QTL×QTL×QTL Interaction Effects for Total Phenolic Content of Wheat Mapping Population of CSDH Lines under Drought Stress by Weighted Multiple Linear Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Estimation of the QTL×QTL×QTL Interaction Effects
2.2.1. Estimation Based on the Phenotype
2.2.2. Estimation Based on the Genotype
Unweighted Regression
Weighted Regression
3. Results
3.1. Estimation Based on the Phenotype
3.2. Estimation Based on the Genotype
3.2.1. Unweighted Regression
3.2.2. Weighted Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brodersen, C.R.; Roddy, A.B.; Wason, J.W.; McElrone, A.J. Functional Status of Xylem Through Time. Annu. Rev. Plant Biol. 2019, 70, 407–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Iqbal, M.; Akram, M.; Ahmad, M.; Hassan, M.W.; Jamil, M. Recent Advances in Molecular Tool Development for Drought Tolerance Breeding in Cereal Crops: A Review. Zemdirb.-Agric. 2013, 100, 325–334. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global Synthesis of Drought Effects on Cereal, Legume, Tuber and Root Crops Production: A Review. Agric. Water Manag. 2017, 179, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Lisar, S.Y.S.; Motafakkerazad, R.; Hossain, M.M.; Rahman, I.M.M.; Lisar, S.Y.S.; Motafakkerazad, R.; Hossain, M.M.; Rahman, I.M.M. Water Stress in Plants: Causes, Effects and Responses; IntechOpen: Rijeka, Croatia, 2012; ISBN 978-953-307-963-9. [Google Scholar]
- Yadav, B.; Jogawat, A.; Rahman, M.S.; Narayan, O.P. Secondary Metabolites in the Drought Stress Tolerance of Crop Plants: A Review. Gene Rep. 2021, 23, 101040. [Google Scholar] [CrossRef]
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Raina, A.; Khan, F.A.; Naushin, F. Chapter 9—Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance: An Overview. In Plant Signaling Molecules; Khan, M.I.R., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Duxford, UK, 2019; pp. 157–168. ISBN 978-0-12-816451-8. [Google Scholar]
- Hura, T.; Hura, K.; Ostrowska, A.; Grzesiak, M.; Dziurka, K. The Cell Wall-Bound Phenolics as a Biochemical Indicator of Soil Drought Resistance in Winter Triticale. Plant Soil Environ. 2013, 59, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Latif, F.; Ullah, F.; Mehmood, S.; Khattak, A.; Khan, A.U.; Khan, S.; Husain, I. Effects of Salicylic Acid on Growth and Accumulation of Phenolics in Zea Mays L. under Drought Stress. Acta Agric. Scand. Sect. B 2016, 66, 325–332. [Google Scholar] [CrossRef]
- Hussain, W.; Baenziger, P.S.; Belamkar, V.; Guttieri, M.J.; Venegas, J.P.; Easterly, A.; Sallam, A.; Poland, J. Genotyping-by-Sequencing Derived High-Density Linkage Map and Its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat. Sci. Rep. 2017, 7, 16394. [Google Scholar] [CrossRef] [Green Version]
- Cyplik, A.; Bocianowski, J. Analytical and Numerical Comparisons of Two Methods of Estimation of Additive × Additive × Additive Interaction of QTL Effects. J. Appl. Genet. 2022, 63, 213–221. [Google Scholar] [CrossRef]
- Sayed, M.A.; Nassar, S.M.; Moustafa, E.S.; Said, M.T.; Börner, A.; Hamada, A. Genetic Mapping Reveals Novel Exotic and Elite QTL Alleles for Salinity Tolerance in Barley. Agronomy 2021, 11, 1774. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, X.; Li, Z.; Wu, P. Genetic Analysis of Maternal Haploid Inducibility for In Vivo Haploid Induction in Maize. Agriculture 2022, 12, 845. [Google Scholar] [CrossRef]
- Bocianowski, J.; Kozak, M.; Liersch, A.; Bartkowiak-Broda, I. A heuristic method of searching for interesting markers in terms of quantitative traits. Euphytica 2011, 181, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Botero-Ramírez, A.; Laperche, A.; Guichard, S.; Jubault, M.; Gravot, A.; Strelkov, S.E.; Manzanares-Dauleux, M.J. Clubroot Symptoms and Resting Spore Production in a Doubled Haploid Population of Oilseed Rape (Brassica napus) Are Controlled by Four Main QTLs. Front. Plant Sci. 2020, 11, 604527. [Google Scholar] [CrossRef]
- Gacek, K.; Bayer, P.E.; Anderson, R.; Severn-Ellis, A.A.; Wolko, J.; Łopatyńska, A.; Matuszczak, M.; Bocianowski, J.; Edwards, D.; Batley, J. QTL Genetic Mapping Study for Traits Affecting Meal Quality in Winter Oilseed Rape (Brassica Napus L.). Genes 2021, 12, 1235. [Google Scholar] [CrossRef]
- Kabange, N.R.; Park, S.-Y.; Shin, D.; Lee, S.-M.; Jo, S.-M.; Kwon, Y.; Cha, J.-K.; Song, Y.-C.; Ko, J.-M.; Lee, J.-H. Identification of a Novel QTL for Chlorate Resistance in Rice (Oryza sativa L.). Agriculture 2020, 10, 360. [Google Scholar] [CrossRef]
- Kwon, Y.-H.; Kabange, N.-R.; Lee, J.-Y.; Lee, S.-M.; Cha, J.-K.; Shin, D.-J.; Cho, J.-H.; Kang, J.-W.; Ko, J.-M.; Lee, J.-H. Novel QTL Associated with Shoot Branching Identified in Doubled Haploid Rice (Oryza sativa L.) under Low Nitrogen Cultivation. Genes 2021, 12, 745. [Google Scholar] [CrossRef]
- Pegot-Espagnet, P.; Guillaume, O.; Desprez, B.; Devaux, B.; Devaux, P.; Henry, K.; Henry, N.; Willems, G.; Goudemand, E.; Mangin, B. Discovery of interesting new polymorphisms in a sugar beet (elite × exotic) progeny by comparison with an elite panel. Theor. Appl. Genet. 2019, 132, 3063–3078. [Google Scholar] [CrossRef] [Green Version]
- Lephuthing, M.C.; Khumalo, T.P.; Tolmay, V.L.; Dube, E.; Tsilo, T.J. Genetic Mapping of Quantitative Trait Loci Associated with Plant Height and Yield Component Traits in a Wheat (Triticum aestivum L.) Doubled Haploid Population Derived from Tugela-DN × Elands. Agronomy 2022, 12, 2283. [Google Scholar] [CrossRef]
- Beheshtizadeh, H.; Fakheri, B.A.; Aghnoum, R.; Mahdinezhad, N.; Pourdad, S.S.; Masoudi, B. QTL mapping of grain yield and its components under normal and drought stress conditions in barley (Hordeum vulgare L.). Indian J. Genet. Plant Breed. 2018, 78, 69–80. [Google Scholar] [CrossRef]
- Ku, L.X.; Sun, Z.H.; Wang, C.L.; Zhang, J.; Zhao, R.F.; Liu, H.Y.; Tai, G.Q.; Chen, Y.H. QTL mapping and epistasis analysis of brace root traits in maize. Mol. Breed. 2012, 30, 697–708. [Google Scholar] [CrossRef]
- Yusuf, A.O.; Richter, J.-C.; Möllers, C. Genetic variation and QTL analysis of saturated fatty acids in two doubled haploid populations of oilseed rape (Brassica napus L.). Euphytica 2022, 218, 88. [Google Scholar] [CrossRef]
- Krajewski, P.; Bocianowski, J.; Gawłowska, M.; Kaczmarek, Z.; Pniewski, T.; Święcicki, W.; Wolko, B. QTL for yield componenets and protein content: A multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 2012, 183, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Ali, F.; Chen, W.; Fiaz, S.; Wang, Y.; Wei, X.; Xie, L.; Jiao, G.; Shao, G.; Hu, S.; Tang, S.; et al. QTL Mapping for Grain Appearance Quality Traits Using Doubled Haploid Population of Rice Under Different Environments. Pak. J. Bot. 2022, 54, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Tan, Y.; Hu, H.; Chang, W.; Dong, L.; Wang, Z.; Zhao, X.; Li, W.; Teng, W. Quantitative trait loci with additive and epistatic effects underlying resistance to two hg types of soybean cyst nematode. Plant Breed. 2017, 136, 720–727. [Google Scholar] [CrossRef]
- Smeda, J.R.; Schilmiller, A.L.; Anderson, T.; Ben-Mahmoud, S.; Ullman, D.E.; Chappell, T.M.; Kessler, A.; Mutschler, M.A. Combination of Acylglucose QTL reveals additive and epistatic genetic interactions and impacts insect oviposition and virus infection. Mol. Breed. 2018, 38, 3. [Google Scholar] [CrossRef]
- Dhariwal, R.; Fedak, G.; Dion, Y.; Pozniak, C.; Laroche, A.; Eudes, F.; Randhawa, H.S. High Density Single Nucleotide Polymorphism (SNP) Mapping and Quantitative Trait Loci (QTL) Analysis in a Biparental Spring Triticale Population Localized Major and Minor Effect Fusarium Head Blight Resistance and Associated Traits QTL. Genes 2018, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Pundir, S.; Sharma, R.; Kumar, D.; Singh, V.K.; Chaturvedi, D.; Kanwar, R.S.; Röder, M.S.; Börner, A.; Ganal, W.M.; Gupta, P.K.; et al. QTL mapping for resistance against cereal cyst nematode (Heterodera avenae Woll.) in wheat (Triticum aestivum L.). Sci. Rep. 2022, 12, 9586. [Google Scholar] [CrossRef]
- Chase, K.; Adler, F.R.; Lark, K.G. EPISTAT: A computer program for identifying and testing interaction between pairs of quantitative trait loci. Theor. Appl. Genet. 1997, 94, 724–730. [Google Scholar] [CrossRef]
- Holland, J.B. Computer note. EPISTACY: A SAS program for detecting two-locus epistatic interaction using genetic marker information. J. Hered. 1998, 89, 374–375. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.-H.; Zeng, Z.-B.; Teasdale, R.D. Multiple interval mapping for quantitative trait loci. Genetics 1999, 152, 1203–1216. [Google Scholar] [CrossRef]
- Zeng, Z.-B.; Kao, C.-H.; Batsen, C.J. Estimating the genetic architecture of quantitative traits. Genet. Res. 1999, 74, 279–289. [Google Scholar] [CrossRef]
- Carlborg, Ö.; Andersson, L.; Kinghorn, B. The use of a genetic algorithm for simultaneous mapping interacting quantitative trait loci. Genetics 2000, 155, 2003–2010. [Google Scholar] [CrossRef]
- Sen, S.; Churchill, G.A. A statistical framework for quantitative trait mapping. Genetics 2001, 159, 371–387. [Google Scholar] [CrossRef]
- Bocianowski, J. The use of weighted multiple linear regression to estimate QTL-by-QTL epistatic effects. Genet. Mol. Biol. 2012, 35, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Bateson, W.; Mendel, G. Mendel’s Principles of Heredity: A Defence, with a Translation of Mendel’s Original Papers on Hybridization; Cambridge University Press: Cambridge, UK, 1902. [Google Scholar] [CrossRef] [Green Version]
- Czyczyło-Mysza, I.; Tyrka, M.; Marcinska, I.; Skrzypek, E.; Karbarz, M.; Dziurka, M.; Hura, T.; Dziurka, K.; Quarrie, S.A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol. Breed. 2013, 32, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Cyplik, A.; Sobiech, A.; Tomkowiak, A.; Bocianowski, J. Genetic Parameters for Selected Traits of Inbred Lines of Maize (Zea mays L.). Appl. Sci. 2022, 12, 6961. [Google Scholar] [CrossRef]
- Kaczmarek, Z.; Surma, M.; Adamski, T. Epistatic effects in estimation of the number of genes on the basis of doubled haploid lines. Genet. Pol. 1988, 29, 353–359. [Google Scholar]
- Czyczyło-Mysza, I.M.; Cyganek, K.; Dziurka, K.; Quarrie, S.; Skrzypek, E.; Marcińska, I.; Myśków, B.; Dziurka, M.; Warchoł, M.; Kapłoniak, K.; et al. Genetic Parameters and QTLs for Total Phenolic Content and Yield of Wheat Mapping Population of CSDH Lines under Drought Stress. Int. J. Mol. Sci. 2019, 20, 6064. [Google Scholar] [CrossRef] [Green Version]
- Bocianowski, J.; Krajewski, P. Comparison of the genetic additive effect estimators based on phenotypic observations and on molecular marker data. Euphytica 2009, 165, 113–122. [Google Scholar] [CrossRef]
- Jansen, R.C.; Stam, P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 1994, 136, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Province, M.A. 30 Sequential methods of analysis for genome scan. Adv. Genet. 2001, 42, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Searle, S.R. Matrix Models for Unbalanced Data; John Wiley & Sons, Inc.: New York, NY, USA, 1982; pp. 1–154. [Google Scholar]
- Quarrie, S.A.; Steed, A.; Calestani, C.; Semikhodskii, A.; Lebreton, C.; Chinoy, C.; Steele, N.; Pljevljakusic, D.; Waterman, E.; Weyen, J.; et al. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet. 2005, 110, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.B.; Ritland, K. Marker-Based Inferences About Epistasis for Genes Influencing Inbreeding Depression. Genetics 1996, 144, 339–348. [Google Scholar] [CrossRef]
- Nap, J.P.; Canner, A.J.; Mlynarova, L.; Stiekema, W.J.; Jansen, R.C. Dissection of a Synthesized Quantitative Trait to Characterize Transgene Interactions. Genetics 1997, 147, 315–320. [Google Scholar] [CrossRef]
- Routman, E.J.; Cheverud, J.M. Gene effects on a quantitative trait: Two-locus epistatic effects measured at microsatellite markers and at estimated QTL. Evolution 1997, 51, 1654–1662. [Google Scholar] [CrossRef]
- Bocianowski, J.; Nowosad, K. Mixed linear model approaches in mapping QTLs with epistatic effects by a simulation study. Euphytica 2015, 202, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Slim, L.; Chatelain, C.; Azencott, C.A.; Vert, J.P. Novel methods for epistasis detection in genome-wide association studies. PLoS ONE 2020, 15, e0242927. [Google Scholar] [CrossRef]
- Rieger, R.; Michaelis, A.; Green, M.M. A Glossary of Genetics and cytogenetics: Classical and Molecular; Springer: New York, NY, USA, 1968; ISBN 9780387076683. [Google Scholar]
Year | 2010 | 2011 | 2012 | |||
---|---|---|---|---|---|---|
Stress | Control | Severe Drought | Control | Severe Drought | Control | Severe Drought |
Minimal | 7.104 | 6.499 | 7.164 | 6.231 | 7.645 | 4.626 |
Maximal | 14.414 | 12.682 | 16.321 | 15.070 | 13.781 | 13.023 |
Mean | 10.450 | 9.435 | 11.993 | 10.214 | 10.736 | 8.204 |
Coefficient of variation | 18.06 | 18.72 | 15.39 | 15.51 | 14.34 | 23.63 |
aaap | 0.309 * | 0.156 * | −0.250 * | 0.437 ** | −0.023 | 0.620 *** |
The number of genes (the number of effective factors) | 4.617 | 3.824 | 5.050 | 6.021 | 4.164 | 4.846 |
Year | 2010 | 2011 | 2012 | |||||
---|---|---|---|---|---|---|---|---|
Stress | Control | Severe Drought | Control | Severe Drought | Control | Severe Drought | ||
Unweighted | QTLs number | 6 | 5 | 4 | 6 | 7 | 6 | |
Number of aaagu | 8 | 1 | 0 | 2 | 14 | 8 | ||
aaagu effects | Min. | −0.288 | 0.350 | −0.489 | −0.410 | −0.138 | ||
Max. | 0.533 | 0.350 | 0.569 | 0.538 | 0.409 | |||
Total | −0.043 | 0.350 | 0.110 | 0.170 | 0.688 | |||
R2 [in %] | 32.4 | 42.0 | 36.3 | 39.1 | 44.5 | |||
Weighted | QTLs number | 16 | 15 | 20 | 14 | 26 | 14 | |
Number of aaagw | 3 | 5 | 9 | 5 | 6 | 6 | ||
aaagw effects | Min. | −0.659 | −0.494 | −0.607 | −0.499 | −0.526 | −1.124 | |
Max. | 0.598 | 0.612 | 0.548 | 0.368 | 0.557 | 1.182 | ||
Total | 0.443 | −0.265 | 1.178 | −1.302 | −0.184 | −0.228 | ||
R2 [in %] | 46.2 | 61.4 | 95.0 | 58.8 | 78.9 | 58.5 |
Year | 2010 | 2011 | 2012 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stress | Control | Severe Drought | Control | Severe Drought | Control | Severe Drought | ||||||||
QTL1 (LG) | QTL2 (LG) | QTL3 (LG) | aaagu | aaagw | aaagu | aaagw | aaagu | aaagw | aaagu | aaagw | aaagu | aaagw | aaagu | aaagw |
dupw004b (1A) | wPt-3094 (3A) | wmc1 (3B) | 0.471 | |||||||||||
dupw004b (1A) | wPt-668160 (1A) | gwm635b (7A) | 0.612 | |||||||||||
wPt-3094 (3A) | gwm165.3 (4A) | wPt-0391 (4B) | 0.350 | |||||||||||
wPt-3094 (3A) | gwm635b (7A) | wPt-671748 (7D) | −0.494 | |||||||||||
cfa2262 (3A) | dupw004a (4A) | blt101.t7 (4D) | −0.499 | |||||||||||
blt4.1 (3B) | wPt-4048 (3B) | gwm269.2 (4A) | −0.138 | |||||||||||
blt4.1 (3B) | gwm269.2 (4A) | gwm165.3 (4A) | 0.049 | |||||||||||
wPt-6239 (3B) | blt101.t7 (4D) | wPt-2697 (5A) | −0.337 | |||||||||||
wPt-6239 (3B) | blt101.t7 (4D) | wmc83 (7A) | −0.348 | |||||||||||
rPt-8896 (3B) | wmc1 (3B) | gwm52 (3D) | −0.376 | |||||||||||
wPt-0021 (3B) | gwm52 (3D) | barc60 (4B) | −0.659 | |||||||||||
gwm269.2 (4A) | gwm165.3 (4A) | gwm205 (5D) | 0.008 | |||||||||||
gwm269.2 (4A) | gwm165.3 (4A) | barc44 (5D) | −0.152 | |||||||||||
gwm269.2 (4A) | gwm165.3 (4A) | m69p78.1 (7A) | −0.100 | |||||||||||
gwm269.2 (4A) | gwm205 (5D) | barc44 (5D) | 0.063 | |||||||||||
gwm269.2 (4A) | gwm205 (5D) | m69p78.1 (7A) | −0.263 | |||||||||||
gwm269.2 (4A) | barc44 (5D) | wPt-9834 (5A) | 0.533 | |||||||||||
gwm165.3 (4A) | gwm165.3 (4A) | wPt-667091 (7D) | 0.158 | |||||||||||
gwm165.3 (4A) | wPt-0391 (4B) | wPt-3883 (7A) | 0.026 | |||||||||||
gwm165.3 (4A) | wPt-0391 (4B) | wPt-667091 (7D) | −0.179 | |||||||||||
gwm165.3 (4A) | wPt-0391 (4B) | wmc243b (7D) | 0.247 | |||||||||||
gwm165.3 (4A) | gwm205 (5D) | m69p78.1 (7A) | 0.156 | |||||||||||
gwm165.3 (4A) | barc44 (5D) | m69p78.1 (7A) | −0.288 | |||||||||||
gwm165.3 (4A) | gwm174 (5D) | wPt-3883 (7A) | 0.026 | |||||||||||
gwm165.3 (4A) | gwm174 (5D) | wPt-667091 (7D) | 0.031 | |||||||||||
gwm165.3 (4A) | gwm174 (5D) | wmc243b (7D) | −0.161 | |||||||||||
gwm165.3 (4A) | wPt-3883 (7A) | wmc243b (7D) | −0.008 | |||||||||||
wPt-0391 (4B) | wPt-0391 (4B) | wPt-667091 (7D) | −0.410 | |||||||||||
wPt-0391 (4B) | gwm174 (5D) | wPt-3883 (7A) | 0.128 | |||||||||||
wPt-0391 (4B) | gwm174 (5D) | wmc243b (7D) | 0.538 | |||||||||||
wPt-0391 (4B) | wPt-3883 (7A) | wPt-667091 (7D) | −0.151 | |||||||||||
barc152 (1B) | wPt-6239 (3B) | gwm191b (3D) | −0.400 | |||||||||||
barc152 (1B) | m65p64.8_4B (4B) | wPt-8149 (7A) | −0.526 | |||||||||||
barc152 (1B) | m92p78.10 (2A) | m60p64.13_3B (3B) | 0.557 | |||||||||||
barc152 (1B) | wPt-8072 (2B) | gwm165.3 (4A) | −0.493 | |||||||||||
m65p64.8a (5B) | gwm271 (5B) | m69p78.1 (7A) | 0.504 | |||||||||||
gwm174 (5D) | wPt-3883 (7A) | wPt-667091 (7D) | −0.130 | |||||||||||
gwm174 (5D) | wPt-3883 (7A) | wmc243b (7D) | 0.055 | |||||||||||
psr648_1B (1B) | wmc181 (2A) | gwm285 (3B) | 0.598 | |||||||||||
m17p65.1 (1B) | cfd73 (2D) | wmc468 (4A) | −0.478 | |||||||||||
wmc432 (1D) | wPt-3738 (1D) | psp2151.3 (2A) | −0.640 | |||||||||||
wPt-3738 (1D) | tPt-0202 (3A) | gwm269.2 (4A) | −1.124 | |||||||||||
wPt-3738 (1D) | tPt-0202 (3A) | dupw004a (4A) | 1.182 | |||||||||||
wPt-3738 (1D) | gwm513 (4B) | wmc157 (7D) | 0.387 | |||||||||||
wPt-3738 (1D) | wmc429 (1D) | tPt-0202 (3A) | 0.354 | |||||||||||
wmc429 (1D) | cfd11 (2D) | wPt-10291 (3D) | −0.505 | |||||||||||
wmc429 (1D) | gwm30.1 (2D) | tPt-0202 (3A) | 0.481 | |||||||||||
wmc429 (1D) | wPt-7466 (2D) | wPt-9749 (2D) | −0.607 | |||||||||||
wmc429 (1D) | gwm269.2 (4A) | dupw004a (4A) | −0.387 | |||||||||||
wmc429 (1D) | wPt-6316 (1D) | wPt-7466 (2D) | 0.548 | |||||||||||
wmc429 (1D) | wPt-6316 (1D) | wPt-10291 (3D) | 0.436 | |||||||||||
wmc429 (1D) | wPt-6316 (1D) | gwm161 (3D) | 0.493 | |||||||||||
wmc429 (1D) | wPt-6316 (1D) | gwm165.3 (4A) | −0.511 | |||||||||||
wmc429 (1D) | wPt-6316 (1D) | gwm639.2 (5B) | 0.419 | |||||||||||
wmc429 (1D) | wPt-732556 (1D) | gwm30.1 (2D) | 0.424 | |||||||||||
m92p78.10 (2A) | wPt-6239 (3B) | gwm161 (3D) | 0.360 | |||||||||||
m92p78.10 (2A) | wPt-6239 (3B) | wPt-8149 (7A) | 0.317 | |||||||||||
wmc453a (2A) | wPt-3883 (7A) | wPt-8919 (7B) | 0.569 | |||||||||||
wmc453a (2A) | wmc283.1 (7A) | wPt-8919 (7B) | −0.459 | |||||||||||
psp2151.3 (2A) | blt4.1 (3B) | wPt-4048 (3B) | 0.201 | |||||||||||
psp2151.3 (2A) | blt4.1 (3B) | gwm269.2 (4A) | 0.136 | |||||||||||
psp2151.3 (2A) | blt4.1 (3B) | gwm165.3 (4A) | −0.095 | |||||||||||
psp2151.3 (2A) | wPt-4048 (3B) | gwm269.2 (4A) | 0.409 | |||||||||||
psp2151.3 (2A) | wPt-4048 (3B) | gwm165.3 (4A) | 0.091 | |||||||||||
psp2151.3 (2A) | gwm269.2 (4A) | gwm165.3 (4A) | 0.035 | |||||||||||
wPt-3949 (2B) | wmc257 (2B) | gwm165.3 (4A) | 0.368 | |||||||||||
wmc257 (2B) | wPt-2697 (5A) | gwm292_5D (5D) | −0.485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cyplik, A.; Czyczyło-Mysza, I.M.; Jankowicz-Cieslak, J.; Bocianowski, J. QTL×QTL×QTL Interaction Effects for Total Phenolic Content of Wheat Mapping Population of CSDH Lines under Drought Stress by Weighted Multiple Linear Regression. Agriculture 2023, 13, 850. https://doi.org/10.3390/agriculture13040850
Cyplik A, Czyczyło-Mysza IM, Jankowicz-Cieslak J, Bocianowski J. QTL×QTL×QTL Interaction Effects for Total Phenolic Content of Wheat Mapping Population of CSDH Lines under Drought Stress by Weighted Multiple Linear Regression. Agriculture. 2023; 13(4):850. https://doi.org/10.3390/agriculture13040850
Chicago/Turabian StyleCyplik, Adrian, Ilona Mieczysława Czyczyło-Mysza, Joanna Jankowicz-Cieslak, and Jan Bocianowski. 2023. "QTL×QTL×QTL Interaction Effects for Total Phenolic Content of Wheat Mapping Population of CSDH Lines under Drought Stress by Weighted Multiple Linear Regression" Agriculture 13, no. 4: 850. https://doi.org/10.3390/agriculture13040850
APA StyleCyplik, A., Czyczyło-Mysza, I. M., Jankowicz-Cieslak, J., & Bocianowski, J. (2023). QTL×QTL×QTL Interaction Effects for Total Phenolic Content of Wheat Mapping Population of CSDH Lines under Drought Stress by Weighted Multiple Linear Regression. Agriculture, 13(4), 850. https://doi.org/10.3390/agriculture13040850