Comparison of Agronomic Parameters and Nutritional Composition on Red and Green Amaranth Species Grown in Open Field Versus Greenhouse Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. Treatments
2.1.2. Sample Preparation
2.2. Procedures
2.2.1. Agronomic Parameters
2.2.2. Chemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Agronomic Parameters
3.2. Proximate Composition
3.3. Mineral Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Núñez, M.; Ruiz-Rivas, M.; Vera-Hernández, P.F.; Bernal-Muñoz, R.; Luna-Suárez, S.; Rosas-Cárdenas, F.F. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. S. Afr. J. Bot. 2019, 124, 436–443. [Google Scholar] [CrossRef]
- Sarker, U.; Hossain, M.; Oba, S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci. Rep. 2020, 10, 1336. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.E. Optimizing harvesting procedures of Amaranthus hybridus L. and A. tricolor L. under different watering regimes during hot and cool seasons in Southern Mozambique. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017. [Google Scholar]
- Sandoval-Ortega, M.H.; Siqueiros-Delgado, M.E.; Sosa-Ramírez, J.; Cerros-Tlatilpa, R. Amaranthaceae (Caryophyllales) richness and distribution in the state of Aguascalientes, Mexico. Bot. Sci. 2017, 95, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Tongos, M.D. Growth rate of vegetable amaranth (Amaranthus Cruentus L.) as influenced by row spacing and nitrogen fertilizer in Mubi, Northern Guinea Savannah zone, Nigeria. Int. J. Innov. Agric. Biol. Res. 2016, 4, 8–20. [Google Scholar]
- Chávez-Servín, J.L.; Cabrera-Baeza, H.F.; Jiménez-Ugalde, E.A.; Mercado-Luna, A.; de la Torre-Carbot, K.; Escobar-García, K.; Barreyro, A.A.; Serrano-Arellano, J.; García-Gasca, T. Comparison of chemical composition and growth of amaranth (Amaranthus hypochondriacus) between greenhouse and open field systems. Int. J. Agric. Biol. 2017, 19, 577–583. [Google Scholar] [CrossRef]
- Das, S. Systematics and taxonomic delimitation of vegetable, grain and weed amaranths: A morphological and biochemical approach. Genet. Resour. Crop Evol. 2012, 59, 289–303. [Google Scholar] [CrossRef]
- Alegbejo, J.O. Nutritional value and utilization of Amaranthus (Amaranthus spp.)—A review. 2013. Bayero J. Pure Appl. Sci. 2013, 6, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Jansen van Rensburg, W.S.; van Averbeke, W.; Slabbert, R.; Faber, M.; van Jaarsveld, P.; van Heerden, I.; Wenhold, F.; Oelofse, A. African leafy vegetables in South Africa. Water South Afr. 2007, 33, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Otang-Mbeng, W.; Mashabela, M.N. A review of beneficial phytochemicals and postharvest studies on some indigenous leafy vegetables from the Mpumalanga Province of South Africa. Med. Plant. 2020, 12, 533–544. [Google Scholar] [CrossRef]
- Omotayo, A.O.; Ndhlovu, P.T.; Tshwene, S.C.; Aremu, A.O. Utilization pattern of indigenous and naturalized plants among some selected rural households of North -West Province, South Africa. Plants 2020, 2, 953. [Google Scholar] [CrossRef]
- Faber, M.; Oelofse, A.; Van Jaarsveld, P.J.; Wenhold, F.A.M.; Jansen van Rensburg, W.S. African leafy vegetables consumed by households in the Limpopo and KwaZulu-Natal provinces in South Africa. S. Afr. J. Clin. Nutr. 2010, 23, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Nyonje, W.A.; Yang, R.Y.; Wu, W.J.; Makokha, A.O.; Owino, W.O.; Abukutsa-Onyango, M.O. Enhancing the nutritional quality of vegetable amaranth through specific food preparation methods. J. Food Res. 2021, 10, 42–55. [Google Scholar] [CrossRef]
- Sangija, F.; Martin, H.; Matemu, A. African nightshades (Solanum nigrum complex): The potential contribution to human nutrition and livelihoods in sub-Saharan Africa. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3284–3318. [Google Scholar] [CrossRef] [PubMed]
- Adeniji, O.T.; Aloyce, A. Farmers’ participatory identification of horticultural traits: Developing breeding objectives for vegetable amaranth in Tanzania. J. Crop Improv. 2013, 27, 309–318. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef]
- Akin-Idowu, P.; Odunola, O.A.; Gbadegesin, M.A.; Ademoyegun, O.T.; Aduloju, A.O.; Olagunju, Y.O. Nutritional evaluation of five species of grain amaranth-an underutilized crop. Int. J. Sci. Res. 2017, 18, 27. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, O.C.; Babalola, O.O. Amaranth production and consumption in South Africa: The challenges of sustainability for food and nutrition security. Int. J. Agric. Sustain. 2022, 20, 449–460. [Google Scholar] [CrossRef]
- Mampholo, M.B.; Sivakumar, D.; Van Rensburg, J. Variation in bioactive compounds and quality parameters in different modified atmosphere packaging during postharvest storage of traditional leafy vegetables (Amaranthus Cruentus L. and Solanum retroflexum). J. Food Qual. 2015, 38, 1–12. [Google Scholar] [CrossRef]
- Ruth, O.N.; Unathi, K.; Nomali, N.; Chinsamy, M. Underutilization versus nutritional-nutraceutical potential of the Amaranthus food plant: A mini-review. Appl. Sci. 2021, 11, 6879. [Google Scholar] [CrossRef]
- Zuwariah, I.; Syahida, M.; Faridah, H.; Rodhiah, R.; Mohd Fakhri, H. Screening of vitamin, mineral and antioxidants in selected vegetables, fruit and grains for the elderly. Food Res. 2021, 5, 122–131. [Google Scholar]
- Achigan-Dako, E.G.; Sogbohossou, O.E.; Maundu, P. Current knowledge on Amaranthus spp.: Research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica 2014, 197, 303–317. [Google Scholar] [CrossRef]
- WFP; WHO; UNICEF. The State of Food Security and Nutrition in the World; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Chadare, F.J.; Affonfere, M.; Aidé, E.S.; Fassinou, F.K.; Salako, K.V.; Pereko, K.; Deme, B.; Failler, P.; Kakaï, R.G.; Assogbadjo, A.E. Current state of nutrition in West Africa and projections to 2030. Glob. Food Secur. 2022, 32, 100602. [Google Scholar] [CrossRef]
- Shisana, O.; Labadarios, D.; Rehle, T.; Simbayi, L.; Zuma, K.; Dhansay, A.; Reddy, P.; Parker, W.; Hoosain, E.; Naidoo, P.; et al. The South African National Health and Nutrition Examination Survey, SANHANES-1: The Health and Nutritional Status of the Nation; HSRC Press: Cape Town, South Africa, 2013. [Google Scholar]
- Van der Merwe, J.D.; Cloete, P.C.; Van der Hoeven, M. Promoting food security through indigenous and traditional food crops. Agroecol. Sustain. Food Syst. 2016, 40, 830–847. [Google Scholar] [CrossRef]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Suitability of Amaranthus species for alleviating human dietary deficiencies. S. Afr. J. Bot. 2018, 115, 65–73. [Google Scholar] [CrossRef]
- Ramdwar, M.N.; Chadee, S.T.; Stoute, V.A. Estimating the potential consumption level of amaranth for food security initiatives in Trinidad, West Indies. Cogent Food Agric. 2017, 3, 1321475. [Google Scholar] [CrossRef]
- Pulvento, C.; Sellami, M.H.; Lavini, A. Yield and quality of Amaranthus hypochondriacus grain amaranth under drought and salinity at various phenological stages in southern Italy. J. Sci. Food Agric. 2022, 102, 5022–5033. [Google Scholar] [CrossRef]
- Rastogi, A.; Shukla, S. Amaranth: A new millennium crop of nutraceutical values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Robert, Y.N.; Hiroe, K.; Yotaro, K. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds, analytical, nutritional and clinical methods. Food Chem. 2008, 106, 760–766. [Google Scholar]
- Barrio, D.A.; Añón, M.C. Potential antitumor properties of a protein isolate obtained from the seeds of Amaranthus mantegazzianus. Eur. J. Nutr. 2010, 49, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.; Zahnd, A. Solar greenhouse technology for food security: A case study from Humla District, NW Nepal. Mt. Res. Dev. 2012, 32, 411–419. [Google Scholar] [CrossRef]
- Khandaker, L.; Akond, A.M.; Ali, M.B.; Oba, S. Biomass yield and accumulations of bioactive compounds in red amaranth (Amaranthus tricolor L.) grown under different colored shade polyethylene in spring season. Sci. Hortic. 2010, 123, 289–294. [Google Scholar] [CrossRef]
- Allemann, I.; Cawood, M.E.; Allemann, J. Influence of abiotic stress on Amaranthus cruentus allelopathic properties. S. Afr. J. Bot. 2016, 100, 306. [Google Scholar] [CrossRef]
- Mthimunye, L.M.; Managa, G.M.; Nemadodzi, L.E. The Influence of Lablab Purpureus Growth on Nitrogen Availability and Mineral Composition Concentration in Nutrient Poor Savanna Soils. Agron. J. 2023, 13, 622. [Google Scholar] [CrossRef]
- Makhado, M.V. Productivity and malnutrition elements in local and exotic Amaranthus cultivars. Ph.D. Thesis, University of Limpopo, Polokwane, South Africa, 2021. [Google Scholar]
- Van Averbeke, W.; Netshithuthuni, C. Effect of irrigation scheduling on leaf yield of non-heading Chinese cabbage (Brassica rapa L. subsp. chinensis). S. Afr. J. Plant Soil. 2010, 27, 322–327. [Google Scholar] [CrossRef]
- Medoua, G.N.; Oldewage-Theron, W.H. Effect of drying and cooking on nutritional value and antioxidant capacity of morogo (Amaranthus hybridus) a traditional leafy vegetable grown in South Africa. J. Food Sci. Technol. 2014, 51, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Kachiguma, N.A.; Mwase, W.; Maliro, M.; Damaliphetsa, A. Chemical and mineral composition of amaranth (Amaranthus L.) species collected from central Malawi. J. Food Res. 2015, 4, 92. [Google Scholar] [CrossRef]
- Matejovic, I. Total nitrogen in plant material determinated by means of dry combustion: A possible alternative to determination by Kjeldahl digestion. Commun. Soil Sci. Plant Anal. 1995, 26, 2217–2229. [Google Scholar] [CrossRef]
- Nemadodzi, L.E.; Araya, H.; Nkomo, M.; Ngezimana, W.; Mudau, N.F. Nitrogen, phosphorus, and potassium effects on the physiology and biomass yield of baby spinach (Spinacia oleracea L.). J. Plant Nutr. 2017, 40, 033–2044. [Google Scholar] [CrossRef]
- Association of official agricultural chemists (AOAC). Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Jamalluddin, N.; Symonds, R.C.; Mayes, S.; Ho, W.K.; Massawe, F. Diversifying crops for food and nutrition security: A case of vegetable amaranth, an ancient climate-smart crop. In Food Security and Nutrition; Academic Press: Amsterdam, Switzerland, 2021; pp. 125–146. [Google Scholar]
- Aderibigbe, O.R.; Ezekiel, O.O.; Owolade, S.O.; Korese, J.K.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 656–669. [Google Scholar] [CrossRef]
- Sooriyapathirana, S.D.S.S.; Ranaweera, L.T.; Jayarathne, H.S.M.; Gayathree, T.H.I.; Rathnayake, P.G.R.G.; Karunarathne, S.I.; Thilakarathne, S.M.N.K.; Salih, R.; Weebadde, C.K.; Weebadde, C.P. Photosynthetic phenomics of field-and greenhouse-grown Amaranths vs. sensory and species delimits. Plant Phenomics 2021, 2539380, 2–13. [Google Scholar] [CrossRef]
- Copetta, A.; Todeschini, V.; Massa, N.; Bona, E.; Berta, G.; Lingua, G. Inoculation with arbuscular mycorrhizal fungi improves melon (Cucumis melo) fruit quality under field conditions and plant performance in both field and greenhouse. Plant Biosyst. -Int. J. Deal. All Asp. Plant Biol. 2021, 155, 1063–1074. [Google Scholar] [CrossRef]
- Moser, R.; Raffaelli, R.; Thilmany-McFadden, D. Consumer preferences for fruit and vegetables with credence-based attributes: A Review. Int. Food Agribus. Manag. 2011, 14, 121–142. [Google Scholar]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 2021, 11, 463. [Google Scholar] [CrossRef]
- Gerrano, A.S.; Jansen van Rensburg, W.S.; Adebola, P.O. Genetic diversity of Amaranthus species in South Africa. S. Afr. J. Plant Soil 2015, 32, 39–46. [Google Scholar] [CrossRef]
- Srinivasan, V.; Kumar, P.; Long, S.P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Glob. Chang. Biol. 2017, 23, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; He, J.; Zhao, T.H.; Cao, Y.; Wang, G.; Sun, B.; Yan, X.; Guo, W.; Li, M.H. The smaller the leaf is, the faster the leaf water loses in a temperate forest. Front. Plant Sci. 2019, 10, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omamt, E.N.; Hammes, P.S.; Robbertse, P.J. Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes. N. Z. J. Crop Hortic. Sci. 2006, 34, 11–22. [Google Scholar] [CrossRef]
- Khandaker, L.; Akond, A.M.; Oba, S. Foliar application of salicylic acid improved the growth, yield and leaf’s bioactive compounds in red Amaranth (L.). J. Fruit Ornam. Plant Res. 2011, 74, 77–86. [Google Scholar] [CrossRef]
- Ashok, A.D.; Sakthivel, K. Functional performance of PLR 1 Amaranthus under different protected environmental conditions. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 510–514. [Google Scholar] [CrossRef]
- Tanzin, T. Assessment of growth and yield potential of different vegetable amaranth type In Kleve, Germany. Ph.D. Thesis, Hochschule Rhein-Waal, Hochschule Rhein-Waal University of Applied Sciences, Kleve, Germany, 2018. [Google Scholar]
- Yang, Q.; Lin, G.; Lv, H.; Wang, C.; Yang, Y.; Liao, H. Environmental and genetic regulation of plant height in soybean. BMC Plant Biol. 2021, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ogwu, M.C. Value of Amaranthus (L.) species in Nigeria. In Nutritional Value of Amaranth; Waisundara, V., Ed.; IntechOpen: London, UK, 2020; pp. 1–21. [Google Scholar]
- Modi, A.T. Growth temperature and plant age influence on nutritional quality of Amaranthus leaves and seed germination capacity. Water S. Afr. 2007, 33, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Ayeni, A. Nutrient content of micro/baby-green and field-grown mature foliage of tropical spinach (Amaranthus sp.) and roselle (Hibiscus sabdariffa L.). Foods 2021, 10, 2546. [Google Scholar] [CrossRef] [PubMed]
- Aghili, P.; Imani, A.A.; Shahbazi, H.; Alaei, Y. Study of correlation and relationships between seed yield and yield components in Lentil (Lens culinaris Medik). Ann. Biol. Res. 2012, 3, 5042–5045. [Google Scholar]
- Zulkania, A.; Hanum, G.F.; Rezki, A.S. The potential of activated carbon derived from bio-char waste of bio-oil pyrolysis as adsorbent. MATEC Web Conf. EDP Sci. 2018, 154, 01029. [Google Scholar] [CrossRef] [Green Version]
- Nerbass, F.B.; Calice-Silva, V.; Pecoits-Filho, R. Sodium intake and blood pressure in patients with chronic kidney disease: A salty relationship. Blood Purif. 2018, 45, 166–172. [Google Scholar] [CrossRef]
- Gagnon, K.B.; Delpire, E. Sodium transporters in human health and disease. Front. Physiol. 2021, 11, 588664. [Google Scholar] [CrossRef]
- Oyeyinka, B.O.; Afolayan, A.J. Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) fruit compartments. Plants 2019, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Pofu, K.M.; Mashela, P.W.; Laurie, S.M.; Oelofse, D. Host-status of sweet potato cultivars to South Africa root-knot nematodes. Acta Agric. Scand. Sec.–B Soil Plant Sci. 2017, 67, 62–66. [Google Scholar] [CrossRef]
- Cardo, A.; Churruca, I.; Lasa, A.; Navarro, V.; Vázquez-Polo, M.; Perez-Junkera, G.; Larretxi, I. Nutritional imbalances in adult celiac patients following a gluten-free diet. Nutrients 2021, 13, 2877. [Google Scholar] [CrossRef]
- Van Jaarsveld, P.; Faber, M.; Van Heerden, I.; Wenhold, F.; van Rensburg, W.J.; Van Averbeke, W. Nutrient content of eight African leafy vegetables and their potential contribution to dietary reference intakes. J. Food Compos. Anal. 2014, 33, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Idris, O.A.; Wintola, O.A.; Afolayan, A.J. Phytochemical and antioxidant activities of Rumex crispus L. in treatment of gastrointestinal helminths in Eastern Cape Province, South Africa. Asian Pac. J. Trop. Biomed. 2017, 7, 1071–1078. [Google Scholar] [CrossRef]
Relative Chlorophyll Content (nm) (3× Replications) | Leaf Area (cm2) | Number of Leaves | Stem Height (cm) | |
---|---|---|---|---|
Treatments | ||||
Open field | 67.9 a | 4591 a | 23.00 b | 59.00 b |
Greenhouse | 43.3 b | 1317 b | 39.33 a | 70.80 a |
rep | 3 | 3 | 3 | 3 |
d.f. | 4 | 4 | 4 | 4 |
SEM | 1.92 | 154.2 | 0.624 | 0.363 |
SED | 2.72 | 218.0 | 0.882 | 0.513 |
LSD (5%) | 7.55 | 605.4 | 2.449 | 1.425 |
F probability | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 |
Relative Chlorophyll Content (3× Replications) (nm) | Leaf Area (cm2) | Number of Leaves | Stem Height (cm) | |
---|---|---|---|---|
Treatments | ||||
Open field | 46.37 a | 7622 a | 16.33 a | 84.8 ab |
Greenhouse | 27.27 b | 5394 ab | 27.33 ab | 106.3 a |
rep | 3 | 3 | 3 | 3 |
d.f. | 4 | 4 | 4 | 4 |
SEM | 1.100 | 788.6 | 1.202 | 2.56 |
SED | 1.555 | 1115.2 | 1.700 | 3.63 |
LSD (5%) | 4.318 | 3096.2 | 4.719 | 10.07 |
F probability | <0.001 | 0.116 | 0.003 | 0.004 |
Total Nitrogen | Moisture | Ash | |
---|---|---|---|
Treatments | |||
Open field | 5.50 a | 6.26 a | 18.40 a |
Greenhouse | 3.63 b | 5.57 a | 14.27 b |
rep | 3 | 3 | 3 |
d.f. | 4 | 4 | 4 |
SEM | 0.0621 | 0.0751 | 0.143 |
SED | 0.0878 | 0.1062 | 0.203 |
LSD (5%) | 0.2438 | 0.2950 | 0.563 |
F probability | <0.001 | 0.003 | <0.001 |
Total Nitrogen | Moisture | Ash | |
---|---|---|---|
Treatments | |||
Open field | 523 a | 5.61 a | 19.50 a |
Greenhouse | 3.37 b | 5.26 a | 16.17 a |
rep | 3 | 3 | 3 |
d.f. | 4 | 4 | 4 |
SEM | 0.0219 | 0.1341 | 0.295 |
SED | 0.0309 | 0.1896 | 0.418 |
LSD (5%) | 0.0858 | 0.5265 | 1.160 |
F probability | <0.001 | 0.139 | 0.001 |
Calcium | Potassium | Magnesium | Sodium | Phosphorus | Iron | Zinc | Aluminium | Boron | Copper | Manganese | Sulphur | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | % | % | % | mg/kg | % | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | % |
Open field | 2.41 a | 4.34 b | 1.66 a | 522.4 b | 0.82 a | 1174.7 a | 85.5 a | 705 a | 38.37 b | 15.57 a | 137.00 a | 0.56 b |
Greenhouse | 1.72 b | 4.76 a | 1.03 b | 659.8 a | 0.50 b | 434.3 b | 88.4 b | 237 b | 59.90 a | 8.48 b | 37.60 b | 0.78 a |
Rep | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
d.f. | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
SEM | 0.00943 | 0.01106 | 0.00471 | 3.51 | 0.00275 | 8.38 | 1.86 | 20.1 | 1.356 | 0.402 | 1.155 | 0.000943 |
SED | 0.01333 | 0.01563 | 0.00667 | 4.97 | 0.00389 | 11.85 | 2.63 | 28.5 | 1.918 | 0.568 | 1.633 | 0.001333 |
LSD (5%) | 0.03702 | 0.04341 | 0.01851 | 13.80 | 0.01079 | 32.91 | 7.29 | 79.0 | 5.324 | 1.577 | 4.534 | 0.003702 |
F probability | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.336 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Calcium | Potassium | Magnesium | Sodium | Phosphorus | Iron | Zinc | Aluminium | Boron | Copper | Manganese | Sulphur | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | % | % | % | mg/kg | % | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | % |
Open field | 2.40 a | 4.02 b | 1.71 a | 392.0 a | 0.73 a | 2633 a | 83.10 a | 1547 a | 36.20 a | 17.30 a | 194.63 a | 0.52 b |
Greenhouse | 2.03 b | 5.07 a | 1.23 b | 341.0 a b | 0.47 b | 460 b | 71.87 b | 255 b | 77.90 b | 10.27 b | 60.27 b | 0.66 a |
Rep | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
d.f. | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
SEM | 0.01247 | 0.0217 | 0.01202 | 7.88 | 0.00340 | 93.4 | 0.377 | 62.5 | 1.142 | 0.197 | 1.259 | 0.00337 |
SED | 0.01764 | 0.0307 | 0.01700 | 11.15 | 0.00481 | 132.1 | 0.533 | 88.4 | 1.615 | 0.279 | 1.780 | 0.00477 |
LSD (5%) | 0.04897 | 0.0853 | 0.04719 | 30.96 | 0.01335 | 366.8 | 1.481 | 245.5 | 4.482 | 0.774 | 4.942 | 0.01325 |
F probability | <0.001 | <0.001 | <0.001 | 0.010 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Managa, G.M.; Nemadodzi, L.E. Comparison of Agronomic Parameters and Nutritional Composition on Red and Green Amaranth Species Grown in Open Field Versus Greenhouse Environment. Agriculture 2023, 13, 685. https://doi.org/10.3390/agriculture13030685
Managa GM, Nemadodzi LE. Comparison of Agronomic Parameters and Nutritional Composition on Red and Green Amaranth Species Grown in Open Field Versus Greenhouse Environment. Agriculture. 2023; 13(3):685. https://doi.org/10.3390/agriculture13030685
Chicago/Turabian StyleManaga, Gudani Millicent, and Lufuno Ethel Nemadodzi. 2023. "Comparison of Agronomic Parameters and Nutritional Composition on Red and Green Amaranth Species Grown in Open Field Versus Greenhouse Environment" Agriculture 13, no. 3: 685. https://doi.org/10.3390/agriculture13030685
APA StyleManaga, G. M., & Nemadodzi, L. E. (2023). Comparison of Agronomic Parameters and Nutritional Composition on Red and Green Amaranth Species Grown in Open Field Versus Greenhouse Environment. Agriculture, 13(3), 685. https://doi.org/10.3390/agriculture13030685