Estimation of Soil Cations Based on Visible and Near-Infrared Spectroscopy and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Pre-Processing
2.2.1. Soil Sampling and Pre-Processing
- (1)
- Determination of soil cation content
- (2)
- Soil spectral reflectance measurements
2.2.2. Image Acquisition and Pre-Processing
2.3. Methods
2.3.1. Screening of Characteristic Bands
- (1)
- Successive projection algorithm
- Randomly select a column of the spectral matrix (column j) and assign column j from the modelling set to , denoted as .
- Denote the set of vector positions of the other columns (excluding the jth column) as , where .
- Calculate the projection of onto the remaining column vectors, .
- Extract the spectral wavelengths with a maximum projection vector, .
- Let , .
- Accumulate n and return to step 2 if .
- Denote the extracted variables as , corresponding to and in each cycle. Following this, construct a multiple linear regression analysis model to obtain the root mean square error of cross-validation (RMSECV) for the modelling set, and the smallest RMSECV value corresponding to and as the characteristic wavelength groups is obtained.
- (2)
- Boruta algorithm
- Read the original soil reflectance spectral matrix (denoted as ) and then randomly disrupt the column order of the matrix to generate a new soil reflectance spectral matrix (denoted as ). Following this, associate with according to the sample point identifier (ID) to obtain a new feature matrix (denoted as ).
- Input into the training model to obtain the and importance levels (Z-score).
- Extract the maximum value of the Z-score in () and record the characteristic bands in with a Z-score greater than .
- Repeat step 3 for the determination and marking of the importance of the characteristic bands.
- Remove the unimportant bands and repeat the above process until all the characteristic bands have been marked.
2.3.2. Model Construction
- (1)
- Back Propagation Neural Network
- (2)
- Genetic Algorithm–Based Back Propagation Neural Network
- (3)
- Random Forest
2.3.3. Accuracy Metrics
3. Results
3.1. Determining the Characteristic Bands for the Estimation of Soil Cation Contents
3.1.1. Characterization of Soil Spectra
3.1.2. Screening of Characteristic Bands for Soil Cations
3.2. Determining an Accurate Model for the Estimation of Soil Cation Contents
3.3. Regional-Scale Soil Cation Content Estimation Based on HJ-1A Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, L.; Zeng, G.M.; Nourbakhsh, F.; Shen, G.L. Artificial neural network approach for predicting cation exchange capacity in soil based on physico-chemical properties. Environ. Eng. Sci. 2009, 26, 137–146. [Google Scholar] [CrossRef]
- Xu, W.W.; Qian, M. Soil Carbon Contents in Relation to Soil Physicochemical Properties in Arid Regions of China. J. Desert Res. 2014, 34, 1558–1561. [Google Scholar]
- Zhang, H.; Zhao, X.M.; Ouyang, Z.C.; Guo, X.; Kuang, L.H.; Ye, Y.C. Effects of Different Farmland Use Types on Soil Nutrients in Jiangxi Province. Res. Soil Water Conserv. 2018, 25, 53–60. [Google Scholar]
- Altin, A.; Degirmenci, M. Lead (II) removal from natural soils by enhanced electrokinetic remediation. Sci. Total Environ. 2005, 337, 1–10. [Google Scholar] [CrossRef]
- Arias, M.; Perez-Novo, C.; Osorio, F.; López, E.; Soto, B. Adsorption and desorption of copper and zinc in the surface layer of acid soils. J. Colloid Interface Sci. 2005, 288, 21–29. [Google Scholar] [CrossRef]
- Liao, K.H.; Xu, S.H.; Wu, J.C.; Ji, S.H.; Lin, Q. Cokriging of soil cation exchange capacity using the first principal component derived from soil physico-chemical properties. Agric. Sci. China 2011, 10, 1246–1253. [Google Scholar] [CrossRef]
- Xia, X.Q.; Ji, J.F.; Chen, J.; Liao, Q.L.; Yang, Z.F. Analysis of soil physical and chemical properties by reflectance spectroscopy. Earth Sci. Front. 2009, 16, 354–362. [Google Scholar]
- Zhang, Z.P.; Ding, J.L.; Zhu, C.M.; Wang, J.Z.; Ma, G.L.; Ge, X.Y.; Li, Z.S.; Han, L.J. Strategies for the efficient estimation of soil organic matter in salt-affected soils through Vis-NIR spectroscopy: Optimal band combination algorithm and spectral degradation. Geoderma 2021, 382, 114729. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Guerrero, A.; Nawar, S.; Haesaert, G.; Meirvenne, M.V.; Mouazen, A.M. A combined data mining approach for on-line prediction of key soil quality indicators by Vis-NIR spectroscopy. Soil Tillage Res. 2021, 205, 104808. [Google Scholar] [CrossRef]
- Vohland, M.; Ludwig, B.; Seidel, M.; Hutengs, C. Quantification of soil organic carbon at regional scale: Benefits of fusing vis-NIR and MIR diffuse reflectance data are greater for in situ than for laboratory-based modelling approaches. Geoderma 2022, 405, 115426. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Blocher, J.R.; Bell, S.M.; Boruvka, L.; Vasat, R. Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation? Sci. Total Environ. 2022, 838, 156304. [Google Scholar] [CrossRef] [PubMed]
- Azizi, K.; Ayoubi, S.; Demattê, J.A.M. Controlling factors in the variability of soil magnetic measures by machine learning and variable importance analysis. J. Appl. Geophys. 2023, 210, 104944. [Google Scholar] [CrossRef]
- Annam, S.; Singla, A. Estimating the concentration of soil heavy metals in agricultural areas from AVIRIS hyperspectral imagery. Int. J. Intell. Syst. Appl. Eng. 2023, 11, 156–164. [Google Scholar]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; Mcbratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Li, D.; Chen, S.S.; Chen, X.Z.; Peng, Z.P. Study of Near infrared Spectroscopy Assessment for Soil Exchangeable K, Ca, Mg and CEC in Lychee Orchard. Trop. Geogr. 2011, 31, 368–372. [Google Scholar]
- Gras, J.P.; Barthès, B.G.; Mahaut, B.; Trupin, S. Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils. Geoderma 2014, 214–215, 126–134. [Google Scholar] [CrossRef]
- Zhao, D.X.; Arshad, M.; Wang, J.; Triantafilis, J. Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking. Comput. Electron. Agric. 2021, 182, 105990. [Google Scholar] [CrossRef]
- Li, M.Z.; Zhang, W.C.; Sun, Z.T.; Zhao, Y.G.; Wang, S.J. Effects of different extractants on determination results of fluorine in saline-alkali soil. Exp. Technol. Manag. 2021, 38, 33–39. [Google Scholar]
- Leone, A.P.; Viscarra-Rossel, R.A.; Amenta, P.; Buondonno, A. Prediction of soil properties with plsr and vis-nir spectroscopy: Application to mediterranean soils from southern italy. Curr. Anal. Chem. 2012, 8, 283–299. [Google Scholar] [CrossRef]
- Cai, T.Y.; Wang, Z.G.; Yang, L.S.; Wang, Q.; Huang, H.J.; Yu, H.Y.; Zhang, C.Z.; Zhang, C.; Liu, P.; Feng, Y.Q.; et al. Hyperspectral inversion model of Zn in high standard farmland soil in Xiping County. J. Agro-Environ. Sci. 2022, 41, 2223–2231. [Google Scholar]
- Zou, X.B.; Zhao, J.W.; Malcolm, J.W.P.; Mel, H.; Mao, H.P. Variables selection methods in near-infrared spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [Google Scholar]
- Tavares, T.R.; Mouazen, A.M.; Nunes, L.C.; Santos, F.R.D.; Melquiades, F.L.; Silva, T.R.D.; Krug, F.J.; Molin, J.P. Laser-Induced Breakdown Spectroscopy (LIBS) for tropical soil fertility analysis. Soil Tillage Res. 2022, 216, 105250. [Google Scholar] [CrossRef]
- Yang, X.Y.; Bao, N.S.; Li, W.W.; Liu, S.J.; Fu, Y.H.; Mao, Y.C. Soil Nutrient Estimation and Mapping in Farmland Based on UAV Imaging Spectrometry. Sensors 2021, 21, 3919. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, L.Q.; Liu, H.Y.; Zhu, A.S. Successive projections algorithm and its application to selecting the wheat near-infrared spectral variables. Spectrosc. Spectr. Anal. 2010, 30, 949–952. [Google Scholar]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Bai, H.R.; Zhang, B.; Pei, L.; Zhao, Y.H.; Lei, Y.Z.; Yuan, R.C. Inversion of soil zinc contents using hyperspectral remote sensing based on random forest and continuous wavelet transform in an opencast coal mine. Trans. CSAE 2022, 38, 138–147. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Koza, J.R.; Rice, J.P. Genetic generation of both the weights and architecture for a neural network. In Proceedings of the IJCNN-91-Seattle International Joint Conference on Neural Networks, Seattle, WA, USA, 8–12 July 1991; Volume 2, pp. 397–404. [Google Scholar]
- Verikas, A.; Gelzinis, A.; Bacauskiene, M. Mining data with random forests: A survey and results of new tests. Pattern Recognit. 2011, 44, 330–349. [Google Scholar] [CrossRef]
- Hong, Y.S.; Chen, S.C.; Chen, Y.Y.; Linderman, M.; Mouazen, A.M.; Liu, Y.L.; Guo, L.; Yu, L.; Liu, Y.F.; Cheng, H.; et al. Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest. Soil Tillage Res. 2020, 199, 104589. [Google Scholar] [CrossRef]
- Wu, Z.M.; Li, J.C.; Wang, R.; Shi, L.; Mao, S.; Lv, H.; Li, Y.M. Estimation of CDOM concentration in inland lake based on random forest using Sentinel-3A OLCI. J. Lake Sci. 2018, 30, 979–991. [Google Scholar]
- Tziolas, N.; Tsakiridis, N.; Ben-Dor, E.; Theocharis, J.; Zalidis, G. Employing a Multi-Input Deep Convolutional Neural Network to Derive Soil Clay Content from a Synergy of Multi-Temporal Optical and Radar Imagery Data. Remote Sens. 2020, 12, 1389. [Google Scholar] [CrossRef]
- Song, K.S.; Li, L.; Tedesco, L.P.; Li, S.; Duan, H.T.; Liu, D.W.; Hall, B.E.; Du, J.; Li, Z.C.; Shi, K.; et al. Remote estimation of chlorophyll-a in turbid inland waters: Three-band model versus GA-PLS model. Remote Sens. Environ. 2013, 136, 342–357. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol. Biochem. 2008, 40, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.S.; Wu, L.X.; Ye, B.Y.; Yang, K.; Zhou, W. Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory. Geoderma 2017, 288, 47–55. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Baroudy, A.A.E.; El-beshbeshy, T.; Emam, M.; Belal, A.A.; Elfadaly, A.; Aldosari, A.A.; Ali, A.M.; Lasaponara, R. Vis-NIR Spectroscopy and Satellite Landsat-8 OLI Data to Map Soil Nutrients in Arid Conditions: A Case Study of the Northwest Coast of Egypt. Remote Sens. 2020, 12, 3716. [Google Scholar] [CrossRef]
- Nyarko, F.; Tack, F.M.G.; Mouazen, A.M. Potential of visible and near infrared spectroscopy coupled with machine learning for predicting soil metal concentrations at the regional scale. Sci. Total Environ. 2022, 841, 156582. [Google Scholar] [CrossRef] [PubMed]
- Pyo, J.C.; Hong, S.M.; Kwon, Y.S.; Kim, M.S.; Cho, K.H. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci. Total Environ. 2020, 741, 140162. [Google Scholar] [CrossRef]
- Greenberg, I.; Seidel, M.; Vohland, M.; Ludwig, B. Performance of field-scale lab vs in situ visible/near- and mid-infrared spectroscopy for estimation of soil properties. Eur. J. Soil Sci. 2022, 73, e13180. [Google Scholar] [CrossRef]
- Chen, Y.T.; Gao, S.B.; Jones, E.J.; Singh, B. Prediction of Soil Clay Content and Cation Exchange Capacity Using Visible Near-Infrared Spectroscopy, Portable X-ray Fluorescence, and X-ray Diffraction Techniques. Environ. Sci. Technol. 2021, 55, 4629–4637. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Hermansen, C.; Norgaard, T.; Jonge, L.; Moldrup, P.; Müller, K.; Knadel, M. Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis-NIR spectroscopy. Geoderma 2020, 360, 114009. [Google Scholar] [CrossRef]
Soil Cations | Min. | Max. | Mean | SD | CV (%) |
---|---|---|---|---|---|
K+ | 0.03 | 0.78 | 0.20 | 0.15 | 75 |
Ca2+ | 0.24 | 14.90 | 3.37 | 2.91 | 86 |
Mg2+ | 0.08 | 3.00 | 0.50 | 0.58 | 116 |
Na+ | 0.02 | 0.46 | 0.10 | 0.08 | 80 |
Model | Soil Cation | Number | Characteristics Bands |
---|---|---|---|
SPA | Ca2+ | 8 | FD800, FD638, FD805, FD785, FD371, FD1073, FD1392, FD896 |
K+ | 5 | FD455, FD808, FD2360, FD474, FD854 | |
Mg2+ | 5 | FD1624, FD1937, FD664, FD513, FD1076 | |
Na+ | 6 | FD1937, FD1017, FD596, FD1088, FD2253, FD443 | |
Boruta | Ca2+ | 23 | FD651, FD1649, FD1816, FD776, FD1066, FD1321, FD1257, FD690, FD768, FD1656, FD1643, FD1000, FD1784, FD661, FD960, FD654, FD1765, FD1790, FD903, FD1937, FD620, FD1752, FD974 |
K+ | 8 | FD1962, FD2184, FD2190, FD566, FD647, FD892, FD650, FD651 | |
Mg2+ | 10 | FD1476, FD1482, FD1515, FD2235, FD969, FD1128, FD1930, FD1975, FD2178, FD744 | |
Na+ | 10 | FD1128, FD969, FD1367, FD968, FD577, FD1309, FD1994, FD1476, FD594, FD1930 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Wang, T.; Xie, S.; Liu, Z.; Lin, C.; Hu, Y.; Wang, J.; Mao, X. Estimation of Soil Cations Based on Visible and Near-Infrared Spectroscopy and Machine Learning. Agriculture 2023, 13, 1237. https://doi.org/10.3390/agriculture13061237
Peng Y, Wang T, Xie S, Liu Z, Lin C, Hu Y, Wang J, Mao X. Estimation of Soil Cations Based on Visible and Near-Infrared Spectroscopy and Machine Learning. Agriculture. 2023; 13(6):1237. https://doi.org/10.3390/agriculture13061237
Chicago/Turabian StylePeng, Yiping, Ting Wang, Shujuan Xie, Zhenhua Liu, Chenjie Lin, Yueming Hu, Jianfang Wang, and Xiaoyun Mao. 2023. "Estimation of Soil Cations Based on Visible and Near-Infrared Spectroscopy and Machine Learning" Agriculture 13, no. 6: 1237. https://doi.org/10.3390/agriculture13061237
APA StylePeng, Y., Wang, T., Xie, S., Liu, Z., Lin, C., Hu, Y., Wang, J., & Mao, X. (2023). Estimation of Soil Cations Based on Visible and Near-Infrared Spectroscopy and Machine Learning. Agriculture, 13(6), 1237. https://doi.org/10.3390/agriculture13061237