Contribution of Agro-Physiological and Morpho-Anatomical Traits to Grain Yield of Wheat Genotypes under Post-Anthesis Stress Induced by Defoliation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genotypes
2.2. Field Trials
2.2.1. Experimental Site
2.2.2. Experimental Design and Treatments
2.2.3. Sampling and Measurements
2.3. Statistical Analyses
3. Results
3.1. Stem Height and Peduncle Morpho-Anatomical Traits of Genotype Groups
3.2. Differences between Control and Defoliated Plants in Agro-Physiological Traits
3.3. Differences between Groups of Genotypes in Agro-Physiological Traits
3.4. Relationships among Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations Statistical Database; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 22 November 2022).
- Helman, D.; Bonfil, D.J. Six decades of warming and drought in the world’s top wheat-producing countries offset the benefits of rising CO2 to yield. Sci. Rep. 2022, 12, 7921. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Leliveld, J. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef] [Green Version]
- Barcikowska, M.J.; Kapnick, S.B.; Feser, F. Impact of large-scale circulation changes in the North Atlantic sector on the current and future Mediterranean winter hydroclimate. Clim. Dyn. 2018, 50, 2039–2059. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Dodig, D.; Savić, J.; Kandić, V.; Zorić, M.; Vucelić Radović, B.; Popović, A.; Quarrie, S. Responses of wheat plants under post-anthesis stress induced by defoliation: I. Contribution of agro-physiological traits to grain yield. Exp. Agric. 2015, 52, 203–223. [Google Scholar] [CrossRef]
- Cattiveli, L.; Rizza, F.; Badeck, F.W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Marè, C.; Tondelli, A.; Stanca, A.M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Dhanda, S.S.; Sethi, G.S. Tolerance to drought stress among selected Indian wheat cultivars. J. Agric. Sci. 2002, 139, 319–326. [Google Scholar] [CrossRef]
- Plaut, Z.; Butow, B.J.; Blumenthal, C.S.; Wrigley, C.W. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res. 2004, 86, 185–198. [Google Scholar] [CrossRef]
- Evans, L.T.; Wardlaw, I.F.; Fischer, R.A. Wheat. In Crop Physiology: Some Case Histories; Evans, L.T., Ed.; Cambridge University Press: Cambridge, UK, 1980; pp. 101–149. [Google Scholar]
- Ehdaie, B.; Alloush, G.A.; Madore, M.A.; Waines, J.G. Genotypic variation for stem reserves and mobilization in wheat: I. Post-anthesis changes in Internode dry matter. Crop. Sci. 2006, 46, 735–746. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Grain filling of cereals under soil drying. New Phytol. 2006, 169, 223–236. [Google Scholar] [CrossRef]
- Blum, A.; Sinmena, B.; Mayer, J.; Golan, G.; Shpiler, L. Stem reserve mobilization supports wheat grain filling under heat stress. Aus. J. Plant. Physiol. 1994, 21, 771–781. [Google Scholar]
- Bidinger, F.R.; Musgrave, R.B.; Fisher, R.A. Contribution of stored preanthesis assimilate to grain yield in wheat and barley. Nature 1977, 270, 431–433. [Google Scholar] [CrossRef] [Green Version]
- Wardlaw, I.F.; Willenbrink, J. Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytol. 2000, 148, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Ehdaie, B.; Alloush, G.A.; Waines, J.G. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Res. 2008, 106, 34–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Wang, Z.; Wang, Z. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Res. 2011, 123, 187–195. [Google Scholar] [CrossRef]
- Wardlaw, I.F. The control of carbon partitioning in plants. New Phytol. 1990, 116, 341–381. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, I.F. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann. Bot. 2002, 90, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Dodig, D.; Rančić, D.; Vucelić Radović, B.; Zorić, M.; Savić, J.; Kandić, V.; Pecinar, I.; Stanojević, S.; Šešlija, A.; Vassilev, D.; et al. Response of wheat plants under post-anthesis stress induced by defoliation: II. Contribution of peduncle morpho-anatomical traits and carbon reserves to grain yield. J. Agric. Sci. 2017, 155, 475–493. [Google Scholar] [CrossRef]
- Šešlija, A.; Vucelić-Radović, B.; Stanojević, S.; Savić, J.; Rančić, D.; Pećinar, I.; Kandić, V.; Dodig, D. Water-soluble carbohydrates accumulation in peduncle of wheat and its relationship to morpho-anatomical and productive traits. Zemdirb.-Agric. 2017, 104, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Savić, J.; Kandić, V.; Rančić, D.; Pećinar, I.; Šešlija, A.; Ivanović, D.; Bratković, K.; Dodig, D. Association of agronomical, morphological and anatomical traits with compensatory effect of stem reserve mobilization in common wheat genotypes under drought stress. Ital. J. Agrometeorol. 2017, 3, 5–12. [Google Scholar]
- Ivanović, D.; Dodig, D.; Đurić, N.; Kandić, V.; Tamindžić, G.; Nikolić, N.; Savić, J. Zinc biofortification of bread winter wheat grain by single zinc foliar application. Cereal Res. Commun. 2021, 49, 673–679. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, F.C. A decimal code for growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Blum, A.; Mayer, J.; Golan, G. Chemical desiccation of wheat plants as a simulator of post-anthesism stress, II. Relations to drought stress. Field Crops Res. 1983, 6, 149–155. [Google Scholar] [CrossRef]
- Dodig, D.; Kandić, V.; Zorić, M.; Nikolić-Ðorić, E.; Nikolić, A.; Mutavdžić, B.; Perović, D.; Šurlan-Momirović, G. Comparative kernel growth and yield components of two- and six-row barley (Hordeum vulgare) under terminal drought simulated by defoliation. Crop. Pasture Sci. 2018, 69, 1215–1224. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: Oxford, UK; New York, NY, USA, 1999; p. 322. [Google Scholar]
- Santiveri, F.; Royo, C.; Romagosa, I. Patterns of grain filling of spring and winter hexaploid triticales. Eur. J. Agric. 2002, 16, 219–230. [Google Scholar] [CrossRef]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars: I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Effective selection criteria for assessing stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 13–16 August 1992. [Google Scholar]
- Yan, W.; Rajcan, I. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop. Sci. 2002, 42, 11–20. [Google Scholar] [CrossRef] [PubMed]
- de Lima, V.J.; Gracia-Romero, A.; Rezzouk, F.Z.; Diez-Fraile, M.C.; Araus-Gonzalez, I.; Kamphorst, S.H.; do Amaral Júnior, A.T.; Kefauver, S.C.; Aparicio, N.; Araus, J.L. Comparative performance of high-yielding European wheat cultivars under contrasting Mediterranean conditions. Front. Plant. Sci. 2021, 12, 687622. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, A.C.; Gonzalez-Reviriego, N.; Ciais, P.; Schauberger, B.; Van der Velde, M. Time-varying impact of climate on maize and wheat yields in France since 1900. Environ. Res. Lett. 2020, 15, 094039. [Google Scholar]
- Bonnett, G.D.; Incoll, I.D. The potential pre-anthesis and post-anthesis contributions of stem internodes to grain yield in crops of winter barley Ann. Bot. 1992, 69, 219–225. [Google Scholar] [CrossRef]
- Austin, R.B.; Edrich, J.A.; Ford, M.A.; Blackwell, R.D. the fate of the dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling. Ann. Bot. 1977, 41, 1309–1321. [Google Scholar] [CrossRef]
- Li, H.; Cain, J.; Jiang, D.; Liu, F.; Dai, T.; Cao, W. Carbohydrates accumulation and remobilization in wheat plants as influenced by combined water logging and shading stress during grain filling. J. Agric. Crop. Sci. 2013, 199, 37–48. [Google Scholar] [CrossRef]
- Weldearegay, D.F.; Yan, F.; Jiang, D.; Liu, F. Independent and combined effects of soil warming and drought stress during anthesis on seed set and grain yield in two spring wheat varieties. J. Agric. Crop Sci. 2012, 198, 245–253. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Fischer, R.A.; Liboon, S.P. Sourcesink relations and effects of post-anthesis canopy defoliation in wheat at low latitudes. J. Agric. Sci. 1990, 114, 93–99. [Google Scholar] [CrossRef]
- Merah, O.; Monneveux, P. Contribution of different organs to grain filling in durum wheat under Mediterranean conditions I. Contribution of post-anthesis photosynthesis and remobilization. J. Agric. Crop. Sci. 2015, 201, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, S.; Cheng, M.; Jiang, H.; Zhang, X.; Peng, C.; Lu, X.; Zhang, M.; Jin, J. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. Int. J. Environ. Res. Public Health 2018, 15, 839. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Wang, F.; Si, J.; Feng, B.; Zhang, B.; Li, S.; Wang, Z. Increasing in ROS levels and callose deposition in peduncle vascular bundles of wheat (Triticum aestivum L.) grown under nitrogen deficiency. J. Plant. Interact. 2013, 8, 109–116. [Google Scholar] [CrossRef]
- Scofield, G.N.; Ruuska, S.A.; Aoki, N.; Lewis, D.C.; Tabe, L.M.; Jenkins, C.L.D. Starch storage in the stems of wheat plants: Localization and temporal changes. Ann. Bot. 2009, 103, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Nátrová, Z. Anatomical characteristics of the uppermost internode of winter wheat genotypes differing in stem length. Biol. Plant. 1991, 33, 491–494. [Google Scholar] [CrossRef]
Entry Name | Origin | Parentage |
---|---|---|
Standard genotypes | ||
Zemunska rosa 1 | Serbia | |
Zemunska rosa 2 | Serbia | |
Families | ||
MRI S4/I | Serbia | ZGKT 159/82 × Donska semidwarf |
MRI S10/I | Serbia | Highbury × Mexico 3 |
MRI D3/I | Serbia | Brigand × Pobeda |
MRI D6/I | Serbia | Bezostaya 1 × Florida |
MRI D10/I | Serbia | Lambriego Inia × Bezostaya 1 |
MRI D19/I | Serbia | NS 46/90 × Pobeda |
MRI D20/IP | Serbia | Lambriego Inia × Florida |
MRI D22/I | Serbia | Lambriego Inia × NS 46/90 |
Parents | ||
Donska semidwarf | Russia | |
Brigand | Great Britain | |
Highbury | Great Britain | |
Florida | USA | |
NS 46/90 | Serbia | |
Bezostaya 1 | Russia | |
Lambriego Inia | Chile | |
Mexico 3 | Mexico | |
Pobeda | Serbia | |
ZGKT 159/82 | Croatia |
Months | Growing Seasons | |||||
---|---|---|---|---|---|---|
2012–2013 | 2013–2014 | |||||
Mean Temperature (°C) | Days >30 °C | Precipitation (mm) | Mean Temperature (°C) | Days >30 °C | Precipitation (mm) | |
November | 9.9 | 0 | 22.6 | 9.4 | 0 | 28.7 |
December | 1.2 | 0 | 43.9 | 2.1 | 0 | 6.7 |
January | 2.8 | 0 | 54.8 | 4.6 | 0 | 24.6 |
February | 4.2 | 0 | 50.6 | 7.0 | 0 | 12.9 |
March | 6.0 | 0 | 87.9 | 9.9 | 0 | 44.5 |
April | 14.1 | 0 | 27.7 | 13.1 | 0 | 86.9 |
May | 18.2 | 3 | 98.6 | 16.8 | 0 | 233.4 |
June | 20.7 | 9 | 39.2 | 20.8 | 6 | 85.6 |
Mean/sum | 9.6 | 12 | 425.3 | 10.5 | 6 | 523.3 |
Trait | Standard Genotypes | Families | Parents | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± S.E. | Range | CV (%) | Mean ± S.E. | Range | CV (%) | Mean ± S.E. | Range | CV (%) | |
Days to anthesis | 127 a ± 0.0 | 127 | 0.0 | 132.1 a ± 1.16 | 128-137 | 2.5 | 131.7 a ± 1.45 | 127–138 | 3.5 |
Peduncle diameter (mm) | 2.54 b ± 0.03 | 2.51–2.58 | 1.9 | 2.91 a ± 0.12 | 2.53–3.36 | 11.3 | 2.94 a ± 0.09 | 2.38–3.44 | 9.6 |
Peduncle wall thickness (mm) | 0.54 a ± 0.14 | 0.53–0.56 | 3.6 | 0.57 a ± 0.02 | 0.51–0.66 | 9.2 | 0.58 a ± 0.02 | 0.49–0.679 | 11.0 |
Area of parenchyma (mm2) | 2.05 b ± 0.02 | 2.03–2.08 | 1.7 | 2.41 a ± 0.14 | 1.90–2.87 | 15.8 | 2.49 a ± 0.14 | 1.92–3.28 | 18.0 |
Number of large VBs * | 25.1 a ± 0.2 | 24.8–25.3 | 1.1 | 26.1 a ± 1.07 | 22.1–29.7 | 11.6 | 27.5 a ± 1.3 | 22.9–33.8 | 15.3 |
Phloem area in large VB (µm2) | 1500 b ± 49.4 | 1450–1549 | 4.7 | 1807.5 a ± 81.0 | 1562–2177 | 12.7 | 1637.4 ab ± 62.3 | 1378–1988 | 12.0 |
Area of chlorenchyma (mm2) | 0.24 b ± 0.01 | 0.23–0.25 | 4.3 | 0.34 a ± 0.02 | 0.24–0.44 | 20.3 | 0.35 a ± 0.02 | 0.24–0.46 | 18.0 |
Number of small VBs | 27.15 b ± 0.3 | 26.9–27.5 | 1.6 | 29.72 ab ± 1.1 | 25.8–33.1 | 10.2 | 34.24 a ± 2.1 | 25.4–45.15 | 19.4 |
Phloem area in small VB (µm2) | 161.0 a ± 7.6 | 153.5–168.6 | 6.7 | 184.3 a ± 9.82 | 150–222 | 15.1 | 166.9 a ± 6.1 | 138.2–201.3 | 11.5 |
Total phloem area in large VBs (mm2) | 0.037 b ± 0.001 | 0.036–0.038 | 5.2 | 0.047 a ± 0.003 | 0.037–0.060 | 19.0 | 0.045 ab ± 0.003 | 0.034–0.060 | 22.5 |
Total phloem area in small VBs (mm2) | 0.005 b ± 0.000 | 0.005–0.005 | 1.5 | 0.006 a ± 0.0003 | 0.005–0.007 | 15.1 | 0.006 a ± 0.0003 | 0.005–0.008 | 16.5 |
Total phloem area/peduncle section (mm2) | 0.04 b ± 0.00 | 0.04–0.04 | 4.4 | 0.05 a ± 0.003 | 0.04–0.07 | 18.1 | 0.05 a ± 0.03 | 0.04–0.07 | 20.91 |
Area of peduncle wall (mm2) | 3.43 b ± 0.013 | 3.42–3.45 | 0.6 | 4.11 a ± 0.194 | 3.29–4.86 | 13.4 | 4.41 a ± 0.21 | 3.17–5.57 | 15.4 |
Area of pith cavity (mm2) | 1.79 b ± 0.16 | 1.63–1.63 | 12.2 | 2.54 ab ± 0.32 | 1.53–3.75 | 35.5 | 2.70 a ± 0.25 | 1.35–3.76 | 29.4 |
Stem height (cm) | 88.5 b ± 1.0 | 87.4–89.5 | 1.7 | 96.1 a ± 1.9 | 88.0–103.6 | 5.6 | 88.6 ab ± 3.6 | 72.1–104.4 | 12.9 |
Peduncle length (cm) | 34.5 a ± 0.2 | 34.3–34.7 | 0.7 | 34.2 a ± 0.9 | 29.5–37.4 | 7.8 | 33.7 a ± 1.4 | 28.3–36.8 | 12.2 |
Peduncle extrusion (cm) | 15.3 a ± 0.1 | 15.2–15.3 | 0.6 | 12.1 a ± 1.0 | 8.8–16.9 | 25.9 | 12.9 a ± 1.3 | 7.2–19.2 | 31.2 |
Peduncle share of the total stem length (%) | 40 a ± 0.01 | 39–41 | 3.0 | 37 b ± 0.01 | 32–40 | 7.6 | 39 ab ± 0.01 | 35–40 | 9.6 |
Source of Variation | Main Stem Biomass | Number of Spikelets per Spike | Grain Number per Spike | Grain Weight per Spike | 1000-Grain Weight | Harvest Index | Grain-Filling Rate | Stem Reserve Contribution |
---|---|---|---|---|---|---|---|---|
p | ||||||||
Genotype (G) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment (T) | <0.001 | 0.168 ns | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Year (Y) | <0.001 | <0.001 | <0.001 | <0.001 | 0.18 ns | <0.001 | <0.001 | <0.001 |
G × T | <0.01 | 0.12 ns | <0.001 | <0.01 | <0.001 | 0.32 ns | <0.001 | <0.001 |
T × Y | 0.12 ns | 0.24 ns | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
G × Y | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
G × T × Y | <0.05 | 0.183 ns | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Traits | Treatment | Mean ± SE | DP/CP | Range | CV (%) | Mean ± SE | DP/CP | Range | CV (%) |
---|---|---|---|---|---|---|---|---|---|
2012–2013 | 2013–2014 | ||||||||
Main stem dry biomass (g) | CP | 1.9 aB ± 0.0 | 0.63 | 1.5–2.5 | 14.2 | 2.1 aA ± 0.1 | 0.76 | 1.5–3.0 | 18.5 |
DP | 1.2 bB ± 0.0 | 0.9–2.0 | 20.1 | 1.6 bA ± 0.1 | 1.3–2.1 | 18.4 | |||
Number of spikelets per spike | CP | 21.2 aB ± 0.5 | 0.97 | 16.3–26.7 | 11.1 | 22.6 aA ± 0.5 | 0.95 | 18.8–28.0 | 10.8 |
DP | 20.6 aA ± 0.5 | 16.0–26.7 | 11.3 | 21.4 aA ± 0.6 | 17.6–28.0 | 11.6 | |||
Number of grains per spike | CP | 49.2 aA ± 2.7 | 0.86 | 32.3–73.7 | 24.2 | 49.0 aA ± 3.1 | 0.76 | 35.0–86.2 | 28.5 |
DP | 42.5 bA ± 2.2 | 20.7–62.0 | 23.3 | 37.4 bA ± 3.1 | 19.4–71.6 | 37.2 | |||
Grain weight per spike (g) | CP | 1.8 aA ± 0.1 | 0.72 | 1.1–2.7 | 22.5 | 1.7 aA ± 0.1 | 0.76 | 0.7–2.5 | 27.2 |
DP | 1.3 bA ± 0.1 | 0.6–1.9 | 28.5 | 1.3 bA ± 0.1 | 0.4–2.1 | 37.1 | |||
1000-grain weight (g) | CP | 38.4 aA ± 1.5 | 0.78 | 24.3–47.9 | 17.3 | 34.5 aB ± 2.1 | 0.95 | 16.4–50.6 | 26.6 |
DP | 30.2 bA ± 1.5 | 20.0–44.7 | 21.9 | 33.0 aA ± 1.6 | 21.1–52.0 | 21.8 | |||
Harvest index (%) | CP | 43.6 aA ± 1.5 | 0.93 | 32.4–62.2 | 15.3 | 37.1 aB ± 1.3 | 0.88 | 18.8–44.0 | 15.7 |
DP | 40.5 aA ± 1.8 | 15.6–51.8 | 20.1 | 32.8 bB ± 2.4 | 13.1–49.3 | 33.2 | |||
Grain-filling rate (mg 100 GDD/day) | CP | 6.2 aA ± 0.3 | 0.77 | 4.0–7.5 | 17.8 | 4.9 aB ± 0.3 | 0.98 | 2.3–7.4 | 25.4 |
DP | 4.8 bA ± 0.2 | 3.4–7.0 | 20.9 | 4.8 aA ± 0.3 | 3.0–7.5 | 24.4 | |||
Stem reserve contribution (%) | CP | 18.8 bB ± 3.5 | 3.76 | 5.2–61.2 | 82.6 | 38.9 bA ± 5.3 | 2.00 | 7.8–99.0 | 61.0 |
DP | 70.7 aA ± 4.9 | 27.8–99.8 | 31.1 | 77.8 aA ± 5.5 | 34.6–99.0 | 31.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandić, V.; Savić, J.; Rančić, D.; Dodig, D. Contribution of Agro-Physiological and Morpho-Anatomical Traits to Grain Yield of Wheat Genotypes under Post-Anthesis Stress Induced by Defoliation. Agriculture 2023, 13, 673. https://doi.org/10.3390/agriculture13030673
Kandić V, Savić J, Rančić D, Dodig D. Contribution of Agro-Physiological and Morpho-Anatomical Traits to Grain Yield of Wheat Genotypes under Post-Anthesis Stress Induced by Defoliation. Agriculture. 2023; 13(3):673. https://doi.org/10.3390/agriculture13030673
Chicago/Turabian StyleKandić, Vesna, Jasna Savić, Dragana Rančić, and Dejan Dodig. 2023. "Contribution of Agro-Physiological and Morpho-Anatomical Traits to Grain Yield of Wheat Genotypes under Post-Anthesis Stress Induced by Defoliation" Agriculture 13, no. 3: 673. https://doi.org/10.3390/agriculture13030673
APA StyleKandić, V., Savić, J., Rančić, D., & Dodig, D. (2023). Contribution of Agro-Physiological and Morpho-Anatomical Traits to Grain Yield of Wheat Genotypes under Post-Anthesis Stress Induced by Defoliation. Agriculture, 13(3), 673. https://doi.org/10.3390/agriculture13030673