Effect of Cymbopogon citratus on Enteric Methane Emission, Nutrients Digestibility, and Energy Partition in Growing Beef Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Experimental Treatments
Preparation of Cymbopogon citratus
2.3. Measurements on Heifers
Methane Measurement
2.4. Chemical Analysis of Samples
2.5. Estimation of the Partition of Gross Energy Consumed, Ym Factor and Metabolicity of the Diet
2.6. Statistical Model and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USEPA. United States Environmental Protection Agency. Greenhouse Gas Inventory Data Explorer. Available online: https://cfpub.epa.gov/ghgdata/inventoryexplorer/#agriculture/allgas/source/current (accessed on 1 June 2022).
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J.C., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 811–922. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emission from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Zhang, X.M.; Smith, L.M.; Gruninger, J.R.; Kung, L.; Vyas, D.; McGinn, M.S.; Kindermann, M.; Liang, T.Z.; Beauchemin, K. Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle. J. Anim. Sci. 2021, 99, skab081. [Google Scholar] [CrossRef]
- Dong, H.; Joe Mangino, J.; McAllister, A.T.; Hatfield, L.J.; Johnson, E.D.; Lassey, R.K.; de Lima, A.M.; Romanovskaya, A. Emissions from Livestock and Manure Management. In IPCC Guidelines for National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006; Volume 4, Chapter 10; pp. 10.1–10.87. [Google Scholar]
- Johnson, D.E.; Ferrel, C.L.; Jenkins, T.G. The history of energetic efficiency research: Where have we been and where are we going? J. Anim. Sci. 2003, 81, E27–E38. [Google Scholar] [CrossRef]
- Ferrel, C.L.; Oltjen, J.W. Net energy systems for beef cattle: Concepts, application, and future models. J. Anim. Sci. 2008, 86, 2779–2794. [Google Scholar] [CrossRef]
- Ibidi, R.; Bharanidharan, R.; Kim, J.-G.; Hong, W.-H.; Nam, I.-S.; Baek, Y.-C.; Kim, T.-H.; Kim, K.-H. Developing Equations for Converting Digestible Energy to Metabolizable Energy for Korean Hanwoo Beef Cattle. Animals 2021, 11, 1696. [Google Scholar] [CrossRef]
- Petersen, M.K.; Mueller, C.; Mulliniks, J.T.; Roberts, A.J.; DelCurto, T.; Waterman, R.C. Potential limitations of NRC in predicting energetic requirements of beef females within western U.S. grazing systems. J. Anim. Sci. 2014, 92, 2800–2808. [Google Scholar] [CrossRef]
- Block, H.C.; Bourne, J.L.; Lardner, H.A.; McKinnon, J.J. Evaluation of NRC (2000) model energy requirement and DMI equation accuracy and precision for wintering beef cows in western Canada. Can. J. Anim. Sci. 2010, 90, 245–258. [Google Scholar] [CrossRef]
- Galyean, M.L.; Cole, N.A.; Tedeschi, L.O.; Branine, M.E. Board-invited review: Efficiency of converting digestible energy to metabolizable energy and reevaluation of the California Net Energy System maintenance requirements and equations for predicting dietary net energy values for beef cattle. J. Anim. Sci. 2016, 94, 1329–1341. [Google Scholar] [CrossRef]
- Kaewpila, C.; Sommart, K. Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecol. Evol. 2016, 6, 7422–7432. [Google Scholar] [CrossRef] [PubMed]
- Old, C.A.; Rossow, H.A.; Lean, I.J.; Famula, T.R. Energetic efficiency and the first law: The California net energy system revisited. J. Anim. Sci. 2018, 96, 4882–4901. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca, M.P.; Borges, A.L.C.C.; Carvalho, P.H.A.; e Silva, R.R.; Gonçãlves, L.C.; Borges, I.; Ferreira, L.H.; Ferreira, L.A.; Simões, S.O.E.; Gonzaga, J.D.; et al. Energy partitioning in cattle fed diets based on tropical forage with the inclusion of antibiotic additives. PLoS ONE 2019, 14, e0211565. [Google Scholar] [CrossRef]
- Vázquez-Carrillo, M.F.; Montelongo-Pérez, H.D.; González-Ronquillo, M.; Castillo-Gallegos, E.; Castelán-Ortega, O.A. Partición de la energía bruta consumida y el aporte de energía metabolizable en bovinos F1: Partición de la energía en bovinos. Ecosist. Recur. Agropec. 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Aguilera, J. Desarrollo de la Calorimetría y su Contribución al Progreso de la Bioenergética Animal. An. Acad. Cienc. Vet. Andal. Orient. 1993, 3, 7–22. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=7425806 (accessed on 25 January 2023).
- Patra, A.K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit. Assess. 2012, 184, 1929–1952. [Google Scholar] [CrossRef] [PubMed]
- Nanon, A.; Suksombat, W.; Yang, W. Effects of essential oils supplementation on in vitro and in situ feed digestion in beef cattle. Anim. Feed Sci. Technol. 2014, 196, 50–59. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricario, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Bhatta, R. Reducing Enteric Methane Emission Using Plant Secondary Metabolites. In Climate Change Impact on Livestock: Adaptation and Mitigation; Sejian, V., Gaughan, J., Baumgard, L., Prasad, C., Eds.; Springer: New Delhi, India, 2015; pp. 273–284. [Google Scholar]
- Wallace, R. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 2004, 63, 621–629. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A. Effect of Essential Oil Active Compounds on Rumen Microbial Fermentation and Nutrient Flow In Vitro Systems. J. Dairy Sci. 2006, 89, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed. Res. Int. 2013, 2013, 349129. [Google Scholar] [CrossRef] [PubMed]
- Ranade, S.S.; Thiagarajan, P. Lemongrass. Int. J. Pharm. Sci. Rev. Res. 2015, 35, 162–167. [Google Scholar]
- Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules 2015, 20, 7438–7453. [Google Scholar] [CrossRef]
- Haque, A.N.M.A.; Remadevi, R.; Naebe, M. Lemongrass (Cymbopogon): A review on its structure, properties, applications and recent developments. Cellulose 2018, 25, 5455–5477. [Google Scholar] [CrossRef]
- Hosoda, K.; Kuramoto, K.; Eruden, B.; Nishida, T.; Shioya, S. The Effects of Three Herbs as Feed Supplements on Blood Metabolites, Hormones, Antioxidant Activity, IgG Concentration, and Ruminal Fermentation in Holstein Steers. Anim. Biosci. 2006, 19, 35–41. [Google Scholar] [CrossRef]
- Wanapat, M.; Cherdthong, A.; Pakdee, P.; Wanapat, S. Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citratus Stapf.) powder supplementation. J. Anim. Sci. 2008, 86, 3497–3503. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S.; Khejornsart, P.; Wanapat, S. Effects of plant herb combination supplementation on rumen fermentation and nutrient digestibility in beef cattle. Asian-Australas J. Anim. Sci. 2013, 26, 1127–1136. [Google Scholar] [CrossRef]
- Nanon, A.; Suksombat, W.; Beauchemin, K.A.; Yang, W.Z. Short Communication: Assessment of lemongrass oil supplementation in a dairy diet on in vitro ruminal fermentation characteristics using the rumen simulation technique. Can. Anim. Sci. 2014, 94, 731–736. [Google Scholar] [CrossRef]
- Temmar, R.; Rodríguez-Prado, M.; Forgeard, G.; Rougier, C.; Calsamiglia, S. Interactions among Natural Active Ingredients to Improve the Efficiency of Rumen Fermentation In Vitro. Animals 2021, 11, 1205. [Google Scholar] [CrossRef]
- Vázquez-Carrillo, M.F.; Montelongo-Pérez, H.D.; González-Ronquillo, M.; Castillo-Gallegos, E.; Castelán-Ortega, O.A. Effects of Three Herbs on Methane Emissions from Beef Cattle. Animals 2020, 10, 1671. [Google Scholar] [CrossRef] [PubMed]
- AFRC. Energy and Protein Requirements of Ruminants. An Advisory Manual Prepared by the Agricultural Food and Research Council Technical Committee on Responses to Nutrients; CAB International: Wallingford, UK, 1993; p. 176. [Google Scholar]
- Makkar, H.P.S.; Blümmel, M.; Borowy, N.K.; Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 1993, 61, 161–165. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Arlington, VA, USA, 1995; pp. 69–88. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Price, M.L.; Van Scoyoc, S.; Butler, L.G. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Brouwer, E. Report of Sub-Committee on Constants and Factors. In Energy Metabolism of Farm Animals. In Proceedings of the 3rd Symposium on Energy Metabolism; Blaxter, K.L., Ed.; Academic Press: London, UK, 1965; pp. 441–443. [Google Scholar]
- Street, C.J.; Butcher, E.J.; Harris, E.L. Estimating Urine Energy from Urine Nitrogen. J. Anim. Sci. 1964, 23, 1039–1041. [Google Scholar] [CrossRef]
- Guggenberger, T.; Terler, G.; Eingang, D.; Gappmaier, S. Final Report. Effect of 100 g Lemongrass as Feed Supplement on Methane Concentration in the Respiratory Air of Beef Cattle. Agricultural Research and Education Centre Raumberg-Gumpenstein, Irdning-Donnersbachtal. 2021. Available online: https://s26.q4cdn.com/317237604/files/doc_downloads/2021/04/Final-report-Lemongrass.pdf (accessed on 25 January 2023).
- Abrar, A.; Priyanto, L.; Riswandi. In Vitro Rumen Methanogenesis Of Lemon Grass (Cymbopogon Nardus L.) Waste Silage. IOP Conf. Ser. Earth Environ. Sci. 2022, 995, 012064. [Google Scholar] [CrossRef]
- Van Lingen, H.J.; Niu, M.; Kebreab, E.; Valadares, F.S.C.; Rooke, J.A.; Duthie, C.-A.; Schwarm, A.; Kreuzer, M.; Hynd, P.I.; Caetano, M.; et al. Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agric. Ecosyst. Environ. 2019, 283, 106575. [Google Scholar] [CrossRef]
- Cardoso-Gutiérrez, E.; Aranda-Aguirre, E.; Robles-Jiménez, L.E.; Castelán-Ortega, O.A.; Chay-Canul, A.J.; Foggi, G.; Ángeles-Hernández, J.C.; Vargas-Bello, P.E.; González-Ronquillo, M. Effect of tannins from tropical plants on methane production from ruminants: A systematic review. Vet. Anim. Sci. 2021, 14, 100214. [Google Scholar] [CrossRef]
- Ng, F.; Kittelmann, S.; Patchett, M.L.; Attwood, G.T.; Janssen, P.H.; Rakonjac, J.; Gagic, D. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ. Microbiol. 2016, 18, 3010–3021. [Google Scholar] [CrossRef]
- Guyader, J.; Eugène, M.; Nozière, P.; Morgavi, D.P.; Doreau, M.; Martin, C. Influence of rumen protozoa on methane emission in ruminants: A meta-analysis approach. Animal 2014, 8, 1816–1825. [Google Scholar] [CrossRef]
- Naumann, H.D.; Tedeschi, L.O.; Zeller, W.E.; Huntley, N.F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. Zootec. 2017, 46, 929–949. [Google Scholar] [CrossRef]
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Review. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef]
- Newbold, C.; Hassan, S.; Wang, J.; Ortega, M.; Wallace, R. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br. J. Nutr. 1997, 78, 237–249. [Google Scholar] [CrossRef]
- Ganjewala, D. Cymbopogon essential oils: Chemical compositions and bioactivities. Int. J. Essent. Oil Ther. 2009, 3, 56–65. [Google Scholar]
- Ekpenyong, C.; Nyebuk, D.; Akpan, E. Phytoconstituents and diuretic activity of Cymbopogon citratus leaf infusions in humans. J. Coast Life Med. 2014, 2, 704–713. [Google Scholar] [CrossRef]
- Honan, C.M.; Roque, M.B.; Castelán-Ortega, O.A.; Kebreab, E. Evaluation of Cymbopogon winterianus (Lemongrass) for its Potential to Mitigate Enteric Methane Emissions. In Proceedings of the 8th International Greenhouse Gas & Animal Agriculture Conference, Orlando, FL, USA, 5–9 June 2022; p. 109. [Google Scholar]
- Kongphitee, K.; Sommart, K.; Phonbumrung, T.; Gunha, T.; Suzuki, T. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw. Asian-Australas. J. Anim. Sci. 2018, 31, 1431–1441. [Google Scholar] [CrossRef]
- Pawar, M.M.; Kamra, D.N.; Agarwal, N.; Chaudhary, L.C. Effects of Essential Oils on In Vitro Methanogenesis and Feed Fermentation with Buffalo Rumen Liquor. Agric. Res. 2014, 3, 67–74. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016; p. 494. [Google Scholar]
- Posada-Ochoa, L.S.; Noguera, R.R.; Rodríguez, M.N.; Costa, L.A.; Reis, R. Indirect calorimetry to estimate energy requirements for growing and finishing Nellore bulls. J. Integr. Agric. 2017, 16, 151–161. [Google Scholar] [CrossRef]
- Hales, K.E. Relationships between digestible energy and metabolizable energy in current feedlot diets. Transl. Anim. Sci. 2019, 3, 945–952. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Galyean, M.L.; Hales, K.E. Recent advances in estimating protein and energy requirements of ruminants. Anim. Prod. Sci. 2017, 57, 2237–2249. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Briceño, E.G.; Ruiz, A.; Mayo, R.; Ayala, A.J.; Aguilar, C.F.; Solorio, F.J.; Ramírez, L. Manipulación del metabolismo energético de los rumiantes en los trópicos: Opciones para mejorar la producción y la calidad de la carne y leche. Rev. Cub. Cienc. Agric. 2014, 48, 43–53. [Google Scholar]
- Cabezas-Garcia, E.H.; Lowe, D.; Lively, F. Energy Requirements of Beef Cattle: Current Energy Systems and Factors Influencing Energy Requirements for Maintenance. Animals 2021, 11, 1642. [Google Scholar] [CrossRef] [PubMed]
Variable | CO |
---|---|
DM, g/kg | 942.7 ± 2.0 |
CP, g kg/DM | 93.51 ± 0.58 |
CF, g kg/DM | 264.3 ± 1.8 |
NFE kg/DM | 493.7 ± 35.4 |
NDF, g kg/DM | 491.3 ± 16.8 |
ADF, g kg/DM | 306.1 ± 7.2 |
TDN, g kg/DM | 817.8 ± 24.8 |
OM, g kg/DM | 912.3 ± 28.3 |
GE, MJ/kg DM | 16.2 ± 0.14 |
C. citratus | |
CT, g/kg DM | 44.5 |
Variable | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CO | 30 CC | 60 CC | 90 CC | |||
Intake, kg/d | ||||||
DMI | 9.23 | 8.86 | 9.48 | 8.22 | 0.54 | 0.444 |
NDF | 4.49 | 4.35 | 4.63 | 4.06 | 0.27 | 0.531 |
ADF | 2.81 | 2.71 | 2.89 | 2.53 | 1.16 | 0.498 |
CP | 0.86 | 0.83 | 0.89 | 0.77 | 0.51 | 0.449 |
OM | 8.41 | 8.09 | 8.60 | 7.51 | 0.51 | 0.505 |
GE (MJ/d) | 149.50 | 143.70 | 153.50 | 133.40 | 8.83 | 0.464 |
Digestibility, % | ||||||
DM | 60.09 | 60.40 | 64.12 | 58.98 | 2.22 | 0.449 |
NDF | 52.60 | 53.98 | 57.07 | 51.78 | 3.52 | 0.736 |
ADF | 51.33 | 51.78 | 56.95 | 49.66 | 3.61 | 0.556 |
OM | 64.12 | 64.17 | 67.84 | 62.88 | 2.08 | 0.431 |
CP | 58.79 | 56.39 | 60.23 | 59.09 | 2.84 | 0.809 |
GE | 61.82 | 63.49 | 66.92 | 61.78 | 2.41 | 0.449 |
Variable | Treatment | SEM | p-Value | Statistical Significance | ||||
---|---|---|---|---|---|---|---|---|
CO | 30 CC | 60 CC | 90 CC | L | Q | |||
Methane | ||||||||
CH4 g/d | 184.50 | 144.30 | 152.50 | 146.30 | 12.48 | 0.182 | NS | NS |
CH4 g/kg DMI | 20.81 a | 16.15 b | 16.90 ab | 18.04 ab | 0.87 | 0.037 | NS | 0.016 |
ADWG, kg/d | 0.70 | 1.01 | 1.00 | 0.83 | 0.14 | 0.428 | NS | NS |
CH4 g/kg ADWG | 268.80 | 150.70 | 199.60 | 257.30 | 48.47 | 0.365 | NS | NS |
Ym factor, % | 7.02 a | 5.53 b | 5.74 ab | 6.11 ab | 0.30 | 0.047 | NS | 0.020 |
Partitioning of the Gross Energy | ||||||||
Energy in faeces, MJ/d | 57.53 | 52.38 | 47.78 | 50.09 | 3.36 | 0.299 | NS | NS |
F:GE | 0.38 | 0.37 | 0.33 | 0.38 | 0.02 | 0.424 | NS | NS |
Urinary energy, MJ/d | 2.87 | 3.46 | 4.26 | 4.09 | 0.40 | 0.161 | NS | NS |
U:GE | 0.020 | 0.025 | 0.025 | 0.030 | 0.004 | 0.455 | NS | NS |
CH4 energy, MJ/d | 10.19 | 7.97 | 8.42 | 8.08 | 0.69 | 0.182 | NS | NS |
CH4: GE | 0.070 a | 0.055 b | 0.057 ab | 0.061 ab | 0.003 | 0.041 | NS | 0.020 |
GEi, MJ/d | 149.5 | 143.7 | 153.5 | 133.4 | 8.83 | 0.464 | NS | NS |
DEi, MJ/d | 92.01 | 91.37 | 105.69 | 83.32 | 8.45 | 0.385 | NS | NS |
MEi, MJ/d | 78.95 | 79.95 | 93.02 | 71.15 | 7.75 | 0.339 | NS | NS |
DE:GE | 0.62 | 0.64 | 0.67 | 0.62 | 0.02 | 0.424 | NS | NS |
ME:GE | 0.53 | 0.56 | 0.59 | 0.53 | 0.02 | 0.265 | NS | NS |
ME:DE | 0.86 | 0.88 | 0.88 | 0.86 | 0.01 | 0.162 | NS | NS |
Variable | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CO | 30 CC | 60 CC | 90 CC | |||
DE, MJ/kg DM | 10.03 | 10.30 | 10.85 | 10.02 | 0.39 | 0.453 |
ME, MJ/kg DM | 8.56 | 9.01 | 9.53 | 8.54 | 0.35 | 0.248 |
qm factor | 0.53 | 0.56 | 0.59 | 0.53 | 0.22 | 0.265 |
Variable | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CO | 30 CC | 60 CC | 90 CC | |||
pH | 6.56 | 6.76 | 6.57 | 6.96 | 0.127 | 0.276 |
VFA Concentrations, mM | ||||||
Acetic | 50.62 | 56.85 | 48.99 | 50.55 | 6.152 | 0.818 |
Propionic | 16.10 | 17.83 | 16.12 | 17.58 | 2.389 | 0.926 |
Butyric | 11.31 | 13.58 | 12.59 | 11.99 | 2.167 | 0.896 |
Isobutyric | 1.05 | 1.10 | 0.96 | 1.00 | 0.063 | 0.549 |
Isovaleric | 1.26 | 1.41 | 1.21 | 1.25 | 0.095 | 0.550 |
Valeric | 2.97 | 3.02 | 2.50 | 2.71 | 0.313 | 0.659 |
Total | 83.31 | 93.79 | 82.36 | 85.08 | 10.84 | 0.276 |
Molar Proportion of VFAs, % | ||||||
Acetic | 60.68 | 60.62 | 59.82 | 59.62 | 0.576 | 0.545 |
Propionic | 19.28 | 18.97 | 19.67 | 20.52 | 0.445 | 0.264 |
Butyric | 13.52 | 14.52 | 14.87 | 13.89 | 0.778 | 0.658 |
Isobutyric | 1.33 | 1.17 | 1.16 | 1.23 | 0.160 | 0.866 |
Isovaleric | 1.61 | 1.50 | 1.45 | 1.52 | 0.199 | 0.947 |
Valeric | 3.59 | 3.22 | 3.03 | 3.22 | 0.350 | 0.743 |
Acetic-to-propionic ratio | 3.15 | 3.20 | 3.04 | 2.10 | 0.087 | 0.269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Carrillo, M.F.; Zaragoza-Guerrero, R.; Corona-Gochi, L.; González-Ronquillo, M.; Castillo-Gallegos, E.; Castelán-Ortega, O.A. Effect of Cymbopogon citratus on Enteric Methane Emission, Nutrients Digestibility, and Energy Partition in Growing Beef Cattle. Agriculture 2023, 13, 745. https://doi.org/10.3390/agriculture13040745
Vázquez-Carrillo MF, Zaragoza-Guerrero R, Corona-Gochi L, González-Ronquillo M, Castillo-Gallegos E, Castelán-Ortega OA. Effect of Cymbopogon citratus on Enteric Methane Emission, Nutrients Digestibility, and Energy Partition in Growing Beef Cattle. Agriculture. 2023; 13(4):745. https://doi.org/10.3390/agriculture13040745
Chicago/Turabian StyleVázquez-Carrillo, María Fernanda, Reynaldo Zaragoza-Guerrero, Luis Corona-Gochi, Manuel González-Ronquillo, Epigmenio Castillo-Gallegos, and Octavio Alonso Castelán-Ortega. 2023. "Effect of Cymbopogon citratus on Enteric Methane Emission, Nutrients Digestibility, and Energy Partition in Growing Beef Cattle" Agriculture 13, no. 4: 745. https://doi.org/10.3390/agriculture13040745
APA StyleVázquez-Carrillo, M. F., Zaragoza-Guerrero, R., Corona-Gochi, L., González-Ronquillo, M., Castillo-Gallegos, E., & Castelán-Ortega, O. A. (2023). Effect of Cymbopogon citratus on Enteric Methane Emission, Nutrients Digestibility, and Energy Partition in Growing Beef Cattle. Agriculture, 13(4), 745. https://doi.org/10.3390/agriculture13040745