Assessment of Resistance of Different Varieties of Winter Wheat to Leaf Fungal Diseases in Organic Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Localization
2.2. Structure of the Experiment
2.3. Monitoring of Leaf Diseases
2.4. Weather Monitoring
- P—precipitation [mm]
- ETP—evapotranspiration [mm]
- d—length of day [h]
- ln—natural logarithm
- h—sunshine duration [h]
- t—average air temperature [°C]
- f—relative humidity, 1 p.m. [%]
- v—average wind speed [m·s−1].
2.5. Statistical Processing
3. Results and Discussion
3.1. Effect of the Air Temperature on Plant Health and Severity of Fungal Deses
3.2. Influence of Precipitation on the Incidence of Fungal Diseases
3.3. Climatic Water Balance and Plant Health
3.4. Resistance of Winter Wheat in Different Years
3.5. Ranking of Winter Wheat Varieties Based on Fungal Disease Resistance
3.6. Importance of Individual Fungal Diseases
4. Conclusions
- The course of weather determined the incidence of fungal diseases. The highest infestation occurred in years with low precipitation sums in years 2018, 2019, and 2022. Drought preceding plant maturation caused plant weakening and increased susceptibility, particularly to brown rust. The most favorable conditions for diseases occurred when the first half of the year was dry and warm and the second half was wet and cold.
- The most important fungal disease of organic winter wheat was brown rust, which determined the total infestation and the occurrence of other diseases. The second most occurring disease was Septoria leaf spot. Diseases such as tan spot, yellow rust, powdery mildew, and fusariosis had a lesser impact on crops.
- Leaf Septoria was associated with the highest yield losses. High-yielding varieties are often susceptible to brown rust.
- At least 10 different varieties with similar results can be classified as resistant to fungal diseases. Such a broad recommendation will maintain diversity in agriculture and this will allow for the possible selection of varieties and mixtures, depending on the purpose of the crop and the location. The result can be applied over a wide geographical area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, S.; Gettu, N.; Swain, B.; Kumari, K.; Ojha, N.; Gunthe, S.S. Bioaerosol impact on crop health over India due to emerging fungal diseases (EFDs): An important missing link. Environ. Sci. Pollut. Res. 2020, 27, 12802–12829. [Google Scholar] [CrossRef]
- Fones, H.N.; Bebber, D.P.; Chaloner, T.M.; Kay, W.T.; Steinberg, G.; Gurr, S.J. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 2020, 1, 332–342. [Google Scholar] [CrossRef]
- Różewicz, M.; Wyzińska, M.; Grabiński, J. The most important fungal diseases of cereals—Problems and possible solutions. Agronomy 2021, 11, 714. [Google Scholar] [CrossRef]
- Korbas, M.; Horoszkiewicz-Janka, J.; Jajor, E. Simplified cultivation systems and the occurrence of disease offenders. Prog. Plant Prot. 2008, 48, 1431–1438. (In Polish) [Google Scholar]
- Horoszkiewicz-Janka, J.; Jajor, E.; Korbas, M. The occurrence of winter wheat diseases depending on selected agrotechnical factors. Prog. Plant Prot. 2012, 52, 998–1004. (In Polish) [Google Scholar]
- Udayanga, D.; Miriyagalla, S.D.; Herath, I.S.; Castlebury, L.A.; Ferdinandez, H.S.; Manamgoda, D.S. Foliar pathogenic fungi: Growing threats to global food security and ecosystem health. Ceylon J. Sci. 2020, 49, 337–353. [Google Scholar] [CrossRef]
- Islam, M.T.; Gupta, D.R.; Hossain, A.; Roy, K.K.; He, X.; Kabir, M.R.; Wang, G.L. Wheat blast: A new threat to food security. Phytopathol. Res. 2020, 2, 28. [Google Scholar] [CrossRef]
- ADMS—Agricultural Drought Monitoring System. Available online: https://susza.iung.pulawy.pl/en/index/ (accessed on 8 March 2023).
- Tekiela, A. Occurrence of diseases and colonization of winter wheat grain by pathogenic fungi in organic farms in the Podlasie region. J. Res. Appl. Agric. Eng. 2008, 53, 120–122. (In Polish) [Google Scholar]
- Szwejkowski, Z.; Kurowski, T.P. Research on the influence of weather factors on the degree of invasiveness of fungal pathogens in the environment on the example of winter wheat. Przeg. Nauk. Inz. Kszt. Sr. 2009, 26, 102–108. (In Polish) [Google Scholar]
- Haq, I.U.; Ijaz, S. History and recent trends in plant disease control: An overview. In Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches; Ul Haq, I., Ijaz, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–13. [Google Scholar]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prandecki, K.; Wrzaszcz, W.; Zieliński, M. Environmental and climate challenges to agriculture in Poland in the context of objectives adopted in the European Green Deal strategy. Sustainability 2021, 13, 10318. [Google Scholar] [CrossRef]
- Spence, N.; Hill, L.; Morris, J. How the global threat of pests and diseases impacts plants, people, and the planet. Plants People Planet 2020, 2, 5–13. [Google Scholar] [CrossRef]
- Wachowska, U.; Kucharska, K.; Pluskota, W.; Czaplicki, S.; Stuper-Szablewska, K. Bacteria Associated with Winter Wheat Degrade Fusarium Mycotoxins and Triazole Fungicide Residues. Agronomy 2020, 10, 1673. [Google Scholar] [CrossRef]
- Smagacz, J.; Martyniuk, S. Infection of the stalk base and roots of winter wheat grown after various forecrops by pathogens, with particular emphasis on Gaeumannomyces graminis. Prog. Plant Prot. 2001, 4, 745–746. (In Polish) [Google Scholar]
- Korbas, M. Basics of diseases—Possibilities and perspectives of combating. Prog. Plant Prot. 2004, 44, 147–154. (In Polish) [Google Scholar]
- Majchrzak, B.; Chodorowski, B.; Okorski, A. Diseases of the stalk of winter wheat grown after the Brassicaceae family. Acta Agrobot. 2005, 58, 307–318. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Czarnecka, D.; Czubacka, A.; Agacka-Mołdoch, M.; Trojak-Goluch, A.; Księżak, J. The occurrence of fungal diseases in maize in organic farming versus an integrated management system. Agronomy 2022, 12, 558. [Google Scholar] [CrossRef]
- Lombardo, L.; Zelasco, S. Biotech approaches to overcome the limitations of using transgenic plants in organic farming. Sustainability 2016, 8, 497. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.Q.; Kong, Z.X.; Fu, B.S.; Li, N.; Zhang, L.X.; Jia, H.Y.; Ma, Z.Q. Identyfication and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor. Appl. Genet. 2011, 123, 1099–1106. [Google Scholar] [CrossRef]
- Laidig, F.; Feike, T.; Hadasch, S.; Rentel, D.; Klocke, B.; Miedaner, T.; Piepho, H.P. Breeding progress of disease resistance and impact of disease severity under natural infections in winter wheat variety trials. Theor. Appl. Genet. 2021, 134, 1281–1302. [Google Scholar] [CrossRef] [PubMed]
- Feledyn-Szewczyk, B.; Cacak-Pietrzak, G.; Lenc, L.; Stalenga, J. Rating of spring wheat varieties (Triticum aestivum L.) according to their suitability for organic agriculture. Agronomy 2020, 10, 1900. [Google Scholar] [CrossRef]
- Doroszewski, A.; Jadczyszyn, J.; Kozyra, J.; Pudełko, R.; Stuczyński, T.; Mizak, K.; Łopatka, A.; Koza, P.; Górski, T.; Wróblewska, E. Fundamentals of the agricultural drought monitoring system. Woda Srod. Obsz. Wiej. 2012, 12, 77–91. (In Polish) [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Paleontological statistics software package for education and data analysis. Paleontol. Electron. 2001, 4, 9. [Google Scholar]
- Grzanka, M.; Sobiech, Ł.; Danielewicz, J.; Horoszkiewicz-Janka, J.; Skrzypczak, G.; Sawinska, Z.; Świtek, S. Impact of essential oils on the development of pathogens of the Fusarium genus and germination parameters of selected crops. Open Chem. 2021, 19, 884–893. [Google Scholar] [CrossRef]
- Smagacz, J.; Martyniuk, S. Cephalosporium stripe disease, crop yield and selected soil properties as influenced by straw management in a micro-plot experiment with winter wheat monoculture. J. Plant Prot. Res. 2022, 62, 334–340. [Google Scholar]
- Elen, O. Long-term experiments with reduced tillage in spring cereals, III, Development of leaf diseases. Crop Prot. 2003, 22, 65–71. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Matzen, N.; Havis, N.; Holdgate, S.; Clark, B.; Blake, J.; Berg, G. Efficacy of common azoles and mefentrifluconazole against Septoria, brown rust and yellow rust in wheat across Europe. Mod. Fungic. Antifung. Compd. 2020, 9, 27–34. [Google Scholar]
- Goutam, U.; Kukreja, S.; Yadav, R.; Salaria, N.; Thakur, K.; Goyal, A.K. Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front. Microbiol. 2015, 6, 861. [Google Scholar] [CrossRef] [Green Version]
- Budka, A.; Łacka, A.; Gaj, R.; Jajor, E.; Korbas, M. Predicting winter wheat yields by comparing regression equations. Crop Prot. 2015, 78, 84–91. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Lešić, V.; Pajač Živković, I.; Lemić, D. Detection and Evaluation of Environmental Stress in Winter Wheat Using Remote and Proximal Sensing Methods and Vegetation Indices—A Review. Diversity 2023, 15, 481. [Google Scholar] [CrossRef]
- Huerta-Espino, J.; Singh, R.P.; German, S.; McCallum, B.D.; Park, R.F.; Chen, W.Q.; Goyeau, H. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 2011, 179, 143–160. [Google Scholar] [CrossRef]
- Waalwijk, C.; van der Heide, R.; de Vries, I.; van der Lee, T.; Schoen, C.; Costrel-de Corainville, G.; Kema, G.H. Quantitative detection of Fusarium species in wheat using TaqMan. Eur. J. Plant Pathol. 2004, 110, 481–494. [Google Scholar] [CrossRef]
- Ali, S.; Francl, L. Progression of Fusarium species on wheat leaves from seedling to adult stages in North Dakota. In Proceedings of the Anais, National Fusarium Head Blight Forum 2001, Erlanger, KY, USA, 8–10 December 2001; Volume 99. [Google Scholar]
Average Air Temperature [°C] | ||||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
January | −4.6 | 0.4 | −2.6 | 1.8 | −1.6 | 0.5 |
February | −1.1 | −3.5 | 2.7 | 3.4 | −2.7 | 2.9 |
March | 6.0 | 0.2 | 5.5 | 4.5 | 2.9 | 2.7 |
April | 7.5 | 13.6 | 9.6 | 8.3 | 6.5 | 6.5 |
May | 13.9 | 17.2 | 13.0 | 11.0 | 12.6 | 13.4 |
June | 18.1 | 18.8 | 21.5 | 18.3 | 18.6 | 18.7 |
July | 18.6 | 20.7 | 18.7 | 18.6 | 21.9 | 19.1 |
August | 19.6 | 20.7 | 20.2 | 20.0 | 17.0 | 20.8 |
September | 14.1 | 15.7 | 14.5 | 15.1 | 13.1 | 11.8 |
October | 9.5 | 10.3 | 10.9 | 10.6 | 9.2 | 10.7 |
November | 4.6 | 3.9 | 6.4 | 5.4 | 5.1 | 3.9 |
December | 2.5 | 1.0 | 3.1 | 1.7 | −1.1 | 0.2 |
Annual avr. | 9.1 | 10.0 | 10.3 | 9.9 | 8.5 | 9.2 |
Average Temperature [°C] | Septoria | Tan Spot | Brown Rust | Yellow Rust | Powdery Mildew | Fusariosis | All Diseases | Number of Diseases |
---|---|---|---|---|---|---|---|---|
August | 0.03 * | 0.25 | −0.41 | −0.16 | −0.06 | 0.64 | −0.32 | 0.65 |
September | −0.03 * | 0.16 | −0.37 | −0.14 | −0.06 | 0.52 | −0.33 | 0.55 |
October | −0.27 | 0.36 | −0.55 | −0.10 | 0.04 * | 0.75 | −0.55 | 0.77 |
November | −0.33 | 0.29 | −0.32 | 0.03 * | 0.12 | 0.42 | −0.35 | 0.42 |
December | 0.03 * | 0.31 | −0.39 | −0.13 | −0.02 * | 0.69 | −0.29 | 0.68 |
January | −0.02 * | 0.12 | 0.05 * | 0.06 * | 0.07 | −0.03 * | 0.07 | −0.07 |
February | −0.09 | 0.06 * | 0.07 | 0.06 * | 0.02 * | −0.27 | 0.03 * | −0.33 |
March | −0.20 | 0.18 | −0.26 | −0.04 * | >0.01 * | 0.18 | −0.29 | 0.17 |
April | 0.47 | −0.04 * | 0.15 | −0.10 | −0.13 | −0.02 * | 0.30 | −0.05 * |
May | 0.43 | −0.27 | 0.38 | −0.01 * | −0.10 | −0.35 | 0.46 | −0.36 |
June | 0.20 | −0.11 | 0.09 | −0.07 * | −0.11 | −0.19 | 0.12 | −0.21 |
July | −0.08 | −0.04 * | −0.13 | −0.03 * | 0.02 * | 0.30 | −0.16 | 0.38 |
Year | 0.35 | 0.03 * | 0.11 | −0.07 * | −0.11 | −0.12 | 0.23 | −0.19 |
Total Precipitation [mm] | ||||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
January | 4.5 | 17.3 | 34.9 | 35.3 | 35.2 | 48.3 |
February | 53.3 | 17.1 | 17.1 | 61.8 | 24.9 | 41.1 |
March | 32.9 | 31.2 | 22.7 | 26.3 | 12.8 | 12.1 |
April | 71.7 | 29.8 | 35.4 | 11.9 | 51.7 | 43.6 |
May | 67.5 | 59.4 | 86.4 | 115.8 | 47.7 | 39.1 |
June | 33.6 | 38.1 | 38.6 | 183.2 | 61.6 | 26.6 |
July | 119.6 | 122.5 | 33.6 | 50.6 | 108.6 | 92.4 |
August | 107.6 | 27.7 | 86.7 | 51.9 | 218.5 | 42.1 |
September | 105.2 | 48 | 59.3 | 119.4 | 62.4 | 75.0 |
October | 94.9 | 40.5 | 40.9 | 88.5 | 5.2 | 28.8 |
November | 55.2 | 8.9 | 30 | 12.1 | 38.6 | 36.8 |
December | 20.5 | 61 | 54.8 | 24 | 26.2 | 54.7 |
Annual sum | 766.5 | 501.5 | 540.4 | 780.8 | 693.4 | 540.1 |
Sum of Precipitation [mm] | Septoria | Tan Spot | Brown Rust | Yellow Rust | Powdery Mildew | Fusariosis | All Diseases | Number of Diseases |
---|---|---|---|---|---|---|---|---|
August | 0.01 * | −0.20 | 0.41 | 0.15 | 0.06 * | −0.61 | 0.35 | −0.64 |
September | −0.06 | −0.01 * | −0.14 | −0.03 * | 0.02 * | 0.34 | −0.14 | 0.41 |
October | 0.08 | 0.08 | −0.24 | −0.11 | −0.04 * | 0.53 | −0.18 | 0.57 |
November | 0.28 | −0.12 | 0.35 | 0.06 * | −0.01 * | −0.36 | 0.41 | −0.40 |
December | −0.01 * | 0.20 | −0.20 | −0.07 | −0.04 * | 0.19 | −0.16 | 0.14 |
January | −0.32 | −0.07 | 0.09 | 0.13 | 0.10 | −0.35 | −0.05 * | −0.34 |
February | −0.25 | 0.23 | −0.15 | 0.06 * | 0.10 | 0.12 | −0.18 | 0.08 |
March | 0.34 | 0.13 | −0.04 * | −0.11 | −0.10 | 0.20 | 0.12 | 0.15 |
April | −0.12 | −0.24 | 0.12 | 0.05 * | 0.02 * | −0.21 | 0.02 * | −0.15 |
May | >0.01 * | 0.31 | −0.30 | −0.09 | −0.02 * | 0.41 | −0.22 | 0.36 |
June | −0.20 | 0.37 | −0.39 | −0.04 * | 0.06 | 0.54 | −0.36 | 0.52 |
July | 0.04 * | −0.16 | 0.15 | 0.05 | 0.03 * | −0.07 | 0.13 | −0.03 * |
Year | −0.42 | 0.32 | −0.43 | 0.01 | 0.12 | 0.52 | −0.48 | 0.54 |
Period | Threshold [mm] |
---|---|
21.III–20.V | −150 |
1.IV–31.V | −153 |
11.IV–10.VI | −158 |
21.IV–20.VI | −166 |
1.V–30.VI | −175 |
11.V–10.VII | −186 |
21.V–20.VII | −201 |
1.VI–31.VII | −220 |
11.VI–10.VIII | −241 |
Climatic Water Balance [mm] | ||||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
January | 10.6 | 28.7 | 47.4 | 44.5 | 47.1 | 59.1 |
February | 48.1 | 11.7 | 7.3 | 53.9 | 17.6 | 32.5 |
March | 4.4 | 3.2 | −11.4 | −14.8 | −18.0 | −33.2 |
April | 11.5 | −64.7 | −45.8 | −82.2 | −12.6 | −12.5 |
May | −42.7 | −83.1 | −2.4 | 18.3 | −54.7 | −82.1 |
June | −106.8 | −90.6 | −130.5 | 62.9 | −89.2 | −123.4 |
July | −4.4 | −4.1 | −93.5 | −79.5 | −33.3 | −27.9 |
August | −12.9 | −99.0 | −27.6 | −66.3 | 128.3 | −82.3 |
September | 54.0 | −21.3 | −4.7 | 49.9 | 3.7 | 23.8 |
October | 74.7 | 1.7 | 3.4 | 65.2 | −32.1 | −1.9 |
November | 60.5 | 7.9 | 32.8 | 15.8 | 39.9 | 42.6 |
December | 37.1 | 78.2 | 70.4 | 39.9 | 78.6 | 71.3 |
Annual | 134.1 | −231.4 | −154.6 | 107.6 | 75.2 | −134.0 |
CWB [mm] | Septoria | Tan Spot | Brown Rust | Yellow Rust | Powdery Mildew | Fusariosis | All Diseases | Number of Diseases |
---|---|---|---|---|---|---|---|---|
August | 0.11 | −0.19 | 0.50 | 0.15 | 0.03 * | −0.76 | 0.07 | −0.72 |
September | −0.11 | −0.09 | −0.12 | −0.03 * | 0.02 * | 0.27 | 0.16 | 0.33 |
October | −0.09 | 0.03 * | −0.32 | −0.10 | −0.01 * | 0.57 | 0.22 | 0.58 |
November | 0.28 | −0.05 * | 0.35 | 0.06 | −0.01 * | −0.43 | 0.28 | −0.44 |
December | 0.11 | 0.01 * | 0.26 | 0.07 | −0.01 * | −0.48 | 0.42 | −0.51 |
January | −0.17 | 0.17 | 0.27 | 0.13 | 0.06 * | −0.54 | −0.35 | −0.47 |
February | −0.09 | 0.25 | −0.15 | 0.02 * | 0.06 * | 0.15 | −0.32 | 0.06 |
March | 0.19 | 0.16 | −0.27 | −0.14 | −0.07 | 0.52 | −0.31 | 0.45 |
April | −0.13 | −0.28 | 0.19 | 0.07 | 0.02 * | −0.30 | −0.29 | −0.19 |
May | −0.07 | 0.33 | −0.39 | −0.08 | 0.00 * | 0.51 | −0.17 | 0.40 |
June | −0.10 | 0.35 | −0.37 | −0.05 * | 0.04 * | 0.52 | −0.15 | 0.40 |
July | 0.04 * | −0.27 | 0.28 | 0.07 | 0.01 * | −0.32 | −0.10 | −0.22 |
Year | −0.17 | 0.35 | −0.41 | −0.04 * | 0.06 * | 0.55 | 0.47 | 0.44 |
2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|
Estivus–20.9% | Plejada *–13.5% | Artist *–9.6% | Plejada *–6.8% | Symetria–10.0% |
Rokosz–22.4% | RGT Kilimanjaro *–18.4% | Plejada *–9.8% | Hybery *–7.2% | Comandor *–12.2% |
Belissa–22.8% | Formacja–21.3% | Delawar *–10.2% | RGT Kilimanjaro *–8.6% | KWS Universum–23.4% |
Hondia–32.6% | Hybery *–21.5% | Hybery *–10.3% | Euforia–9.2% | Argument–25.4% |
Pokusa–36.9% | Comandor–* 21.9% | RGT Kilimanjaro *–10.6% | RGT Bilanz *–9.3% | Impresja–28.0% |
Markiza–44.1% | Hondia–22.8% | Owacja *–11.1% | Artist *–9.4% | Ambicja–28.1% |
KWSOzon–44.4% | Delawar *–23.0% | KWS Spencer *–11.9% | Hondia–9.6% | SY Yukon–29.9% |
Ostka Strzelecka–49.4% | Euforia–23.5% | RGT Bilanz *–12.3% | Comandor *–9.7% | MHR Promienna–34.0% |
Jantarka–52.2% | Medalistka–23.5% | Euforia–12.7% | Bonanza *–10.0% | RGT Provision–34.3% |
Fidelius–57.3% | Bonanza *–24.9% | Comandor *–13.4% | Owacja *–10.5% | Euforia–36.1% |
Linus–61.4% | KWS Spencer *–30.5% | Bonanza *–14.3% | Delawar *–10.6% | SY Dubaj–38.4% |
Arktis–63.3% | RGT Bilanz–33.6% | Medalistka–14.9% | Formacja–11.3% | Formacja–45.5% |
- | Ostka GG–35.0% | Formacja–15.7% | KWS Spencer *–11.6% | SY Orofino–47.1% |
- | Owacja *–35.3% | Hondia–17.3% | Medalistka–12.1% | Kariatyda–60.0% |
- | Tytanika–38.6% | Ostka GG–20.0% | Tytanika–13.5% | LG Keramik–67.4% |
- | Memory–49.9% | Tytanika–23.5% | Ostka GG–15.9% | Almari–70.9% |
Variety | Number of Samples | Number of Years | Yield [t·ha−1] | TGW * [g] | Average Infestation [%] | SE | SE to Avr. Ratio [%] |
---|---|---|---|---|---|---|---|
Plejada | 84 | 3 | 4.6 | 41.8 | 8.6 | 0.4 | 4.7 |
Artist | 76 | 2 | 5.9 | 42.5 | 9.5 | 0.3 | 3.2 |
Hybery | 83 | 3 | 5.4 | 38.3 | 9.8 | 0.7 | 7.1 |
Symetria | 20 | 1 | 6.2 | 41.1 | 10.0 | 3.2 | 31.7 |
RGT Kilimanjaro | 87 | 3 | 4.5 | 40.5 | 10.4 | 0.6 | 5.3 |
Delawar | 81 | 3 | 4.9 | 34.6 | 11.7 | 0.7 | 6.1 |
Comandor | 103 | 4 | 4.9 | 37.3 | 12.3 | 0.7 | 5.7 |
RGT Bilanz | 85 | 3 | 4.2 | 38.3 | 12.9 | 1.0 | 7.5 |
Owacja | 88 | 3 | 5.3 | 37.6 | 13.1 | 0.9 | 6.9 |
Bonanza | 83 | 3 | 4.7 | 37.1 | 13.2 | 0.7 | 5.6 |
KWS Spencer | 84 | 3 | 4.0 | 39.7 | 13.5 | 0.8 | 5.9 |
Medalistka | 80 | 3 | 4.9 | 39.8 | 14.4 | 0.7 | 4.8 |
Hondia | 91 | 4 | 4.2 | 42.1 | 15.7 | 0.9 | 5.9 |
Euforia | 104 | 4 | 4.6 | 41.4 | 16.7 | 1.4 | 8.1 |
Ostka GG | 86 | 3 | 3.6 | 41.3 | 19.5 | 1.3 | 6.8 |
Tytanika | 84 | 3 | 4.3 | 32.5 | 20.0 | 1.3 | 6.7 |
Formacja | 100 | 4 | 5.2 | 38.0 | 20.3 | 1.8 | 8.7 |
Estivus | 16 | 1 | 4.1 | 38.6 | 20.9 | 3.2 | 15.2 |
Rokosz | 16 | 1 | 2.6 | 39.9 | 22.4 | 3.3 | 14.7 |
Belissa | 16 | 1 | 3.5 | 35.2 | 22.8 | 3.4 | 15.1 |
KWS Universum | 20 | 1 | 5.6 | 43.9 | 23.4 | 3.9 | 16.6 |
Argument | 20 | 1 | 5.7 | 44.9 | 25.4 | 3.5 | 13.8 |
Impresja | 20 | 1 | 4.3 | 43.6 | 28.0 | 2.1 | 7.5 |
Ambicja | 20 | 1 | 6.4 | 50.3 | 28.1 | 3.2 | 11.6 |
SY Yukon | 20 | 1 | 6.6 | 44.2 | 29.9 | 2.2 | 7.3 |
MHR Promienna | 20 | 1 | 4.7 | 41.2 | 34.0 | 4.5 | 13.1 |
RGT Provision | 20 | 1 | 6.0 | 42.8 | 34.3 | 6.8 | 19.8 |
Pokusa | 16 | 1 | 3.5 | 35.7 | 36.9 | 5.0 | 13.5 |
SY Dubaj | 20 | 1 | 5.4 | 45.1 | 38.4 | 5.4 | 14.1 |
Markiza | 16 | 1 | 3.2 | 35.1 | 44.1 | 4.7 | 10.7 |
KWS Ozon | 16 | 1 | 3.3 | 38.7 | 44.4 | 5.2 | 11.6 |
SY Orofino | 20 | 1 | 6.0 | 45.6 | 47.1 | 5.0 | 10.5 |
Ostka Strzelecka | 18 | 1 | 3.6 | 35.9 | 49.4 | 4.0 | 8.1 |
Memory | 16 | 1 | 4.2 | 35.5 | 49.9 | 5.4 | 10.9 |
Jantarka | 18 | 1 | 4.2 | 42.7 | 52.2 | 7.3 | 1.4 |
Fidelius | 16 | 1 | 4.2 | 38.2 | 57.3 | 5.1 | 8.8 |
Kariatyda | 20 | 1 | 5.8 | 44.0 | 60.0 | 5.8 | 9.7 |
Linus | 18 | 1 | 3.9 | 34.7 | 61.4 | 5.7 | 9.2 |
Arktis | 16 | 1 | 3.1 | 32.6 | 63.3 | 4.6 | 7.2 |
LG Keramik | 20 | 1 | 5.3 | 41.8 | 67.4 | 3.8 | 5.6 |
Almari | 20 | 1 | 5.1 | 46.6 | 70.9 | 5.0 | 7.1 |
Average | 45.3 | 1.9 | 4.7 | 40.0 | 30.3 | 3.1 | 9.9 |
Number of Identified Diseases | Total Infestation [%] | Septoria [%] | Tan Spot [%] | Brown Rust [%] | Yellow Rust [%] | Powdery Mildew [%] | Fusariosis and Other [%] |
---|---|---|---|---|---|---|---|
1 | 37.75 | 3.88 | 0.46 | 32.36 | 0.95 | 0.10 | - |
2 | 35.73 | 8.72 | 0.40 | 23.93 | 2.23 | 0.46 | - |
3 | 28.34 | 9.25 | 1.96 | 13.82 | 1.90 | 1.40 | 0.01 |
4 | 22.87 | 8.46 | 5.52 | 5.80 | 1.03 | 1.07 | 0.99 |
5 | 10.96 | 2.71 | 3.09 | 2.04 | 1.08 | 1.04 | 1.00 |
>5 | 7.19 | 1.49 | 1.57 | 1.12 | 1.00 | 1.02 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzikowski, P.; Jończyk, K.; Feledyn-Szewczyk, B.; Jóźwicki, T. Assessment of Resistance of Different Varieties of Winter Wheat to Leaf Fungal Diseases in Organic Farming. Agriculture 2023, 13, 875. https://doi.org/10.3390/agriculture13040875
Radzikowski P, Jończyk K, Feledyn-Szewczyk B, Jóźwicki T. Assessment of Resistance of Different Varieties of Winter Wheat to Leaf Fungal Diseases in Organic Farming. Agriculture. 2023; 13(4):875. https://doi.org/10.3390/agriculture13040875
Chicago/Turabian StyleRadzikowski, Paweł, Krzysztof Jończyk, Beata Feledyn-Szewczyk, and Tomasz Jóźwicki. 2023. "Assessment of Resistance of Different Varieties of Winter Wheat to Leaf Fungal Diseases in Organic Farming" Agriculture 13, no. 4: 875. https://doi.org/10.3390/agriculture13040875
APA StyleRadzikowski, P., Jończyk, K., Feledyn-Szewczyk, B., & Jóźwicki, T. (2023). Assessment of Resistance of Different Varieties of Winter Wheat to Leaf Fungal Diseases in Organic Farming. Agriculture, 13(4), 875. https://doi.org/10.3390/agriculture13040875