, P.S. Field-based architectural traits characterisation of maize plant using time-of-flight 3D imaging. Biosyst. Eng. 2019, 178, 86–101. [Google Scholar] [CrossRef]
- Atefi, A.; Ge, Y.; Pitla, S.; Schnable, J. Robotic detection and grasp of maize and sorghum: Stem measurement with contact. Robotics 2020, 9, 58. [Google Scholar] [CrossRef]
- Vit, A.; Shani, G. Comparing rgb-d sensors for close range outdoor agricultural phenotyping. Sensors 2018, 18, 4413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Y.; Hu, Y.; Zheng, Z.; Qu, Z.; Wang, C.; Guo, T.; Hou, J. A Diameter Measurement Method of Red Jujubes Trunk Based on Improved PSPNet. Agriculture 2022, 12, 1140. [Google Scholar] [CrossRef]
- Fan, Z.; Sun, N.; Qiu, Q.; Li, T.; Feng, Q.; Zhao, C. In situ measuring stem diameters of maize crops with a high-throughput phenotyping robot. Remote Sens. 2022, 14, 1030. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Zhang, X.; Zheng, Q.; Chen, M.; Ge, F.; Li, Z.; Sun, W.; Guan, Z.; Liang, T.; et al. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize. Front. Plant. Sci. 2018, 9, 611. [Google Scholar] [CrossRef]
- Hartmann, A.; Czauderna, T.; Hoffmann, R.; Stein, N.; Schreiber, F. HTPheno: An image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform. 2011, 12, 148. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Chen, R.; Tong, Y. Shadow elimination algorithm using color and texture features. Comput. Intell. Neurosci. 2020, 2020, 2075781. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Mu, Y.; Feng, Q.; Hu, T.; Gong, H.; Li, S.; Zhou, J. Deer body adaptive threshold segmentation algorithm based on color space. CMC Comput. Mater. Contin. 2020, 64, 1317–1328. [Google Scholar] [CrossRef]
- Riehle, D.; Reiser, D.; Griepentrog, H.W. Robust index-based semantic plant/background segmentation for RGB-images. Comput. Electron. Agr. 2020, 169, 105201. [Google Scholar] [CrossRef]
- Hernández-Hernández, J.L.; García-Mateos, G.; González-Esquiva, J.; Escarabajal-Henarejos, D.; Ruiz-Canales, A.; Molina-Martínez, J.M. Optimal color space selection method for plant/soil segmentation in agriculture. Comput. Electron. Agric. 2016, 122, 124–132. [Google Scholar] [CrossRef]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Arnal Barbedo, J.G. Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus 2013, 2, 660. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, R.; Li, M.; Chen, Y.; Li, G. A review of computer vision technologies for plant phenotyping. Comput. Electron. Agric. 2020, 176, 105672. [Google Scholar] [CrossRef]
- Jha, S.; Kumar, R.; Priyadarshini, I.; Smarandache, F.; Long, H.V. Neutrosophic image segmentation with dice coefficients. Measurement 2019, 134, 762–772. [Google Scholar] [CrossRef]
- Saha, A.; Grimm, L.J.; Harowicz, M.; Ghate, S.V.; Kim, C.; Walsh, R.; Mazurowski, M.A. Interobserver variability in identification of breast tumors in MRI and its implications for prognostic biomarkers and radiogenomics. Med. Phys. 2016, 43, 4558–4564. [Google Scholar] [CrossRef] [PubMed]
Configuration | Parameter |
---|---|
Operating system | Windows 10 |
CPU | Intel(R) Core(TM) i5-8250U |
Graphic card | NVIDIA GeForce MX150 |
Development environment | PyCharm Community Edition 2021.3.1 |
Number | Small Bell Stage | Large Bell Stage | ||||
---|---|---|---|---|---|---|
True Diameter/mm | Measuring Diameter/mm | Absolute Error/mm | True Diameter/mm | Measuring Diameter/mm | Absolute Error/mm | |
1 | 41.97 | 42.08 | 0.11 | 43.80 | 40.26 | 3.54 |
2 | 43.18 | 47.65 | 4.47 | 39.62 | 32.14 | 7.48 |
3 | 40.46 | 42.19 | 1.73 | 38.16 | 36.14 | 2.02 |
4 | 47.57 | 48.28 | 0.71 | 36.46 | 39.55 | 3.09 |
5 | 41.06 | 45.00 | 3.94 | 32.87 | 39.13 | 6.26 |
6 | 33.06 | 34.17 | 1.11 | 36.10 | 32.86 | 3.24 |
7 | 39.23 | 39.75 | 0.52 | 39.61 | 33.89 | 5.72 |
8 | 40.23 | 42.86 | 2.63 | 40.86 | 42.50 | 1.64 |
9 | 34.36 | 38.44 | 4.08 | 39.05 | 38.40 | 0.65 |
10 | 43.18 | 47.65 | 4.47 | 36.48 | 36.60 | 0.12 |
11 | 34.83 | 41.76 | 6.93 | 32.98 | 31.67 | 1.31 |
12 | 40.51 | 36.15 | 4.36 | 38.31 | 30.54 | 7.77 |
13 | 41.28 | 33.55 | 7.73 | 36.55 | 28.45 | 8.10 |
14 | 45.74 | 41.89 | 3.85 | 36.32 | 40.63 | 4.31 |
15 | 39.18 | 44.03 | 4.85 | 41.92 | 49.57 | 7.65 |
16 | 47.20 | 41.05 | 6.15 | 34.98 | 38.75 | 3.77 |
17 | 41.39 | 49.84 | 8.45 | 33.90 | 40.34 | 6.44 |
18 | 36.09 | 41.50 | 5.41 | 39.67 | 48.68 | 9.01 |
19 | 34.11 | 34.80 | 0.69 | 38.69 | 39.55 | 0.86 |
20 | 36.69 | 46.18 | 9.49 | 37.23 | 39.75 | 2.52 |
21 | 27.53 | 27.54 | 0.01 | 37.18 | 36.60 | 0.58 |
22 | 34.76 | 42.17 | 7.41 | 38.64 | 43.57 | 4.93 |
23 | 38.20 | 37.16 | 1.04 | 39.85 | 35.77 | 4.08 |
24 | 39.43 | 49.29 | 9.86 | 38.87 | 48.25 | 9.38 |
25 | 34.54 | 43.48 | 8.94 | 39.99 | 48.00 | 8.01 |
26 | 35.08 | 39.76 | 4.68 | 34.57 | 41.05 | 6.48 |
27 | 39.24 | 48.74 | 9.50 | 33.26 | 39.55 | 6.29 |
28 | 30.73 | 31.31 | 0.58 | 35.18 | 41.59 | 6.41 |
29 | 37.11 | 38.71 | 1.60 | 33.47 | 39.38 | 5.91 |
30 | 39.04 | 42.65 | 3.61 | 38.75 | 44.64 | 5.89 |
Average value | 38.57 | 41.32 | 4.30 | 37.44 | 39.26 | 4.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Wu, Y.; Chen, J.; Cui, M.; Gao, Y.; Meng, K.; Wu, M.; Guo, X.; Wen, W. Maize Stem Contour Extraction and Diameter Measurement Based on Adaptive Threshold Segmentation in Field Conditions. Agriculture 2023, 13, 678. https://doi.org/10.3390/agriculture13030678
Zhou J, Wu Y, Chen J, Cui M, Gao Y, Meng K, Wu M, Guo X, Wen W. Maize Stem Contour Extraction and Diameter Measurement Based on Adaptive Threshold Segmentation in Field Conditions. Agriculture. 2023; 13(3):678. https://doi.org/10.3390/agriculture13030678
Chicago/Turabian StyleZhou, Jing, Yushan Wu, Jian Chen, Mingren Cui, Yudi Gao, Keying Meng, Min Wu, Xinyu Guo, and Weiliang Wen. 2023. "Maize Stem Contour Extraction and Diameter Measurement Based on Adaptive Threshold Segmentation in Field Conditions" Agriculture 13, no. 3: 678. https://doi.org/10.3390/agriculture13030678
APA StyleZhou, J., Wu, Y., Chen, J., Cui, M., Gao, Y., Meng, K., Wu, M., Guo, X., & Wen, W. (2023). Maize Stem Contour Extraction and Diameter Measurement Based on Adaptive Threshold Segmentation in Field Conditions. Agriculture, 13(3), 678. https://doi.org/10.3390/agriculture13030678