Effect of Basil, Thyme and Sage Essential Oils as Phytogenic Feed Additives on Production Performances, Meat Quality and Intestinal Microbiota in Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics, Supplements, Birds, Diets and Experimental Design
2.2. Production Performance, European Production Efficiency Factor and European Broiler Index
2.3. Slaughter Measurements, Sampling of Meat and Intestinal Content
2.4. Chemical Analyses
2.5. Colorimetric and Textural Parameters Analyses
2.6. Microbiota Analyses
2.7. Statistical Analysis
3. Results
3.1. Effect of Dietary Supplements on Production Performances, Production Efficiency Factors and Anatomical Parts Development in Broiler Chickens Supplemented with Essential Oils
3.2. Effect of Dietary Supplements on Colorimetric and Textural Parameters of Thigh Meat
3.3. Effect of Dietary Supplements on Antioxidant Capacity and Polyphenols Content in Thigh Meat
3.4. Effect of Dietary Supplements on Fatty Acid Composition of Thigh Meat
3.5. Effect of Dietary Supplements on Intestinal Microbiota of Broiler Chickens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lefter, N.A.; Hăbeanu, M.; Gheorghe, A.; Dumitru, M.; Gal, C.; Vlaicu, P.A. Effects of Microencapsulated Probiotics on Performance, Organ Development, Diarrhoea Incidences, Blood Parameters, Intestinal Histomorphology and Microflora in Weaning Piglets. Agriculture 2023, 13, 39. [Google Scholar] [CrossRef]
- Moorthy, M.; Ravi, S.; Ravikumar, M.; Viswanathan, K.; Edwin, S.C. Ginger, pepper and curry leaf powder as feed additives in broiler diet. Int J. Poult. Sci. 2009, 8, 779–782. [Google Scholar]
- Saracila, M.; Criste, R.D.; Panaite, T.D.; Vlaicu, P.A.; Tabuc, C.; Turcu, R.P.; Olteanu, M. Artemisia annua as phytogenic feed additive in the diet of broilers (14–35 days) reared under heat stress (32 °C). Braz. J. Poult. Sci. 2018, 20, 825–832. [Google Scholar] [CrossRef] [Green Version]
- Turcu, R.P.; Tabuc, C.; Vlaicu, P.A.; Panaite, T.D.; Buleandra, M.; Saracila, M. Effect of the dietary oregano (Origanum vulgare L.) powder and oil on the balance of the intestinal microflora of broilers reared under heat stress (32 °C). Sci. Pap. Ser. D Anim. Sci. 2018, 61, 77–86. [Google Scholar]
- Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Saracila, M.; Panaite, T.D.; Cornescu, G.M. Nutritional Composition and Bioactive Compounds of Basil, Thyme and Sage Plant Additives and Their Functionality on Broiler Thigh Meat Quality. Foods 2022, 11, 1105. [Google Scholar] [CrossRef]
- Hayajneh, F.M.F. Natural feed additives for broiler chickens. S. Afr. J. Anim. Sci. 2019, 49, 869–875. [Google Scholar]
- Truong, L.; Morash, D.; Liu, Y.; King, A. Food waste in animal feed with a focus on use for broilers. Int. J. Recycl. Org. Waste Agric. 2019, 8, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Vlaicu, P.A.; Untea, A.E.; Panaite, T.D.; Turcu, R.P. Effect of dietary orange and grapefruit peel on growth performance, health status, meat quality and intestinal microflora of broiler chickens. Ital. J. Anim. Sci. 2020, 19, 1394–1405. [Google Scholar] [CrossRef]
- Puvača, N.; Tufarelli, V.; Giannenas, I. Essential Oils in Broiler Chicken Production, Immunity and Meat Quality: Review of Thymus vulgaris, Origanum vulgare, and Rosmarinus officinalis. Agriculture 2022, 12, 874. [Google Scholar] [CrossRef]
- Raza, Q.S.; Saleemi, M.K.; Gul, S.; Irshad, H.; Fayyaz, A.; Zaheer, I.; Tahir, M.W.; Fatima, Z.; Chohan, T.Z.; Imran, M.; et al. Role of essential oils/volatile oils in poultry production—A review on present, past and future contemplations. Agrobiol. Rec. 2022, 7, 40–56. [Google Scholar]
- Popović, S.; Puvača, N.; Kostadinović, L.; Džinić, N.; Bošnjak, J.; Vasiljević, M.; Djuragic, O. Effects of Dietary Essential Oils on Productive Performance, Blood Lipid Profile, Enzyme Activity and Immunological Response of Broiler Chickens. Eur. Poult. Sci. 2016, 80, 1–12. [Google Scholar]
- El-Ashram, S.; Abdelhafez, G.A. Effects of Phytogenic Supplementation on Productive Performance of Broiler Chickens. J. Appl. Poult. Res. 2020, 29, 852–862. [Google Scholar]
- Khattak, F.; Ronchi, A.; Castelli, P.; Sparks, N. Effects of natural blend of essential oil on growth performance, blood biochemistry, cecal morphology, and carcass quality of broiler chickens. Poult. Sci. 2014, 93, 132–137. [Google Scholar]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential Oil and Aromatic Plants as Feed Additives in Non-Ruminant Nutrition: A Review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar]
- Saleh, N.; Allam, T.; Ghazy, E.; ElLatif, A. The Effects of Different Levels of Thyme (Thymus vulgaris) and Ginger (Zingiber officinale) Essential Oils on Performance, Hematological, Biochemical and Immunological Parameters in Broilers. Glob. Vet. 2019, 12, 736–744. [Google Scholar]
- Schoeler, M.; Caesar, R. Dietary Lipids, Gut Microbiota and Lipid Metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar]
- Kostadinović, L.; Lević, J.; Popović, S.T.; Čabarkapa, I.; Puvača, N.; Djuragic, O.; Kormanjoš, S. Dietary Inclusion of Artemisia Absinthium for Management of Growth Performance, Antioxidative Status and Quality of Chicken Meat. Eur. Poult. Sci. 2015, 79, 1–10. [Google Scholar]
- Yarandi, S.S.; Hebbar, G.; Sauer, C.G.; Cole, C.R.; Ziegler, T.R. Diverse Roles of Leptin in the Gastrointestinal Tract: Modulation of Motility, Absorption, Growth, and Inflammation. Nutrition 2011, 27, 269–275. [Google Scholar]
- Ross Broiler Management Handbook; Ross: Huntsville, AL, USA, 2018; p. 132. Available online: www.aviagen.com (accessed on 15 March 2023).
- Untea, A.; Lupu, A.; Saracila, M.; Panaite, T. Comparison of ABTS, DPPH, phosphomolybdenum assays for estimating antioxidant activity and phenolic compounds in five different plant extracts. Bull. UASVM Anim. Sci. Biotechnol. 2018, 75, 111–114. [Google Scholar]
- Turcu, R.P.; Olteanu, M.; Criste, R.D.; Panaite, T.D.; Ropotă, M.; Vlaicu, P.A.; Drăgotoiu, D. Grapeseed meal used as natural antioxidant in high fatty acid diets for Hubbard broilers. Braz. J. Poult. Sci. 2019, 21, 001–012. [Google Scholar]
- Vlaicu, P.A.; Panaite, T.D.; Untea, A.E.; Idriceanu, L.; Cornescu, G.M. Herbal plants as feed additives in broiler chicken diets. Arch. Zootech. 2021, 24, 76–95. [Google Scholar]
- Dumitru, M.; Sorescu, I.; Habeanu, M.; Tabuc, C.; Idriceanu, L.; Jurcoane, S. Preliminary characterisation of Bacillus subtilis strain use as a dietary probiotic bio-additive in weaning piglet. Food Feed. Res. 2018, 45, 203–211. [Google Scholar]
- Du, E.; Wang, W.; Gan, L.; Li, Z.; Guo, S.; Guo, Y. Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2016, 7, 1–10. [Google Scholar]
- Attia, Y.; Al-Harthi, M.; El-Kelawy, M. Utilisation of essential oils as a natural growth promoter for broiler chickens. Ital. J. Anim. Sci. 2019, 18, 1005–1012. [Google Scholar]
- Mokhtari, S.; Rahati, M.; Seidavi, A.; Haq, Q.M.I.; Kadim, I.; Laudadio, V.; Tufarelli, V. Effects of feed supplementation with lavender (Lavandula angustifolia) essence on growth performance, carcass traits, blood constituents and caecal microbiota of broiler chickens. Eur. Poult. Sci. 2018, 82, 1–11. [Google Scholar]
- Turcu, R.P.; Panaite, T.D.; Untea, A.E.; Vlaicu, P.A.; Badea, I.A.; Mironeasa, S. Effects of Grape Seed Oil Supplementation to Broilers Diets on Growth Performance, Meat Fatty Acids, Health Lipid Indices and Lipid Oxidation Parameters. Agriculture 2021, 11, 404. [Google Scholar] [CrossRef]
- Jang, A.; Liu, X.D.; Shin, M.H.; Lee, B.D.; Lee, S.K.; Lee, J.H.; Jo, C. Antioxidative potential of raw breast meat from broiler chicks fed a dietary medicinal herb extract mix. Poult. Sci. 2008, 87, 2382–2389. [Google Scholar]
- Cerisuelo, A.; Marín, C.; Sánchez-Vizcaino, F.; Gómez, E.A.; De La Fuente, J.M.; Durán, R.; Fernández, C. The impact of a specific blend of essential oil components and sodium butyrate in feed on growth performance and Salmonella counts in experimentally challenged broilers. Poult. Sci. 2014, 93, 599–606. [Google Scholar]
- El Tazi, S.M.; Zolikha, M.A.; Mohamed, K.A.; Mukhtar, M.A. Response of broiler chicks to diets supplemented with garlic essential oil as natural growth promoter. IJSR 2014, 3, 152–156. [Google Scholar]
- Amal, O.A.; Mukhtar, A.M.; Mohamed, K.A.; Ahlam, A.H. Use of Halfa Bar essential oil (HBO) as a natural growth promoter in broiler nutrition. Int. J. Poult. Sci. 2013, 12, 15–18. [Google Scholar]
- Xue, F.; Shi, L.; Li, Y.; Ni, A.; Ma, H.; Sun, Y.; Chen, J. Effects of replacing dietary Aureomycin with a combination of plant essential oils on production performance and gastrointestinal health of broilers. Poult. Sci. 2020, 99, 4521–4529. [Google Scholar]
- Dieumou, F.E.; Teguia, A.; Kuiate, J.R.; Tamokou, J.D.; Doma, U.D.; Abdullahi, U.S.; Chiroma, A.E. Effect of diets fortified with garlic organic extract and streptomycin sulphate on growth performance and carcass characteristics of broilers. Int. J. Livest. Prod. 2012, 3, 36–42. [Google Scholar]
- Ding, X.; Yu, Y.; Su, Z.; Zhang, K. Effects of essential oils on performance, egg quality, nutrient digestibility and yolk fatty acid profile in laying hens. Anim. Nutr. 2017, 3, 127–131. [Google Scholar]
- Goliomytis, M.; Kartsonas, N.; Charismiadou, M.A.; Symeon, G.K.; Simitzis, P.E.; Deligeorgis, S.G. The influence of naringin or hesperidin dietary supplementation on broiler meat quality and oxidative stability. PLoS ONE 2015, 10, e0141652. [Google Scholar]
- Hernández-Coronado, A.C.; Silva-Vázquez, R.; Rangel-Nava, Z.E.; Hernández-Martínez, C.A.; Kawas-Garza, J.R.; Hume, M.E.; Méndez-Zamora, G. Mexican oregano essential oils given in drinking water on performance, carcass traits, and meat quality of broilers. Poult. Sci. 2019, 98, 3050–3058. [Google Scholar]
- Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. Technol. 2010, 158, 1–14. [Google Scholar]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86 (Suppl. S14), E140–E148. [Google Scholar]
- Joshi, R.K. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc. Sci. Life 2014, 33, 151. [Google Scholar]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Afolayan, A.J.; Muchenje, V. Phytochemical constituents and antioxidant activity of sweet basil (Ocimum basilicum L.) essential oil on ground beef from boran and nguni cattle. Int. J. Food Sci. 2019, 2019, 2628747. [Google Scholar] [CrossRef] [Green Version]
- Untea, A.E.; Turcu, R.P.; Saracila, M.; Vlaicu, P.A.; Panaite, T.D.; Oancea, A.G. Broiler meat fatty acids composition, lipid metabolism, and oxidative stability parameters as affected by cranberry leaves and walnut meal supplemented diets. Sci. Rep. 2022, 12, 21618. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Ghazanfari, S.; Sharifi, S.D.; Ahmadi Gavlighi, H. Influence of dietary plant fats and antioxidant supplementations on performance, apparent metabolizable energy and protein digestibility, lipid oxidation and fatty acid composition of meat in broiler chicken. Vet. Med. Sci. 2020, 6, 54–68. [Google Scholar]
- Mohebodini, H.; Jazi, V.; Ashayerizadeh, A.; Toghyani, M.; Tellez-Isaias, G. Productive parameters, cecal microflora, nutrient digestibility, antioxidant status, and thigh muscle fatty acid profile in broiler chickens fed with Eucalyptus globulus essential oil. Poult. Sci. 2021, 100, 100922. [Google Scholar]
- Amer, S.A.; Abdel-Wareth, A.A.A.; Gouda, A.; Saleh, G.K.; Nassar, A.H.; Sherief, W.R.I.A.; Albogami, S.; Shalaby, S.I.; Abdelazim, A.M.; Abomughaid, M.M. Impact of Dietary Lavender Essential Oil on the Growth and Fatty Acid Profile of Breast Muscles, Antioxidant Activity, and Inflammatory Responses in Broiler Chickens. Antioxidants 2022, 11, 1798. [Google Scholar] [CrossRef]
- Mak, P.H.; Rehman, M.A.; Kiarie, E.G.; Topp, E.; Diarra, M.S. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: A review. J. Anim. Sci. Biotechnol. 2022, 13, 1–20. [Google Scholar]
- Vlaicu, P.A.; Untea, A.E.; Gavris, T.; Cornescu, G.M. Basil, thyme and sage herbal plants and their associated essential oils as feed additives in chicken broilers. A literature review. Sci. Pap. Ser. D Anim. Sci. 2022, 65, 238–260. [Google Scholar]
- Yamauchi, K.E.; Incharoen, T.; Yamauchi, K. The relationship between intestinal histology and function as shown by compensatory enlargement of remnant villi after midgut resection in chickens. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2010, 293, 2071–2079. [Google Scholar]
- Rasouli, B.; Movahhedkhah, S.; Seidavi, A.; Haq, Q.M.I.; Kadim, I.; Laudadio, V.; Mazzei, D.; Tufarelli, V. Effect of sage (Salvia officinalis L.) aqueous leaf extract on performance, blood constituents, immunity response and ileal microflora of broiler chickens. Agrofor. Syst. 2020, 94, 1179–1187. [Google Scholar]
- Saracila, M.; Panaite, T.D.; Predescu, N.C.; Untea, A.E.; Vlaicu, P.A. Effect of Dietary Salicin Standardized Extract from Salix alba Bark on Oxidative Stress Biomarkers and Intestinal Microflora of Broiler Chickens Exposed to Heat Stress. Agriculture 2023, 13, 698. [Google Scholar] [CrossRef]
- Roofchaee, A.; Irani, M.; Ebrahimzadeh, M.A.; Akbari, M.R. Effect of dietary oregano (Origanum vulgare L.) essential oil on growth performance, cecal microflora and serum antioxidant activity of broiler chickens. Afri. J. Biotechnol. 2011, 10, 6177–6183. [Google Scholar]
- Vukić-Vranješ, M.; Tolimir, N.; Vukmirović, Đ.; Čolović, R.; Stanaćev, V.; Ikonić, P.; Pavkov, S. Effect of phytogenic additives on performance, morphology and caecal microflora of broiler chickens. Biotechnol. Anim. Husban. 2013, 29, 311–319. [Google Scholar]
Ingredients, % as Feed Basis | Starter 0–12 d | Grower 13–28 d | Finisher I 29–35 d | Finisher II 36–42 d |
---|---|---|---|---|
Corn | 45.00 | 45.00 | 44.10 | 44.86 |
Soybean meal | 34.81 | 24.75 | 20.77 | 17.33 |
Corn gluten | 3.00 | 5.00 | 5.00 | 5.00 |
Wheat | 8.86 | 11.87 | 15.55 | 18.51 |
Vegetal oil | 3.42 | 4.32 | 5.00 | 5.46 |
Alfalfa meal | 0.00 | 5.00 | 5.00 | 5.00 |
Essential oils | 0.00 | 0.05 | 0.05 | 0.05 |
Acidifying | 0.00 | 0.10 | 0.10 | 0.10 |
L—Lysine—HCl | 0.26 | 0.10 | 0.08 | 0.11 |
DL-Methionine | 0.30 | 0.18 | 0.16 | 0.14 |
L-Threonine | 0.10 | 0.10 | 0.08 | 0.09 |
Choline chloride | 0.00 | 0.04 | 0.04 | 0.04 |
Calcium carbonate | 1.37 | 0.96 | 0.85 | 0.87 |
Monocalcium phosphate | 1.51 | 1.33 | 1.15 | 1.16 |
Chloride | 0.37 | 0.35 | 0.35 | 0.33 |
Premix | 1.00 | 1.00 | 1.00 | 1.00 |
Total ingredients | 100 | 100 | 100 | 100 |
Calculated energy and nutrients | ||||
Metabolizable energy, kcal/kg | 2975 | 3025 | 3100 | 3150 |
Crude protein, % | 21.41 | 19.71 | 18.50 | 17.50 |
Ether extract, % | 5.34 | 6.40 | 7.11 | 7.58 |
Ash, % | 3.12 | 3.20 | 2.99 | 2.81 |
Crude fiber, % | 3.88 | 4.43 | 4.25 | 4.08 |
Calcium, % | 0.90 | 0.84 | 0.76 | 0.76 |
Available phosphorus, % | 0.45 | 0.42 | 0.38 | 0.38 |
Total amino acids | ||||
Lysine, % | 1.33 | 1.22 | 1.11 | 1.05 |
Methionine + Cysteine, % | 1.00 | 0.94 | 0.88 | 0.84 |
Threonine, % | 0.92 | 0.81 | 0.73 | 0.70 |
Tryptophan, % | 0.23 | 0.19 | 0.18 | 0.16 |
Valine, % | 0.75 | 0.76 | 0.76 | 0.78 |
Arginine, % | 1.07 | 1.07 | 1.07 | 1.08 |
Isoleucine, % | 0.67 | 0.68 | 0.69 | 0.69 |
Leucine, % | 1.10 | 1.10 | 1.10 | 1.10 |
Determined nutrients | ||||
Polyphenols content, mg GAE/g | 2.01 | 2.43 | 2.37 | 2.26 |
Antioxidant capacity, mM Trolox | 14.77 | 16.98 | 17.33 | 17.57 |
Item | CON | EOB | EOT | EOS | SEM | p-Value |
---|---|---|---|---|---|---|
Production performances | ||||||
Initial BW, g | 246.8 | 246.6 | 247.4 | 247.5 | 3.480 | 0.9997 |
Final BW, g | 2676 b | 2784 a | 2799 a | 2791 a | 16.98 | 0.0285 |
DWG, g/day | 86.76 b | 92.51 a | 93.42 a | 95.09 a | 0.709 | 0.0494 |
ADFI, g/chick/day | 135.9 | 132.2 | 129.9 | 130.6 | 3.429 | 0.9265 |
FCR, kg feed/kg weight | 1.62 a | 1.55 b | 1.55 b | 1.53 b | 0.029 | 0.0317 |
Viability, % | 94.20 | 100 | 100 | 100 | - | - |
RGR, % | 166.2 | 167.5 | 167.5 | 167.4 | 3.280 | 0.0577 |
Efficiency factors, % | ||||||
EBI | 536.9 b | 565.4 a | 568.9 a | 570.7 a | 0.065 | 0.0200 |
EPEF | 591.4 b | 622.1 a | 624.1 a | 628.0 a | 5.364 | 0.0090 |
Anatomical parts development, % | ||||||
Carcass | 78.95 b | 83.05 a | 82.57 a | 83.14 a | 0.483 | 0.0257 |
Thigh muscle | 17.32 | 17.74 | 17.59 | 18.64 | 0.253 | 0.2856 |
Breast muscle | 21.65 | 22.09 | 22.21 | 21.99 | 0.191 | 0.3715 |
Liver | 2.13 | 2.13 | 2.27 | 2.30 | 0.051 | 0.2957 |
Gizzard | 1.15 | 1.16 | 1.17 | 1.17 | 0.023 | 0.9511 |
Heart | 0.53 | 0.54 | 0.53 | 0.54 | 0.013 | 0.9917 |
Item | CON | EOB | EOT | EOS | SEM | p-Value |
---|---|---|---|---|---|---|
Colorimetric parameters | ||||||
Lightness (L *) | 42.38 b | 46.21 a | 47.18 a | 45.62 a | 0.285 | 0.0233 |
Redness (a *) | 2.79 | 2.88 | 2.91 | 2.92 | 0.519 | 0.0520 |
Yellowness (b *) | 9.31 | 9.68 | 9.54 | 9.67 | 0.188 | 0.0671 |
Chroma (C) | 10.22 | 10.67 | 10.51 | 10.73 | 0.102 | 0.2941 |
Hue angle (H°) | 4.06 b | 5.21 a | 5.37 a | 5.26 a | 0.223 | 0.0394 |
Color difference (ΔE *) | 0.53 | 0.88 | 0.92 | 0.89 | 0.372 | 0.0607 |
Textural parameters | ||||||
Hardness, grams | 3194 | 3283 | 3213 | 3228 | 15.27 | 0.9963 |
Gumminess, grams | 1391 | 1379 | 1315 | 1369 | 12.30 | 0.2811 |
Springiness, millimeters | 2.50 | 2.65 | 2.59 | 2.57 | 0.132 | 0.1155 |
Resilience | 2.39 | 2.65 | 2.22 | 2.14 | 0.015 | 0.2348 |
Cohesiveness | 0.38 | 0.35 | 0.33 | 0.34 | 0.113 | 0.0874 |
Adhesiveness, Megajoule | 0.22 | 0.27 | 0.30 | 0.29 | 0.047 | 1.0455 |
Chewiness, Megajoule | 15.12 | 16.07 | 14.33 | 13.98 | 4.886 | 0.9999 |
Fatty Acids, g/100 g | CON | EOB | EOT | EOS | SEM | p-Value |
---|---|---|---|---|---|---|
Butyric C4:0 | 0.55 a | 0.39 b | 0.42 b | 0.41 b | 0.018 | 0.0009 |
Caproic C6:0 | 0.46 a | 0.31 b | 0.30 b | 0.32 b | 0.018 | 0.0001 |
Caprylic C8:0 | 0.65 a | 0.16 b | 0.16 b | 0.18 b | 0.057 | <0.0001 |
Capric C10:0 | 0.42 a | 0.06 b | 0.06 b | 0.10 b | 0.027 | <0.0001 |
Lauric C12:0 | 0.02 | 0.03 | 0.03 | 0.03 | 0.004 | 0.4358 |
Myristic C14:0 | 1.35 a | 0.57 c | 0.71 bc | 0.78 b | 0.067 | <0.0001 |
Myristioleic C14:1 | 0.10 | 0.11 | 0.11 | 0.12 | 0.003 | 0.1672 |
Pentadecanoic C15:0 | 0.47 | 0.49 | 0.51 | 0.47 | 0.122 | 0.0719 |
Pentadecenoic C15:1 | 1.38 b | 1.73 a | 1.67 a | 1.76 a | 0.064 | 0.0326 |
Palmitic C16:0 | 25.76 a | 23.97 c | 24.77 b | 24.67 b | 0.148 | <0.0001 |
Palmitoleic C16:1 | 2.48 | 2.45 | 2.50 | 2.48 | 0.077 | 0.0513 |
Heptadecanoic C17:0 | 0.08 | 0.09 | 0.09 | 0.12 | 0.006 | 0.0765 |
Heptadecenoic C17:1 | 0.29 | 0.31 | 0.30 | 0.31 | 0.022 | 0.1346 |
Stearic C18:0 | 10.07 | 10.52 | 10.48 | 10.54 | 0.055 | 0.0806 |
Oleic cis C18:1n9 | 42.01 a | 40.06 b | 39.44 b | 39.97 b | 0.245 | 0.0293 |
Linoleic cis C18:2n6 | 7.48 b | 8.04 a | 8.11 a | 8.13 a | 0.060 | <0.0001 |
Linolenic γ C18:3n6 | 0.06 | 0.03 | 0.07 | 0.06 | 0.007 | 0.3791 |
Linolenic α C18:3n3 | 0.10 b | 0.24 a | 0.23 a | 0.24 a | 0.004 | 0.0376 |
Conjugated LA C18:2 | 0.33 | 0.32 | 0.32 | 0.31 | 0.004 | 0.4257 |
Octadecatetraenoic C18:4n3 | 1.38 b | 1.51 ab | 1.60 ab | 1.76 a | 0.041 | 0.0450 |
Eicosadienoic C20:2n6 | 2.51 | 2.85 | 2.75 | 2.68 | 0.087 | 0.9057 |
Arachidonic C22:4n6 | 0.15 | 0.12 | 0.09 | 0.12 | 0.006 | 0.0921 |
Docosadienoic C22:2n6 | 0.57 | 0.64 | 0.59 | 0.61 | 0.017 | 0.1796 |
Docosatrienoic C22:3n6 | 0.64 | 0.77 | 0.63 | 0.71 | 0.028 | 0.1485 |
Eicosapentaenoic C20:5n3 | 0.71 c | 0.80 b | 0.81 b | 0.94 a | 0.020 | <0.0001 |
Lignoceric C 24:0 | 0.80 b | 0.99 a | 0.86 ab | 0.86 ab | 0.115 | 0.0612 |
ΣSFA | 40.40 a | 37.68 b | 38.45 b | 38.54 b | 0.486 | 0.0335 |
ΣMUFA | 46.26 a | 44.67 b | 44.02 b | 44.63 b | 0.190 | 0.0337 |
ΣPUFA | 13.70 b | 15.08 a | 15.11 a | 15.43 a | 0.172 | 0.0002 |
Σn-6 PUFA | 11.70 b | 12.52 a | 12.47 a | 12.49 a | 0.138 | 0.0085 |
Σn-3 PUFA | 2.00 b | 2.56 a | 2.64 a | 2.94 a | 0.092 | 0.0063 |
n-6/n-3 ratio | 6.76 a | 4.83 b | 4.72 b | 4.29 b | 0.428 | 0.0068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlaicu, P.A.; Untea, A.E.; Panaite, T.D.; Saracila, M.; Turcu, R.P.; Dumitru, M. Effect of Basil, Thyme and Sage Essential Oils as Phytogenic Feed Additives on Production Performances, Meat Quality and Intestinal Microbiota in Broiler Chickens. Agriculture 2023, 13, 874. https://doi.org/10.3390/agriculture13040874
Vlaicu PA, Untea AE, Panaite TD, Saracila M, Turcu RP, Dumitru M. Effect of Basil, Thyme and Sage Essential Oils as Phytogenic Feed Additives on Production Performances, Meat Quality and Intestinal Microbiota in Broiler Chickens. Agriculture. 2023; 13(4):874. https://doi.org/10.3390/agriculture13040874
Chicago/Turabian StyleVlaicu, Petru Alexandru, Arabela Elena Untea, Tatiana Dumitra Panaite, Mihaela Saracila, Raluca Paula Turcu, and Mihaela Dumitru. 2023. "Effect of Basil, Thyme and Sage Essential Oils as Phytogenic Feed Additives on Production Performances, Meat Quality and Intestinal Microbiota in Broiler Chickens" Agriculture 13, no. 4: 874. https://doi.org/10.3390/agriculture13040874
APA StyleVlaicu, P. A., Untea, A. E., Panaite, T. D., Saracila, M., Turcu, R. P., & Dumitru, M. (2023). Effect of Basil, Thyme and Sage Essential Oils as Phytogenic Feed Additives on Production Performances, Meat Quality and Intestinal Microbiota in Broiler Chickens. Agriculture, 13(4), 874. https://doi.org/10.3390/agriculture13040874