M2F-Net: A Deep Learning-Based Multimodal Classification with High-Throughput Phenotyping for Identification of Overabundance of Fertilizers
Abstract
:1. Introduction
- A novel CNN-based framework termed multimodal fusion network (M2F-Net) is developed to achieve accurate fertilizer overuse identification and crop phenotyping.
- In order to improve the effectiveness of classification, this method makes use of the agrometeorological data gathered from sensors as an additional key feature.
- Three different fusion approaches are investigated in order to determine the best way to combine data from various modalities.
2. Related Work
2.1. Plant Phenotyping
2.2. Over Fertilization
2.3. Multimodal Data Fusion
3. Materials and Methods
3.1. Data Preparation
3.2. Dataset Description
3.3. Proposed Framework
3.3.1. Baseline 1: Neural Network
3.3.2. Baseline 2: CNN
3.3.3. DenseNet-121
3.3.4. Multimodal Fusion
3.3.5. Experimenting by Varying Fusion Approach
Early Fusion
Joint Fusion
Late Fusion
3.4. Performance Evaluation Metrics
4. Results and Discussion
Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Sagan, V.; Bhadra, S.; Moose, S. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping. Sensors 2023, 23, 1827. [Google Scholar] [CrossRef] [PubMed]
- Alcântara, J.F.D.; Santos, R.G.D.; Baio, F.H.R.; Júnior, C.A.D.S.; Teodoro, P.E.; Teodoro, L.P.R. High-throughput phenotyping as an auxiliary tool in the selection of corn hybrids for agronomic traits. Rev. Ceres 2023, 70, 106–113. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, M.; Schirrmann, M.; Dammer, K.H.; Li, X.; Brueggeman, R.; Zhang, Z. Affordable High Throughput Field Detection of Wheat Stripe Rust Using Deep Learning with Semi-Automated Image Labeling. Comput. Electron. Agric. 2023, 207, 107709. [Google Scholar] [CrossRef]
- Aderibigbe, O.R.; Ezekiel, O.O.; Owolade, S.O.; Korese, J.K.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 656–669. [Google Scholar] [CrossRef]
- Das, S. Amaranthus: A Promising Crop of Future; Springer: Singapore, 2016. [Google Scholar]
- Sharma, A.; Chetani, R. A review on the effect of organic and chemical fertilizers on plants. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 677–680. [Google Scholar] [CrossRef]
- Boafo, D.K.; Kraisornpornson, B.; Panphon, S.; Owusu, B.E.; Amaniampong, P.N. Effect of organic soil amendments on soil quality in oil palm production. Appl. Soil Ecol. 2020, 147, 103358. [Google Scholar] [CrossRef]
- Gordon, W.B.; Whitney, D.A.; Raney, R.J. Nitrogen Management in Furrow Irrigated, Ridge-Tilled Corn. J. Prod. Agric. 1993, 6, 213–217. [Google Scholar] [CrossRef]
- Akanbi, W.B.; Togun, A.O.; Adediran, J.A.; Ilupeju, D.E. Growth, dry matter and fruit yields components of okra under organic and inorganic sources of nutrients. Am. Eurasian J. Sustain. Agric. 2010, 4, 1–13. [Google Scholar]
- Pospišil, A.; Pospišil, M.; Varga, B.; Svecˇnjak, Z. Grain yield and protein concentration of two amaranth species (Amaranthus spp.) as influenced by the nitrogen fertilization. Eur. J. Agron. 2006, 25, 250–253. [Google Scholar] [CrossRef]
- Zainab, M.A.; Vincent, E.C.; Ayodele, O.S.; Lakwannum, G.Y.; Kehinde, O.S. Effects of organic and inorganic fertilizers on the growth of NH-Ae 47-4 variety of okra. J. Appl. Sci. Environ. Manag. 2016, 20, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, G.S.; Shukla, S.; Roka, F.M.; Sishodia, R.P.; Obreza, T.A.; Hochmuth, G.J.; Colee, J. Economic and environmental consequences of overfertilization under extreme weather conditions. J. Soil Water Conserv. 2019, 74, 160–171. [Google Scholar] [CrossRef]
- Mustafa, G.; Hayat, N.; Alotaibi, B.A. How and why to prevent over fertilization to get sustainable crop production. In Sustainable Plant Nutrition; Academic Press: Cambridge, MA, USA, 2023; pp. 339–354. [Google Scholar]
- Engås, K.G.; Raja, J.Z.; Neufang, I.F. Decoding technological frames: An exploratory study of access to and meaningful engagement with digital technologies in agriculture. Technol. Forecast. Soc. Chang. 2023, 190, 122405. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, R.; Li, M.; Chen, Y.; Li, G. A review of computer vision technologies for plant phenotyping. Comput. Electron. Agric. 2020, 176, 105672. [Google Scholar] [CrossRef]
- Dhakshayani, J.; Sanket, S.; Mahapatra, A.; Surendiran, B.; Nath, M.K. Weed Classification from Paddy Crops Using Convolutional Neural Network. In Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences: PCCDS 2021, Kurukshetra, India, 7–9 May 2021; Springer: Singapore, 2022; pp. 493–507. [Google Scholar]
- Zhao, S.; Peng, Y.; Liu, J.; Wu, S. Tomato leaf disease diagnosis based on improved convolution neural network by attention module. Agriculture 2021, 11, 651. [Google Scholar] [CrossRef]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep neural networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.; Lee, S.; Kim, T.; Baik, K.; Choi, Y. Crop Growth Monitoring System in Vertical Farms Based on Region-of-Interest Prediction. Agriculture 2022, 12, 656. [Google Scholar] [CrossRef]
- Li, C.; Adhikari, R.; Yao, Y.; Miller, A.G.; Kalbaugh, K.; Li, D.; Nemali, K. Measuring plant growth characteristics using smartphone based image analysis technique in controlled environment agriculture. Comput. Electron. Agric. 2020, 168, 105123. [Google Scholar] [CrossRef]
- Arya, S.; Sandhu, K.S.; Singh, J. Deep learning: As the new frontier in high-throughput plant phenotyping. Euphytica 2022, 218, 47. [Google Scholar] [CrossRef]
- Lee, U.; Chang, S.; Putra, G.A.; Kim, H.; Kim, D.H. An automated, high throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. PLoS ONE 2018, 13, 196615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaraj, M.G.; Valderrama, M.; Guzman, D.; Valencia, M.; Ruiz, H.; Acharjee, A. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (Manihot esculenta Crantz). Plant Methods 2020, 16, 87. [Google Scholar] [CrossRef]
- Rose, J.C.; Paulus, S.; Kuhlmann, H. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level. Sensors 2015, 15, 9651–9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyonje, W.A.; Schafleitner, R.; Abukutsa-Onyango, M.; Yang, R.Y.; Makokha, A.; Owino, W. Precision phenotyping and association between morphological traits and nutritional content in Vegetable Amaranth (Amaranthus spp.). J. Agric. Food Res. 2021, 5, 100165. [Google Scholar] [CrossRef]
- Park, Y.J.; Nemoto, K.; Nishikawa, T.; Matsushima, K.; Minami, M.; Kawase, M. Origin and evolution of the waxy phenotype in Amaranthus hypochondriacus: Evidence from the genetic diversity in the Waxy locus. Mol. Breed. 2012, 29, 147–157. [Google Scholar] [CrossRef]
- Park, Y.J.; Nishikawa, T.; Tomooka, N.; Nemoto, K. The molecular basis of mutations at the Waxy locus from Amaranthus caudatus L.: Evolution of the waxy phenotype in three species of grain amaranth. Mol. Breed. 2012, 30, 511–520. [Google Scholar] [CrossRef]
- Jamalluddin, N. Genetic Diversity Analysis and Trait Phenotyping for Drought Tolerance in Amaranth (Amaranthus spp.) Germplasm. Ph.D. Thesis, University of Nottingham Malaysia Campus, Selangor, Malaysia, 2020. [Google Scholar]
- Tazoe, Y.; Noguchi, K.; Terashima, I. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Plant Cell Environ. 2006, 29, 691–700. [Google Scholar] [CrossRef]
- Weinbaum, S.A.; Johnson, R.S.; Dejong, T.M. Causes and consequences of overfertilization in orchards. HortTechnology 1992, 2, 112–121. [Google Scholar] [CrossRef]
- Ayeni, L.S.; Adeleye, E.O.; Adejumo, J.O. Comparative effect of organic, organomineral and mineral fertilizers on soil properties, nutrient uptake, growth and yield of maize (Zea mays). Int. Res. J. Agric. Sci. Soil Sci. 2012, 2, 493–497. [Google Scholar]
- Olowoake, A.A.; Adeoye, G.O. Comparative efficacy of NPK fertilizer and composted organic residues on growth, nutrient absorption and dry matter accumulation in maize. Int. J. Org. Agric. Res. Dev. 2010, 2, 43–53. [Google Scholar]
- Adebayo Abayomi, O.; James Adebayo, O. Effect of fertilizer types on the growth and yield of Amaranthus caudatus in Ilorin. Adv. Agric. 2014, 947062. [Google Scholar]
- Ouhami, M.; Hafiane, A.; Es-Saady, Y.; Hajji, M.E.; Canals, R. Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research. Remote Sens. 2021, 13, 2486. [Google Scholar] [CrossRef]
- Yuan, L.; Bao, Z.; Zhang, H.; Zhang, Y.; Liang, X. Habitat monitoring to evaluate crop disease and pest distributions based on multi-source satellite remote sensing imagery. Optik 2017, 145, 66–73. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Xie, C.; Wang, R.; Wang, F.; Bu, Y.; Zhang, S. An effective automatic system deployed in agricultural Internet of Things using Multi-Context Fusion Network towards crop disease recognition in the wild. Appl. Soft Comput. 2020, 89, 106128. [Google Scholar] [CrossRef]
- Patil, R.R.; Kumar, S. Rice-fusion: A multimodality data fusion framework for rice disease diagnosis. IEEE Access 2022, 10, 5207–5222. [Google Scholar] [CrossRef]
- Crop Production Guide: Horticulture Crops, Amaranthus, Directorate of Horticulture and Plantation Crops 2020. TNAU, 158. Available online: https://agritech.tnau.ac.in/pdf/HORTICULTURE.pdf (accessed on 1 May 2023).
- Ren, C. Fertilizer overuse in Chinese smallholders due to lack of fixed inputs. J. Environ. Manag. 2021, 293, 112913. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Sahu, P.; Chug, A.; Singh, A.P.; Singh, D. TLDC: Tomato Leaf Disease Classification Using Deep Learning and Image Segmentation. In International Conference on Innovative Computing and Communications, Delhi, India, 19–20 February 2022; Springer: Singapore, 2023; pp. 401–408. [Google Scholar]
- Lu, Z.; Miao, J.; Dong, J.; Zhu, S.; Wang, X.; Feng, J. Automatic classification of retinal diseases with transfer learning-based lightweight convolutional neural network. Biomed. Signal Process. Control 2023, 81, 104365. [Google Scholar] [CrossRef]
- Khazalah, A.; Prasanthi, B.; Thomas, D.; Vello, N.; Jayaprakasam, S.; Sumari, P.; Khodadadi, N. Image Processing Identification for Sapodilla Using Convolution Neural Network (CNN) and Transfer Learning Techniques. In Classification Applications with Deep Learning and Machine Learning Technologies; Springer: Cham, Switzerland, 2023; pp. 107–127. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Syed Shahul Hameed, A.S.; Rajagopalan, N. SPGD: Search Party Gradient Descent Algorithm, a Simple Gradient-Based Parallel Algorithm for Bound-Constrained Optimization. Mathematics 2022, 10, 800. [Google Scholar] [CrossRef]
- Findurová, H.; Veselá, B.; Panzarová, K.; Pytela, J.; Trtílek, M.; Klem, K. Phenotyping drought tolerance and yield performance of barley using a combination of imaging methods. Environ. Exp. Bot. 2023, 209, 105314. [Google Scholar] [CrossRef]
- Yousfi, S.; Marín, J.; Parra, L.; Lloret, J.; Mauri, P.V. Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes. Agric. Water Manag. 2022, 266, 107581. [Google Scholar] [CrossRef]
- Koh, J.C.; Spangenberg, G.; Kant, S. Automated machine learning for high-throughput image-based plant phenotyping. Remote Sens. 2021, 13, 858. [Google Scholar] [CrossRef]
- Giuffrida, M.V.; Doerner, P.; Tsaftaris, S.A. Pheno-deep counter: A unified and versatile deep learning architecture for leaf counting. Plant J. 2018, 96, 880–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ampatzidis, Y.; Partel, V. UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence. Remote Sens. 2019, 11, 410. [Google Scholar] [CrossRef] [Green Version]
Class ID | Class Name/Treatments Involved | Amount of Fertilizers Added (in Grams) | ||
---|---|---|---|---|
N | P | K | ||
C1 | Optimal | 1.5 | 1.95 | 0.69 |
C2 | N150 | 2.25 | - | - |
C3 | P150 | - | 2.92 | - |
C4 | K150 | - | - | 1.03 |
C5 | N200 | 3.0 | - | - |
C6 | P200 | - | 3.9 | - |
C7 | K200 | - | - | 1.38 |
C8 | N-P-K150 | 2.25 | 2.92 | 1.03 |
C9 | N-P-K200 | 3.0 | 3.9 | 1.38 |
C10 | Control | - | - | - |
Agrometeorological Parameters | Classes (Treatments) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | |
Temperature * | 29.4 | 29.4 | 29.4 | 29.4 | 29.4 | 29.4 | 29.4 | 29.4 | 29.4 | 29.4 |
Relative humidity * | 76.6 | 76.6 | 76.6 | 76.6 | 76.6 | 76.6 | 76.6 | 76.6 | 76.6 | 76.6 |
Soil temperature * | 28.6 | 29.1 | 29.4 | 28.4 | 30.1 | 27.7 | 29.3 | 29.5 | 27.5 | 29.3 |
Soil pH * | 7.5 | 7 | 6.5 | 7.5 | 6.5 | 7 | 7 | 8 | 6.5 | 7.5 |
Soil moisture # | wet | wet | wet+ | wet | dry | wet+ | wet | dry+ | wet | dry+ |
Sunlight intensity # | high | low+ | low+ | high− | high | low− | low | high− | low+ | high+ |
CPU | Intel(R) Core (TM) i5-7200U |
RAM | 8 GB |
CPU frequency | 2.71 GHz |
GPU | NVIDIA GeForce 940MX graphics |
GPU memory | 4 GB |
S. No | Modality | Model | Architecture | Accuracy | Loss | Precision | Recall | F1-Score | Specificity | Runtime (sec) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | Validation | Training | Validation | |||||||||
1 | Unimodal | Non-image only | MLP | 0.80 | 0.76 | 0.2343 | 0.3974 | 0.78 | 0.74 | 0.74 | 0.70 | 1020 |
2 | Image only | CNN (DenseNet-121) | 0.88 | 0.84 | 0.2138 | 0.2543 | 0.89 | 0.84 | 0.86 | 0.83 | 3400 | |
3 | Multimodal fusion | Early fusion | MLP +CNN | 0.93 | 0.86 | 0.1281 | 0.2336 | 0.86 | 0.84 | 0.83 | 0.82 | 6590 |
4 | Joint fusion | 0.93 | 0.87 | 0.1279 | 0.2957 | 0.88 | 0.84 | 0.84 | 0.88 | 6350 | ||
5 | Late fusion | 0.94 | 0.91 | 0.0672 | 0.1064 | 0.90 | 0.86 | 0.89 | 0.90 | 5800 |
Imaging Modalities | Phenotyping Task | Methods/Models Involved | Performance | Authors/Reference |
---|---|---|---|---|
Thermal infrared and chlorophyll fluorescence imaging | Drought tolerance and yield performance | Multiple regression | Accuracy: 90% | Findurová et al. [50] |
Unmanned Aerial Vehicle (UAV) imagery | Turfgrass phenotyping | Statistical analysis methods | R2 > 0.83 | Yousfi et al. [51] |
Wheat lodging assessment | CNN: DenseNet201 | Accuracy: 93% | Koh et al. [52] | |
RGB, FMP, NIR | Prediction of leaf count in two-dimensional images | CNN: ResNet50 | Accuracy: 88% | Giuffrida et al. [53] |
UAV with multispectral imaging | Evaluation of phenotypic characteristics on citrus crops | YOLO v3 | Accuracy: 85.5% | Ampatzidis and Partel [54] |
Estimation of phenotyping traits and root yield in cassava | SVM | R2 > 0.67 | Selvaraj et al. [26] | |
RGB | Identification of excessive fertilizer usage in Amaranthus | MLP+CNN (M2F-Net) | Accuracy: 91% | Proposed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakshayani, J.; Surendiran, B. M2F-Net: A Deep Learning-Based Multimodal Classification with High-Throughput Phenotyping for Identification of Overabundance of Fertilizers. Agriculture 2023, 13, 1238. https://doi.org/10.3390/agriculture13061238
Dhakshayani J, Surendiran B. M2F-Net: A Deep Learning-Based Multimodal Classification with High-Throughput Phenotyping for Identification of Overabundance of Fertilizers. Agriculture. 2023; 13(6):1238. https://doi.org/10.3390/agriculture13061238
Chicago/Turabian StyleDhakshayani, J., and B. Surendiran. 2023. "M2F-Net: A Deep Learning-Based Multimodal Classification with High-Throughput Phenotyping for Identification of Overabundance of Fertilizers" Agriculture 13, no. 6: 1238. https://doi.org/10.3390/agriculture13061238
APA StyleDhakshayani, J., & Surendiran, B. (2023). M2F-Net: A Deep Learning-Based Multimodal Classification with High-Throughput Phenotyping for Identification of Overabundance of Fertilizers. Agriculture, 13(6), 1238. https://doi.org/10.3390/agriculture13061238