Influence of Nitrogen Fertilizer Application on Soil Acidification Characteristics of Tea Plantations in Karst Areas of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Experimental Design
2.3. Sampling and Measurement
2.4. Statistical Analysis
3. Results
3.1. Effect of N Fertilizer Application Rates on Soil pH values of Tea Plantations
3.2. Effect of N Fertilizer Application Rates on Soil pHBC Values of Tea Plantations
3.3. Effect of N Fertilizer Application Rates on Exchange Performances of Tea Plantations
3.3.1. Exchangeable Total Acidity
3.3.2. Exchangeable Base Cations
3.3.3. Inter-Subject Effect Test
3.4. Relationship between Soil Exchangeable Function and N Application Rate, pH, and pHBC
4. Discussion
4.1. Characteristics of Soil pHBC at Tea Plantations
4.2. Relationship between Soil pH and Exchangeable Base Cations
4.3. Effect of N Application on Soil Acidification at Tea Plantations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kirk, G.J.D.; Bellamy, P.H.; Lark, R.M. Changes in soil pH across England and Wales in response to decreased acid deposition. Glob. Change Biol. 2010, 16, 3111–3119. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, X.; Sun, Y.; Yan, J.; Zhao, Y.; Chen, J. Soil acidification and factors controlling topsoil pH shift of cropland in central China from 2008 to 2018. Geoderma 2022, 408, 115586. [Google Scholar] [CrossRef]
- De Vries, W.; Hettelingh, J.P.; Posch, M. Critical Loads and Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and Aquatic Ecosystems; Springer: Dordrecht, The Netherlands, 2015; Volume 25. [Google Scholar]
- Tian, Q.; Liu, N.; Bai, W.; Li, L.; Chen, J.; Reich, P.B.; Yu, Q.; Guo, D.; Smith, M.D.; Knapp, A.K.; et al. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology 2016, 97, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidificationb-A critical review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, W.; Zhang, G.; Jiang, L.; Han, X. Mechanisms of soil acidification reducing bacterial diversity. Soil Biol. Biochem. 2015, 81, 275–281. [Google Scholar] [CrossRef]
- Meng, C.; Tian, D.; Zeng, H.; Li, Z.; Yi, C.; Niu, S. Global soil acidification impacts on belowground processes. Environ. Res. Lett. 2019, 14, 074003. [Google Scholar] [CrossRef]
- Zheng, Q.; Ding, J.; Lin, W.; Yao, Z.; Li, Q.; Xu, C.; Zhuang, S.; Kou, X.; Li, Y. The influence of soil acidification on N2O emissions derived from fungal and bacterial denitrification using dual isotopocule mapping and acetylene inhibition. Environ. Pollut. 2022, 303, 119076. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 2, 024019. [Google Scholar] [CrossRef]
- Tarkalson, D.D.; Payero, J.O.; Hergert, G.W.; Cassman, K.G. Acidification of soil in a dry land winter wheat-sorghum/corn-fallow rotation in the Semiarid U.S. Great Plains. Plant Soil 2016, 283, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Cecchini, G.; Andreetta, A.; Marchetto, A.; Carnicelli, S. Atmospheric deposition control of soil acidification in central Italy. Catena 2019, 182, 104102. [Google Scholar] [CrossRef]
- Schroder, J.L.; Zhang, H.; Girma, K.; Raun, W.R.; Penn, C.J.; Payton, M.E. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci. Soc. Am. J. 2011, 75, 957. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, B.; Xu, M.; Zhang, H.; He, X.; Zhang, L.; Gao, S. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J. Soils Sediments 2014, 15, 260–270. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, F.; Liu, X.; He, Y.; Xu, J.; Brookes, P.C. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. J. Soils Sediments 2013, 14, 415–422. [Google Scholar] [CrossRef]
- Lucas, R.W.; Klaminder, J.; Futter, M.N.; Bishop, K.H.; Egnell, G.; Laudon, H.; Högberg, P. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. For. Ecol. Manag. 2011, 262, 95–104. [Google Scholar] [CrossRef]
- Su, S.; Zhou, X.; Wan, C.; Li, Y.; Kong, W. Land use changes to cash crop plantations: Crop types, multilevel determinants and policy implications. Land Use Policy 2016, 50, 379–389. [Google Scholar] [CrossRef]
- Ruan, J.; Gerendás, J.; Härdter, R.; Sattelmacher, B. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann. Bot. 2007, 99, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Fung, K.F.; Carr, H.P.; Zhang, J.; Wong, M.H. Growth and nutrient uptake of tea under different aluminum concentrations. J. Sci. Food Agric. 2008, 88, 1582–1591. [Google Scholar] [CrossRef]
- Qiao, C.; Xu, B.; Han, Y.; Wang, J.; Wang, X.; Liu, L.; Liu, W.; Wan, S.; Tan, H.; Liu, Y.; et al. Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea: A meta-analysis. Agron. Sustain. Dev. 2018, 38, 10. [Google Scholar] [CrossRef] [Green Version]
- Ni, K.; Liao, W.Y.; Yi, X.Y.; Niu, S.G.; Ma, L.F.; Shi, Y.Z.; Zhang, Q.F.; Liu, M.Y.; Ruan, J.Y. Fertilization status and reduction potential in tea plantations of China. J. Plant Nutr. Fertil. 2019, 25, 421–432, (In Chinese with English Abstract). [Google Scholar]
- Yan, P.; Wu, L.; Wang, D.; Fu, J.; Shen, C.; Li, X.; Zhang, L.; Zhang, L.; Fan, L.; Wenyan, H. Soil acidification in Chinese tea plantations. Sci. Total Environ. 2020, 715, 136963. [Google Scholar] [CrossRef]
- Yang, X.; Ni, K.; Shi, Y.; Yi, X.; Zhang, Q.; Fang, L.; Ma, L.; Ruan, J. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Kemmitt, S.J.; Wright, D.; Jones, D.L. Soil acidification used as a management strategy to reduce nitrate losses from agricultural land. Soil Biol. Biochem. 2005, 37, 867–875. [Google Scholar] [CrossRef]
- Bowman, W.D.; Cleveland, C.C.; Halada, Ĺ.; Hreško, J.; Baron, J.S. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 2008, 1, 767–770. [Google Scholar] [CrossRef]
- Wang, X.; Feng, J.; Ao, G.; Qin, W.; Han, M.; Shen, Y.; Liu, M.; Chen, Y.; Zhu, B. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness. Soil Biol. Biochem. 2023, 179, 108982. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Liu, L.; Cheng, Y.; Li, Z.; Xie, D. Influence of fitting method on the accuracy of measuring soil acid buffering capacity by acid-base titration. Acta Pedol. Sin. 2022, 59, 509–516. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, A.; Yuan, J.; Jiang, J. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. J. Soils Sediments 2012, 12, 494–502. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Zhang, Y.; Luo, Y.; Sun, L.; Song, L.; Liao, W. Soil pH buffer capacity of tea plantation with different planting years. Chin. J. Appl. Ecol. 2014, 25, 2914–2918. [Google Scholar] [CrossRef]
- Ulrich, B. Natural and anthropogenic components of soil acidification. Z. Pflanz. Bodenkd. 1986, 149, 702–717. [Google Scholar] [CrossRef]
- Nelson, P.N.; Su, N. Soil pH buffering capacity: A descriptive function and its application to some acidic tropical soils. Aust. J. Soil Res. 2010, 48, 201. [Google Scholar] [CrossRef]
- Wei, H.; Liu, Y.; Xiang, H.; Zhang, J.; Li, S.; Yang, J. Soil pH responses to simulated acid rain leaching in three agricultural soils. Sustainability 2019, 12, 280. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xie, D.; Li, Z.; Liu, F. Cations exchange and its effect on acid buffering capacity of acid purple soil. Acta Pedol. Sin. 2020, 57, 887–897. [Google Scholar] [CrossRef]
- Wang, L.; Butterly, C.R.; Tian, W.; Herath, H.M.S.K.; Xi, Y.; Zhang, J.; Xiao, X. Effects of fertilization practices on aluminum fractions and species in a wheat soil. J. Soils Sediments 2016, 16, 1933–1943. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, J.; Zhao, X.; Yang, S.; Mulder, J.; Dörsch, P.; Peng, X.; Zhang, G. Soil acidification and loss of base cations in a subtropical agricultural watershed. Sci. Total Environ. 2022, 827, 154338. [Google Scholar] [CrossRef] [PubMed]
- Ranney, R.W.; Ciolkosz, E.J.; Petersen, G.W.; Matelski, R.P.; Johnson, L.J.; Cunningham, R.L. The pH base-saturation relationship in B and C horizons of Pennsylvania soils. Soil Sci. 1974, 118, 247–253. [Google Scholar] [CrossRef]
- Bowman, J.R.; Lannan, J.E. Evaluation of soil pH-percent base saturation relationships for use in estimating the lime requirements of earthen aquaculture ponds. J. World Aquac. Soc. 1995, 26, 172–182. [Google Scholar] [CrossRef]
- Hao, T.; Zhu, Q.; Zeng, M.; Shen, J.; Shi, X.; Liu, X.; Zhang, F.; de Vries, W. Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat-maize double cropping system. J. Environ. Manag. 2020, 270, 110888. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Yang, C.; Wang, Y.; Xue, H.; Niu, Y. Rates of soil acidification in tea plantations and possible causes. Agric. Ecosyst. Environ. 2016, 233, 60–66. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Mary, B.; Zhang, J.; Cai, Z.; Chang, S.X. Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biol. Biochem. 2013, 57, 848–857. [Google Scholar] [CrossRef]
- Rheinheimer, D.S.; Tiecher, T.; Gonzattoa, R.; Zafar, M.; Brunetto, G. Residual effect of surface-applied lime on soil acidity properties in a long-term experiment under no-till in a Southern Brazilian sandy Ultisol. Geoderma 2018, 313, 7–16. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Foltran, R.; Rossato, O.B.; McCray, J.M.; Rossetto, R. Effects of surface application of calcium-magnesium silicate and gypsum on soil fertility and sugarcane yield. Rev. Bras. Ciência Solo 2014, 38, 1843–1854. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.C.; Liu, X.J.; Hao, T.X.; Zeng, M.F.; Shen, J.B.; Zhang, F.S. Modeling soil acidification in typical Chinese cropping systems. Sci. Total Environ. 2018, 613–614, 1339–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Li, C.; Wang, S.; Zhou, B.; Mao, Y.; Rensing, C.; Xing, S. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil. Appl. Soil Ecol. 2021, 166, 104005. [Google Scholar] [CrossRef]
- Qiao, C.; Mia, S.; Wang, Y.; Hou, J.; Xu, B. Assessing the effects of nitrification inhibitor DMPP on acidification and inorganic N leaching loss from tea (Camellia sinensis L.) cultivated soils with increasing urea-N rates. Sustainability 2021, 13, 994. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, B.; Yu, Y.; Yan, M.; Ni, K.; Cui, J.; Wang, S.; Cheng, Y. Effects of nitrification inhibitors on nitrification rate of urea in four typical tea soils. J. Agro-Environ. Sci. 2017, 36, 2063–2070. [Google Scholar] [CrossRef]
- Shi, R.; Liu, Z.; Li, Y.; Jiang, T.; Xu, M.; Li, J.; Xu, R. Mechanisms for increasing soil resistance to acidification by long-term manure application. Soil Tillage Res. 2019, 185, 77–84. [Google Scholar] [CrossRef]
Test Site | pH | SOM (g kg−1) | CEC (cmol kg−1) | TN (g kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|---|---|
GD | 5.01 | 19.0 | 9.30 | 1.44 | 110.2 | 14.60 | 187.0 |
MT | 4.14 | 28.7 | 14.2 | 1.76 | 147.9 | 41.30 | 118.1 |
XX | 3.74 | 68.4 | 24.8 | 3.29 | 181.6 | 54.20 | 181.3 |
Soil Acidification Degree | Response Equation of Soil pH to Nitrogen Application Rate | R2 | pH Value Corresponding to the Inflection Point of the Equation |
---|---|---|---|
NA | y = −0.0020x + 6.3069 | 0.9350 ** | — |
MA | y = −0.0006x + 4.3967 | 0.9398 ** | — |
HA | y = 0.0001x + 3.9074 | 0.5472 | — |
NA | y = 1 × 10−6x2 − 0.0033x + 6.4443 | 0.9626 ** | 3.72 |
MA | y = 4 × 10−7x2 − 0.001x + 4.4404 | 0.9684 ** | 3.82 |
HA | y = −5 × 10−7x2 + 0.0006x + 3.8566 | 0.9601 ** | 4.04 |
Soil Acidification Degree | Treatments | Linear Fitting Equation | pHBC | ||
---|---|---|---|---|---|
a | b | R2 | (cmol kg−1) | ||
NA | N0 | 0.7240 | 5.7981 | 0.9628 ** | 1.38 ± 0.055 a |
N300 | 0.9348 | 4.9919 | 0.9415 ** | 1.09 ± 0.195 b | |
N900 | 0.9106 | 4.9938 | 0.9684 ** | 1.10 ± 0.089 b | |
MA | N0 | 0.8321 | 5.1636 | 0.9562 ** | 1.21 ± 0.071 a |
N300 | 0.7086 | 4.6700 | 0.9370 ** | 1.52 ± 0.407 a | |
N900 | 0.7576 | 4.6164 | 0.9722 ** | 1.32 ± 0.057 a | |
HA | N0 | 0.277 | 3.7981 | 0.9336 ** | 3.54 ± 0.206 a |
N300 | 0.3646 | 3.9676 | 0.9830 ** | 2.91 ± 0.794 a | |
N900 | 0.6876 | 4.0471 | 0.9838 ** | 1.52 ± 0.385 b |
Soil Acidification Degree | Treatments | E-H (cmol kg−1) | E-Al (cmol kg−1) | ETA (cmol kg−1) |
---|---|---|---|---|
NA | N0 | 0.054 ± 0.024 b | 0.87 ± 0.149 b | 0.92 ± 0.173 b |
N150 | 0.241 ± 0.114 a | 2.15 ± 0.329 ab | 2.39 ± 0.321 ab | |
N300 | 0.157 ± 0.058 ab | 3.11 ± 1.683 a | 3.27 ± 1.626 a | |
N600 | 0.238 ± 0.140 a | 3.47 ± 0.664 a | 3.71 ± 0.660 a | |
N900 | 0.265 ± 0.073 a | 2.64 ± 0.417 a | 2.90 ± 0.345 a | |
MA | N0 | 0.258 ± 0.173 a | 6.13 ± 0.173 b | 6.38 ± 0.000 b |
N150 | 0.072 ± 0.026 a | 5.89 ± 1.453 b | 5.96 ± 1.478 b | |
N300 | 0.059 ± 0.006 a | 6.78 ± 0.074 ab | 6.84 ± 0.080 ab | |
N600 | 0.090 ± 0.000 a | 6.63 ± 0.400 ab | 6.72 ± 0.400 ab | |
N900 | 0.092 ± 0.002 a | 8.16 ± 0.158 a | 8.25 ± 0.160 a | |
HA | N0 | 0.178 ± 0.014 a | 13.29 ± 0.249 a | 13.47 ± 0.235 a |
N150 | 0.124 ± 0.019 bc | 11.29 ± 0.977 b | 11.41 ± 0.990 b | |
N300 | 0.148 ± 0.023 ab | 11.40 ± 1.137 b | 11.54 ± 1.158 b | |
N600 | 0.099 ± 0.016 c | 10.15 ± 0.769 b | 10.25 ± 0.767 b | |
N900 | 0.130 ± 0.023 bc | 10.76 ± 0.359 b | 10.89 ± 0.376 b |
Soil Acidification Degree | Treatments | E-Ca (cmol kg−1) | E-Mg (cmol kg−1) | E-K (cmol kg−1) | E-Na (cmol kg−1) |
---|---|---|---|---|---|
NA | N0 | 9.33 ± 1.23 a | 1.53 ± 0.404 a | 0.904 ± 0.271 a | 0.116 ± 0.022 a |
N150 | 5.03 ± 2.54 b | 0.83 ± 0.503 b | 0.558 ± 0.172 b | 0.104 ± 0.023 ab | |
N300 | 5.00 ± 2.49 b | 0.53 ± 0.252 b | 0.546 ± 0.199 b | 0.085 ± 0.018 ab | |
N600 | 3.83 ± 1.63 b | 0.43 ± 0.115 b | 0.388 ± 0.036 b | 0.072 ± 0.007 b | |
N900 | 3.23 ± 0.68 b | 0.50 ± 0.200 b | 0.354 ± 0.072 b | 0.072 ± 0.014 b | |
MA | N0 | 3.45 ± 0.21 ab | 0.45 ± 0.071 ab | 0.384 ± 0.181 a | 0.098 ± 0.005 a |
N150 | 4.65 ± 0.92 a | 0.70 ± 0.141 a | 0.384 ± 0.109 a | 0.087 ± 0.031 a | |
N300 | 3.15 ± 0.35 ab | 0.50 ± 0.000 ab | 0.185 ± 0.009 a | 0.058 ± 0.010 a | |
N600 | 2.85 ± 0.78 ab | 0.35 ± 0.071 b | 0.467 ± 0.118 a | 0.080 ± 0.000 a | |
N900 | 2.70 ± 0.85 b | 0.40 ± 0.141 b | 0.269 ± 0.036 a | 0.065 ± 0.010 a | |
HA | N0 | 2.53 ± 0.32 a | 0.23 ± 0.058 a | 0.350 ± 0.036 a | 0.072 ± 0.004 a |
N150 | 3.00 ± 0.75 a | 0.30 ± 0.000 a | 0.388 ± 0.118 a | 0.087 ± 0.011 a | |
N300 | 2.67 ± 0.42 a | 0.30 ± 0.000 a | 0.354 ± 0.018 a | 0.065 ± 0.004 a | |
N600 | 2.57 ± 0.72 a | 0.23 ± 0.058 a | 0.222 ± 0.027 a | 0.065 ± 0.004 a | |
N900 | 2.53 ± 0.47 a | 0.27 ± 0.058 a | 0.234 ± 0.009 a | 0.101 ± 0.023 a |
Soil Acidification Degree | Treatments | TEB (cmol kg−1) | CEC (cmol kg−1) | BSP (%) |
---|---|---|---|---|
NA | N0 | 11.89 ± 1.41 a | 14.9 ± 0.70 a | 80.2 ± 12.19 a |
N150 | 6.53 ± 3.20 b | 14.4 ± 1.27 a | 44.7 ± 20.68 b | |
N300 | 6.16 ± 2.98 b | 16.1 ± 2.18 a | 37.5 ± 14.41 b | |
N600 | 4.73 ± 1.82 b | 15.6 ± 1.67 a | 29.8 ± 9.29 b | |
N900 | 4.16 ± 1.02 b | 14.3 ± 0.68 a | 29.1 ± 7.27 b | |
MA | N0 | 4.38 ± 0.33 ab | 18.7 ± 0.40 a | 23.4 ± 2.24 b |
N150 | 5.82 ± 1.20 a | 16.2 ± 1.19 a | 35.8 ± 4.77 a | |
N300 | 3.89 ± 0.33 ab | 16.1 ± 1.27 a | 24.4 ± 4.02 ab | |
N600 | 3.75 ± 0.73 ab | 17.3 ± 2.83 a | 21.6 ± 0.69 b | |
N900 | 3.43 ± 0.96 b | 17.0 ± 1.45 a | 20.5 ± 7.39 b | |
HA | N0 | 3.62 ± 0.39 a | 30.2 ± 3.04 ab | 12.2 ± 1.05 a |
N150 | 3.76 ± 0.89 a | 32.3 ± 1.80 a | 11.7 ± 3.36 a | |
N300 | 3.38 ± 0.41 a | 30.0 ± 2.43 a | 11.4 ± 2.06 a | |
N600 | 3.08 ± 0.76 a | 27.7 ± 1.14 bc | 11.1 ± 2.27 a | |
N900 | 3.11 ± 0.53 a | 25.7 ± 0.92 c | 12.1 ± 1.76 a |
Source | pH | pHBC | ETA | TEB | CEC | BSP | E-H | E-Al | E-Ca | E-Mg | E-K | E-Na |
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 14.17 ** | 7.84 ** | 1.11 | 4.72 ** | 2.03 | 5.37 ** | 0.49 | 1.10 | 4.08 * | 4.70 ** | 3.93 * | 4.60 ** |
A | 197.45 ** | 39.86 ** | 484.87 ** | 19.49 ** | 283.59 ** | 51.17 ** | 4.40 ** | 480.42 ** | 17.01 ** | 20.73 ** | 12.85 ** | 7.52 ** |
N × A | 10.00 ** | 6.80 ** | 7.26 ** | 3.72 ** | 2.63 ** | 5.52 ** | 3.92 ** | 6.68 ** | 3.36 ** | 4.45 ** | 2.40 ** | 1.57 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, M.; Li, Y.; Zhang, Y.; Huang, X.; Yang, Y.; Zhu, H.; Xiong, H.; Jiang, T. Influence of Nitrogen Fertilizer Application on Soil Acidification Characteristics of Tea Plantations in Karst Areas of Southwest China. Agriculture 2023, 13, 849. https://doi.org/10.3390/agriculture13040849
Liu Y, Zhang M, Li Y, Zhang Y, Huang X, Yang Y, Zhu H, Xiong H, Jiang T. Influence of Nitrogen Fertilizer Application on Soil Acidification Characteristics of Tea Plantations in Karst Areas of Southwest China. Agriculture. 2023; 13(4):849. https://doi.org/10.3390/agriculture13040849
Chicago/Turabian StyleLiu, Yanling, Meng Zhang, Yu Li, Yarong Zhang, Xingcheng Huang, Yehua Yang, Huaqing Zhu, Han Xiong, and Taiming Jiang. 2023. "Influence of Nitrogen Fertilizer Application on Soil Acidification Characteristics of Tea Plantations in Karst Areas of Southwest China" Agriculture 13, no. 4: 849. https://doi.org/10.3390/agriculture13040849
APA StyleLiu, Y., Zhang, M., Li, Y., Zhang, Y., Huang, X., Yang, Y., Zhu, H., Xiong, H., & Jiang, T. (2023). Influence of Nitrogen Fertilizer Application on Soil Acidification Characteristics of Tea Plantations in Karst Areas of Southwest China. Agriculture, 13(4), 849. https://doi.org/10.3390/agriculture13040849