Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Test
2.3. Vant Platform
2.4. Data Acquisition
2.5. Vegetation Indices Obtention via UAV
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Organic Compost
3.2. Spectral Behavior of Tested VIs
3.3. Productivity and AGB Analysis via VIs
3.4. Estimation of Productivity and AGB via VIs
3.5. Spatialization of Productivity
3.6. Spatialization of AGB
3.7. Analysis of Total Productivity and Total Biomass
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, X.; Yang, G.; Li, Z.; Xu, X.; Wang, J.; Lan, Y. Estimation of Water Productivity in Winter Wheat Using the AquaCrop Model with Field Hyperspectral Data. Precis. Agric. 2018, 19, 1–17. [Google Scholar] [CrossRef]
- Donald, C.M.; Hamblin, J. The Biological Yield and Harvest Index of Cereals as Agronomic and Plant Breeding Criteria. Adv. Agron. 1976, 28, 361–405. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Li, Z.; Zhou, C.; Xu, K. Mapping Winter-Wheat Biomass and Grain Yield Based on a Crop Model and UAV Remote Sensing. Int. J. Remote Sens. 2021, 42, 1577–1601. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Marais Sicre, C.; Le Dantec, V.; Demarez, V. Estimating Maize Biomass and Yield over Large Areas Using High Spatial and Temporal Resolution Sentinel-2 like Remote Sensing Data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A Review of Data Assimilation of Remote Sensing and Crop Models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Q.; Liang, T.; Liu, B.; Zhang, W.; Xie, H. Modeling Grassland Above-Ground Biomass Based on Artificial Neural Network and Remote Sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field High-Throughput Phenotyping: The New Crop Breeding Frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, N.R.; et al. Low-Altitude, High-Resolution Aerial Imaging Systems for Row and Field Crop Phenotyping: A Review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Guerini Filho, M.; Kuplich, T.M.; Quadros, F.L.F.D. Estimating Natural Grassland Biomass by Vegetation Indices Using Sentinel 2 Remote Sensing Data. Int. J. Remote Sens. 2020, 41, 2861–2876. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping Crop Phenology Using NDVI Time-Series Derived from HJ-1 A/B Data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 188–197. [Google Scholar] [CrossRef]
- Moreira, M.A. Fundamentos do Sensoriamento Remoto e Metodologias de Aplicação, 4th ed.; UFV Press: Viçosa, Brazil, 2011; ISBN 978-85-7269-381-3. [Google Scholar]
- Macedo, F.L.; Sousa, A.M.O.; Gonçalves, A.C.; Marques da Silva, J.R.; Mesquita, P.A.; Rodrigues, R.A.F. Above-Ground Biomass Estimation for Quercus rotundifolia Using Vegetation Indices Derived from High Spatial Resolution Satellite Images. Eur. J. Remote Sens. 2018, 51, 932–944. [Google Scholar] [CrossRef]
- Henriques, H.J.R.; Schwambach, D.A.; Fernandes, V.J.M.; Cortez, J.W. Vegetation Indices and Their Correlation with Second-Crop Corn Grain Yield in Mato Grosso Do Sul, Brazil. RBMS 2021, 20, 13. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, Z.; Chen, J.; Chen, H.; Cui, C.; Li, X.; Chen, S.; Fu, Q. Simplified Evaluation of Cotton Water Stress Using High Resolution Unmanned Aerial Vehicle Thermal Imagery. Remote Sens. 2019, 11, 267. [Google Scholar] [CrossRef]
- Macedo, F.L.; Pinheiro de Carvalho, M.A.A.; Nóbrega, H.G.M. Evaluation of the Water Status of the Vine Crop, Using the CWSIsi (Crop Water Stress Index Simplified). In Proceedings of the 7th International Congress of Mountain and Steep Slopes Viticulture, Vila Real, Portugal, 12–14 May 2022; pp. 322–325, ISBN 978-989-704-471-7. [Google Scholar]
- Caruso, G.; Tozzini, L.; Rallo, G.; Primicerio, J.; Moriondo, M.; Palai, G.; Gucci, R. Estimating Biophysical and Geometrical Parameters of Grapevine Canopies (‘Sangiovese’) by an Unmanned Aerial Vehicle (UAV) and VIS-NIR Cameras. VITIS—J. Grapevine Res. 2017, 56, 63–70. [Google Scholar] [CrossRef]
- Gil-Pérez, B.; Zarco-Tejada, P.J.; Correa-Guimaraes, A.; Relea-Gangas, E.; Navas-Gracia, L.M.; Hernández-Navarro, S.; Sanz-Requena, J.F.; Berjón, A.; Martín-Gil, J. Remote Sensing Detection of Nutrient Uptake in Vineyards Using Narrow-Band Hyperspectral Imagery. Vitis 2010, 49, 167–173. [Google Scholar]
- Pinheiro De Carvalho, M.A.A.; Ragonezi, C.; De Macedo, F.L.; Antunes, G.N.; Freitas, G.; Nóbrega, H. Contributo para o conhecimento da agrodiversidade no concelho de Santa Cruz, Madeira. Rev. Ciênc. Agrárias 2019, 42, 575–605. [Google Scholar] [CrossRef]
- Pinheiro de Carvalho, M.A.A.; Macedo, F.L.; Nóbrega, H.G.M.; Freitas, J.G.R.; Antunes, G.N.M.; Gouveia, C.S.S.; Ganança, J.F.T. Agrodiversidade, Variedades Regionais Madeira; Centro ISOPlexis e ACOESTE, Gesto, Artes Gráficas: Estreito de Câmara de Lobos, Portugal, 2022; ISBN 978-989-33-2868-2. [Google Scholar]
- Pinheiro de Carvalho, M.Â.A.; Ganança, J.F.T.; Abreu, I.; Sousa, N.F.; dos Santos, T.M.M.; Clemente Vieira, M.R.; Motto, M. Evaluation of the Maize (Zea mays L.) Diversity on the Archipelago of Madeira. Genet. Resour. Crop Evol. 2008, 55, 221–233. [Google Scholar] [CrossRef]
- Pinheiro de Carvalho, M.A.A.; Sardinha, C.; Gouveia, C.S.S.; Nóbrega, H.G.M.; Ganança, J.F.T.; Nóbrega, S.; dos Santos, T.M. Phenotyping the Ideotypes of Two Maize Landraces from Madeira Archipelago Using Morpho-Agronomic Traits and Zein Pattern. Maydica 2019, 63, 13. [Google Scholar]
- Magalhães, P.C.; Durães, F.O.M. Fisiologia Produção de Milho; EMBRAPA Milho e Sorgo: Sete Lagoas, Brazil, 2006. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center; NASA Special Publications: Washington, DC, USA, 1973; pp. 309–318. [Google Scholar]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared l, Lnear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi (Version 2.3.16) [Computer Software]. 2022. Available online: https://www.jamovi.org (accessed on 27 April 2023).
- Devore, J.L.; Cordeiro, M.T.A. Probabilidade e Estatística: Para Engenharia e Ciências; Cengage Learning: São Paulo, Brazil, 2006; ISBN 9788522104598. [Google Scholar]
- Magney, T.S.; Eitel, J.U.H.; Huggins, D.R.; Vierling, L.A. Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agric. For. Meteorol. 2016, 217, 46–60. [Google Scholar] [CrossRef]
- Geipel, J.; Link, J.; Wirwahn, J.A.; Chaupein, W. A Programmable Aerial Multiespectral Camara System for In-Season Crop Biomass and Nitrogen Content Estimation. Agriculture 2016, 6, 4. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting Grain Yield in Rice Using Multi-Temporal Vegetation Indices from UAV-Based Multispectral and Digital Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Khosravirad, M.; Omid, M.; Sarmadian, F.; Hosseinpour, S. Predicting Sugarcane Yields in Khuzestan Using a Large Time-Series of Remote Sensing Imagery Region. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W18, 645–648. [Google Scholar] [CrossRef]
- Sankaran, S.; Zhou, J.; Khot, L.R.; Trapp, J.J.; Mndolwa, E.; Miklas, P.N. High-Throughput Field Phenotyping in Dry Bean Using Small Unmanned Aerial Vehicle Based Multispectral Imagery. Comput. Electron. Agric. 2018, 151, 84–92. [Google Scholar] [CrossRef]
- Marques Ramos, A.P.; Prado Osco, L.; Elis Garcia Furuya, D.; Nunes Gonçalves, W.; Cordeiro Santana, D.; Pereira Ribeiro Teodoro, L.; Antonio da Silva Junior, C.; Fernando Capristo-Silva, G.; Li, J.; Henrique Rojo Baio, F.; et al. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring Within-Field Variability of Corn Yield using Sentinel-2 and Machine Learning Techniques. Remote Sens. 2019, 11, 2873. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.J.C.; Nieto, L.; Varela, S.; Corassa, G.M.; Horbe, T.A.N.; Rice, C.W.; Peralta, N.R.; Ciampitti, I.A. Forecasting maize yield at field scale based on high-resolution satellite imagery. Biosyst. Eng. 2018, 171, 179–192. [Google Scholar] [CrossRef]
- Peralta, N.R.; Assefa, Y.; Du, J.; Barden, C.J.; Ciampitti, I.A. Mid-season high-resolution satellite imagery for forecasting site specific corn yield. Remote Sens. 2016, 8, 848. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Wang, C.; Xu, F.; Li, X.; Tan, C.; Chen, D.; Wang, G.; Shi, L. Estimation of Corn Canopy Chlorophyll Content Using Derivative Spectra in the O2—A Absorption Band. Front. Plant Sci. 2019, 10, 1047. [Google Scholar] [CrossRef]
- Taskos, D.G.; Koundouras, S.; Stamatiadis, S.; Zioziou, E.; Nikolaou, N.; Karakioulakis, K.; Theodorou, N. Using Active Canopy Sensors and Chlorophyll Meters to Estimate Grapevine Nitrogen Status and Productivity. Precis. Agric. 2015, 16, 77–98. [Google Scholar] [CrossRef]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef]
- Vian, A.L.; Bredemeier, C.; Silva, P.R.F.D.; Santi, A.L.; Silva, C.P.G.D.; Santos, F.L.D. Limites críticos de NDVI para estimativa do potencial produtivo do milho. RBMS 2018, 17, 91. [Google Scholar] [CrossRef]
- Wahab, I.; Hall, O.; Jirström, M. Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa. Drones 2018, 2, 28. [Google Scholar] [CrossRef]
- Rahman, M.M.; Robson, A.J. A Novel Approach for Sugarcane Yield Prediction Using Landsat Time Series Imagery: A Case Study on Bundaberg Region. ARS 2016, 05, 93–102. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving Estimation of Summer Maize Nitrogen Status with Red Edge-Based Spectral Vegetation Indices. Field Crops Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Duan, B.; Liu, Y.; Gong, Y.; Peng, Y.; Wu, X.; Zhu, R.; Fang, S. Remote Estimation of Rice LAI Based on Fourier Spectrum Texture from UAV Image. Plant Methods 2019, 15, 124. [Google Scholar] [CrossRef]
- Cordero, E.; Moretti, B.; Miniotti, E.F.; Tenni, D.; Beltarre, G.; Romani, M.; Sacco, D. Fertilisation Strategy and Ground Sensor Measurements to Optimise Rice Yield. Eur. J. Agron. 2018, 99, 177–185. [Google Scholar] [CrossRef]
- Saravia, D.; Salazar, W.; Valqui-Valqui, L.; Quille-Mamani, J.; Porras-Jorge, R.; Corredor, F.-A.; Barboza, E.; Vásquez, H.V.; Arbizu, C.I. Yield Predictions of Four Hybrids of Maize (Zea mays) Using Multispectral Images Obtained from RPAS in the Coast of Peru. Biology 2022, 2022050231. [Google Scholar]
- Peng, Y.; Gitelson, A.A. Remote Estimation of Gross Primary Productivity in Soybean and Maize Based on Total Crop Chlorophyll Content. Remote Sens. Environ. 2012, 117, 440–448. [Google Scholar] [CrossRef]
Flights | Date | Growth Stage (DAS) | Wind Speed (km/h) | Images Collected | Point Density (pt/cm2) | GSD (cm·pix−1) |
---|---|---|---|---|---|---|
1 | 10 February 2022 | 0 | 6.2 | 1648 | 0.176 | 1.06 |
2 | 18 April 2022 | 60 | 4.3 | 1710 | 0.121 | 1.44 |
3 | 18 May 2022 | 90 | 7.4 | 1332 | 0.16 | 1.25 |
4 | 27 June 2022 | 130 | 8.7 | 1176 | 0.185 | 1.16 |
Index | Formula | Reference |
---|---|---|
Normalized Difference Vegetation Index | [23] | |
Green Leaf Index | [24] | |
Green Normalized Vegetation Index | [25] | |
Normalized Difference Red Edge | [26] | |
Normalized Green Red Difference Index | [27] |
Treatments | Productivity (t ha−1) | Biomass (t ha−1) |
---|---|---|
Control | 7.32 ± 3.74 a | 67.78 ± 19.92 a |
T1 | 10.96 ± 6.57 a | 90.94 ± 25.36 a |
T2 | 11.80 ± 6.12 a | 96.19 ± 32.15 a |
Productivity | AGB | NDVI | GLI | GNDVI | NDRE | NGRDI | ||
---|---|---|---|---|---|---|---|---|
1st analysis | Productivity | — | ||||||
AGB | 0.911 *** | — | ||||||
NDVI | 0.719 * | 0.605 | — | |||||
GLI | 0.153 | −0.054 | 0.666 | — | ||||
GNDVI | 0.859 ** | 0.758 * | 0.944 *** | 0.544 | — | |||
NDRE | 0.809 ** | 0.695 * | 0.936 *** | 0.499 | 0.953 *** | — | ||
NGRDI | 0.401 | 0.185 | 0.862 | 0.869 | 0.701 * | 0.724 | — | |
2nd analysis | Productivity | — | ||||||
AGB | 0.911 *** | — | ||||||
NDVI | −0.399 | −0.537 | — | |||||
GLI | −0.820 ** | −0.841 ** | 0.361 | — | ||||
GNDVI | 0.834 ** | 0.701 * | −0.073 | −0.631 | — | |||
NDRE | 0.400 | 0.305 | 0.459 | −0.522 | 0.484 | — | ||
NGRDI | −0.555 | −0.666 | 0.636 | 0.650 | −0.554 | 0.153 | — |
Analysis | Equations | R2 | RMSE (t ha−1) |
---|---|---|---|
1st analysis | 0.738 | 3.04 | |
0.654 | 3.50 | ||
0.517 | 4.13 | ||
0.701 | 19 | ||
0.632 | 20.9 | ||
2nd analysis | 0.673 | 3.40 | |
0.695 | 3.29 | ||
0.708 | 15.7 | ||
0.492 | 20.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macedo, F.L.; Nóbrega, H.; de Freitas, J.G.R.; Ragonezi, C.; Pinto, L.; Rosa, J.; Pinheiro de Carvalho, M.A.A. Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island. Agriculture 2023, 13, 1115. https://doi.org/10.3390/agriculture13061115
Macedo FL, Nóbrega H, de Freitas JGR, Ragonezi C, Pinto L, Rosa J, Pinheiro de Carvalho MAA. Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island. Agriculture. 2023; 13(6):1115. https://doi.org/10.3390/agriculture13061115
Chicago/Turabian StyleMacedo, Fabrício Lopes, Humberto Nóbrega, José G. R. de Freitas, Carla Ragonezi, Lino Pinto, Joana Rosa, and Miguel A. A. Pinheiro de Carvalho. 2023. "Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island" Agriculture 13, no. 6: 1115. https://doi.org/10.3390/agriculture13061115
APA StyleMacedo, F. L., Nóbrega, H., de Freitas, J. G. R., Ragonezi, C., Pinto, L., Rosa, J., & Pinheiro de Carvalho, M. A. A. (2023). Estimation of Productivity and Above-Ground Biomass for Corn (Zea mays) via Vegetation Indices in Madeira Island. Agriculture, 13(6), 1115. https://doi.org/10.3390/agriculture13061115