Characterizing a Year-Round Particulate Matter Concentration and Variation under Different Environmental Controls in a Naturally Ventilated Dairy Barn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surveyed Dairy Barn and Its Environmental Controls (ECs)
2.2. Environmental Parameters Measurement
2.2.1. Sensors Monitoring Network
2.2.2. Sampling Locations
2.3. Data Processing and Statistical Analysis
3. Results
3.1. Indoor TSP and PM2.5 Concentrations in ECs
3.2. Diurnal Variation of TSP and PM2.5 Concentrations in ECs
3.3. Correlation between Influencers and PM Concentrations in ECs
3.4. Health Risk Assessment in ECs
4. Discussion
4.1. PM Characteristics under Three ECs
4.2. Correlation Analysis
4.3. Healthy Risk Assessment under Varied ECs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ECs | Environmental controls | EC1 | EC with No Fans and No Spraying |
PM | Particulate matter | EC2 | EC with Fans |
PM2.5 | Particulate matter with an aerodynamic diameter of up to 2.5 μm | EC3 | EC with Fans and Spraying |
TSP | Total suspended particulate. Particulate matter with an aerodynamic diameter of up to 100 μm | PPMU | Portable particulate monitoring unit |
T | Temperature | PGMU | Portable gas monitoring unit |
RH | Relatively humidity | AQI | Air quality index |
CO2 | Carbon dioxide | MCU | Microcontroller unit |
NH3 | Ammonia | CNEMC | China National Environmental Monitoring Centre |
SD | Standard deviation | CMA | China Meteorological Administration |
IoT | Internet of Things | AAQS | Ambient air quality standards |
References
- Cambra-Lopez, M.; Aarnink, A.J.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Grout, L.; Baker, M.G.; French, N.; Hales, S. A Review of Potential Public Health Impacts Associated With the Global Dairy Sector. GeoHealth 2020, 4, 36–46. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, M.M.T.; Smit, L.A.M.; Erbrink, H.J.; Hagenaars, T.J.; Hoek, G.; Ogink, N.W.M.; Winkel, A.; Heederik, D.J.J.; Wouters, I.M. Endotoxin and particulate matter emitted by livestock farms and respiratory health effects in neighboring residents. Environ. Int. 2019, 132, 105009. [Google Scholar] [CrossRef]
- Wegesser, T.C.; Last, J.A. Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn. Toxicol. Appl. Pharmacol. 2009, 236, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.C.; Armitage, T.L.; Schenker, M.B.; Bennett, D.H.; Tancredi, D.J.; Langer, C.E.; Reynolds, S.J.; Dooley, G.; Mehaffy, J.; Mitloehner, F.M. Particulate Matter, Endotoxin, and Worker Respiratory Health on Large Californian Dairies. J. Occup. Environ. Med. 2015, 57, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.A.L.; Breysse, P.N.; McCormack, M.C.; Diette, G.B.; McKenzie, S.; Geyh, A.S. Airborne cow allergen, ammonia and particulate matter at homes vary with distance to industrial scale dairy operations: An exposure assessment. Environ. Health 2011, 10, 2–9. [Google Scholar] [CrossRef]
- Smith, P.N.; McEachran, A.D.; Wooten, K.J.; Blackwell, B.R. A preliminary evaluation of veterinary antibiotics, estrogens, in vitro estrogenic activity and microbial communities in airborne particulate matter collected near dairy production facilities. Aerobiologia 2019, 35, 315–326. [Google Scholar] [CrossRef]
- Gainet, M.; Thaon, I.; Westeel, V.; Chaudemanche, H.; Venier, A.G.; Dubiez, A.; Laplante, J.J.; Dalphin, J.C. Twelve-year longitudinal study of respiratory status in dairy farmers. Eur. Respir. J. 2007, 30, 97–103. [Google Scholar] [CrossRef]
- Winkel, A.; Mosquera, J.; Groot Koerkamp, P.W.G.; Ogink, N.W.M.; Aarnink, A.J.A. Emissions of particulate matter from animal houses in the Netherlands. Atmos. Environ. 2015, 111, 202–212. [Google Scholar] [CrossRef]
- Takai, H.; Pedersen, S.; Johnsen, J.O.; Metz, J.H.M.; Groot Koerkamp, P.W.G.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; et al. Concentrations and Emissions of Airborne Dust in Livestock Buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 59–77. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Brugger, M.F.; Manuzon, R.B.; Arnold, G.; Imerman, E.; Zhao, L. Variations in Air Quality of New Ohio Dairy Facilities with Natural Ventilation Systems. Appl. Eng. Agric. 2007, 23, 339–346. [Google Scholar] [CrossRef]
- Purdy, C.W.; Clark, R.N.; Straus, D.C. Ambient and indoor particulate aerosols generated by dairies in the southern High Plains. J. Dairy Sci. 2009, 92, 6033–6045. [Google Scholar] [CrossRef]
- Kaasik, A.; Maasikmets, M. Concentrations of airborne particulate matter, ammonia and carbon dioxide in large scale uninsulated loose housing cowsheds in Estonia. Biosyst. Eng. 2013, 114, 223–231. [Google Scholar] [CrossRef]
- Joo, H.S.; Ndegwa, P.M.; Heber, A.J.; Ni, J.Q.; Bogan, B.W.; Ramirez-Dorronsoro, J.C.; Cortus, E.L. Particulate matter dynamics in naturally ventilated freestall dairy barns. Atmos. Environ. 2013, 69, 182–190. [Google Scholar] [CrossRef]
- Pu, S.; Peng, S.; Zhu, J.; Liu, Z.; Long, D.; Lim, T. Characteristics of PM2.5 and Its Correlation with Feed, Manure and NH3 in a Pig-Fattening House. Toxics 2022, 10, 145. [Google Scholar] [CrossRef]
- Dunlop, M.; Ristovski, Z.D.; Gallagher, E.; Parcsi, G.; Modini, R.L.; Agranovski, V.; Stuetz, R.M. Odour, dust and non-methane volatile organic-compound emissions from tunnel-ventilated layer-chicken sheds: A case study of two farms. Anim. Prod. Sci. 2013, 53, 1309–1318. [Google Scholar] [CrossRef]
- Chen, J.M.; Schutz, K.E.; Tucker, C.B. Cooling cows efficiently with water spray: Behavioral, physiological, and production responses to sprinklers at the feed bunk. J. Dairy Sci. 2016, 99, 4607–4618. [Google Scholar] [CrossRef]
- Grossi, G.; Vitali, A.; Lacetera, N. Impact of summer cooling management on milk water footprint in dairy cows. J. Clean. Prod. 2022, 367, 133062. [Google Scholar] [CrossRef]
- Almuhanna, E.A.; Gamea, G.R.; Osman, O.E.; Almahdi, F.M. Performance of roof-mounted misting fans to regulate heat stress in dairy cows. J. Therm. Biol. 2021, 99, 102984. [Google Scholar] [CrossRef]
- Meng, X.; Meng, L.; Gao, Y.; Li, H. A comprehensive review on the spray cooling system employed to improve the summer thermal environment: Application efficiency, impact factors, and performance improvement. Build. Environ. 2022, 217, 109065. [Google Scholar] [CrossRef]
- Kim, J.J.; Hann, T.; Lee, S.J. Effect of flow and humidity on indoor deposition of particulate matter. Environ. Pollut. 2019, 255, 113–263. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.; Rogak, S.; Green, S.; You, Y.; Bertram, A. Structural Change of Aerosol Particle Aggregates with Exposure to Elevated Relative Humidity. Environ. Sci. Technol. 2015, 49, 12054–12061. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, S.; Zhang, N.; Li, C.; Li, H.; Yang, W. Dust-suppression and cooling effects of spray system installed between hydraulic supports in fully mechanized coal-mining face. Build. Environ. 2021, 204, 108106. [Google Scholar] [CrossRef]
- Fang, Z. Optimizing Monitoring Method of Particulate Matter Concentration for a Naturally Ventilated Dairy Barn. Master’s Thesis, China Agricultural University, Beijing, China, 2022. [Google Scholar]
- Li, Z.; Xiong, Y.; Wang, S.; Wang, C.; Ji, B.; Liu, Y.; Liang, C.; Tong, Q. Assessing particulate matter concentration level and its limit exceedance based on year-round field measurements of different laying hen building systems. Biosyst. Eng. 2023, 226, 266–279. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Kacira, M.; Sase, S.; Limi, O.; Ling, P. Plant Response-Based Sensing for Control Strategies in Sustainable Greenhouse Production. J. Agric. Meteorol. 2005, 61, 15–22. [Google Scholar] [CrossRef]
- Mamduh, S.M.; Md shakaff, A.Y.; Saad, S.M.; Kamarudin, K.; Kamarudin, L.; Zakaria, A.; Kamarudin, H.; Ezanuddin, A.; Ahmad Saad, F.; Wan Yahya, W.M.N.; et al. Odour and Hazardous Gas Monitoring System for Swiftlet Farming using Wireless Sensor Network (WSN). Chem. Eng. Trans. 2012, 30, 331–336. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Li, B.; Shi, Z.; Zheng, W.; Teng, G. Concentration and size distribution of particulate matter in a new aviary system for laying hens in China. J. Air Waste Manag. Assoc. 2020, 70, 379–392. [Google Scholar] [CrossRef]
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef]
- GB3095-2012; Ambient Air Quality Standards. China Environment Publishing Group: Beijing, China, 2012.
- Calvet, S.; Gates, R.S.; Zhang, G.; Estellés, F.; Ogink, N.W.M.; Pedersen, S.; Berckmans, D. Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources. Biosyst. Eng. 2013, 116, 221–231. [Google Scholar] [CrossRef]
- Thatcher, T.L.; Lai, A.C.K.; Moreno-Jackson, R.; Sextro, R.G.; Nazaroff, W.W. Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ. 2002, 36, 1811–1819. [Google Scholar] [CrossRef]
- Mikhailov, E.; Vlasenko, S.; Podgorny, I.; Ramanathan, V.; Corrigan, C. Optical properties of soot–water drop agglomerates: An experimental study. J. Geophys. Res. Atmos. 2006, 111, 1–16. [Google Scholar] [CrossRef]
- Montgomery, J.F.; Green, S.I.; Rogak, S.N. Impact of Relative Humidity on HVAC Filters Loaded with Hygroscopic and Non-Hygroscopic Particles. Aerosol Sci. Technol. 2015, 49, 322–331. [Google Scholar] [CrossRef]
- Dai, C.; Huang, S.; Zhou, Y.; Xu, B.; Peng, H.; Qin, P.; Wu, G. Concentrations and emissions of particulate matter and ammonia from extensive livestock farm in South China. Environ. Sci. Pollut. Res. 2019, 26, 1871–1879. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, L.; Dingenen, R.V.; Vieno, M.; Grinsven, H.J.V.; Zhang, X.; Zhang, S.; Chen, Y.; Wang, S.; Ren, C.; et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 2021, 374, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.; Chao, D.; Thorne, P.S.; Subramanian, P.; Waldron, P.F.; Selim, M.I.; Whitten, P.S.; Popendorf, W.J. Field Comparison of Methods for Evaluation of Vapor/Particle Phase Distribution of Ammonia in Livestock Buildings. J. Agric. Saf. Health 1998, 4, 81–93. [Google Scholar] [CrossRef]
- Yan, G.; Liu, K.; Hao, Z.; Li, H.; Shi, Z. Development and evaluation of thermal models for predicting skin temperature of dairy cattle. Comput. Electron. Agric. 2021, 188, 106363. [Google Scholar] [CrossRef]
- Ji, B.; Banhazi, T.; Perano, K.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. A review of measuring, assessing and mitigating heat stress in dairy cattle. Biosyst. Eng. 2020, 199, 4–26. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, G.; Kai, P. Ammonia and methane emissions from two naturally ventilated dairy cattle buildings and the influence of climatic factors on ammonia emissions. Atmos. Environ. 2012, 61, 232–243. [Google Scholar] [CrossRef]
- Li, X.; Feng, Y.J.; Liang, H.Y. The Impact of Meteorological Factors on PM2.5 Variations in Hong Kong. IOP Conf. Ser. Earth Environ. Sci. 2017, 78, 012003. [Google Scholar] [CrossRef]
- Donham, K.J.; Cumro, D.; Reynolds, S.J.; Merchant, J.A. Dose-response relationships between occupational aerosol exposures and cross-shift declines of lung function in poultry workers: Recommendations for exposure limits. J. Occup. Environ. Med. 2000, 42, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Donham, K.J.; Reynolds, S.J.; Whitten, P.; Merchant, J.A.; Burmeister, L.; Popendorf, W.J. Respiratory dysfunction in swine production facility workers: Dose-response relationships of environmental exposures and pulmonary function. Am. J. Ind. Med. 1995, 27, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Forsberg, B. Epidemiological evidence of coarse airborne particles on health. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2005, 26, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Chen, Y.; Burnett, R.T.; Villeneuve, P.J.; Krewski, D. The influence of ambient coarse particulate matter on asthma hospitalization in children: Case-crossover and time-series analyses. Environ. Health Perspect. 2002, 110, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zheng, W.; Wang, Y.; Li, B.; Wang, Y. Spatiotemporal variations in the association between particulate matter and airborne bacteria based on the size-resolved respiratory tract deposition in concentrated layer feeding operations. Environ. Int. 2021, 150, 106413. [Google Scholar] [CrossRef]
- Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, V.E.; Mitchell, D.C.; Matt, G.E.; Quintana, P.J.; Schaeffer, J.; Reynolds, S.J.; Schenker, M.B.; Mitloehner, F.M. Occupational exposure to endotoxin in PM2.5 and pre-and post-shift lung function in California dairy workers. J. Environ. Prot. 2015, 6, 552–565. [Google Scholar] [CrossRef]
Portable Unit | Parameter | Measuring Range | Resolution | Accuracy | Sensor Model and Manufacturer | Sensor Principle |
---|---|---|---|---|---|---|
PPMU | PM2.5 | 0–500 μg m−3 | 1 μg m−3 | ±10 μg m−3 | PM5003T, Plantower, China | Light scattering |
TSP | 0–20 mg m−3 | 1 μg m−3 | ±30 μg m−3 | SDS198, Nova Fitness, China | ||
PGMU | T | −40–80 °C | 0.1 °C | ±0.3 °C | AM2305, Aosong Electronic, China | Electric capacity |
RH | 0–99.9% | 0.1% | ±2% | |||
CO2 | 0–9800 mg m−3 | 10 mg m−3 | ± 98 mg m−3 | MH-Z14A, Winsen, China | Infrared laser | |
NH3 | 0–38 mg m−3 | 0.1 mg m−3 | ±0.5 mg m−3 | ZEO3, Winsen, China | Electrochemistry |
Environmental Control | Indoor | Ambient | |||||
---|---|---|---|---|---|---|---|
TSP (μg m−3) | Range | PM2.5 (μg m−3) | Range | T (°C) | RH (%) | PM2.5 (μg m−3) | |
EC1 | 98.0 ± 75.9 b | 7.7–652.1 | 57.1 ± 47.2 a | 1.3–312.3 | 2.8 ± 6.2 c | 47.2 ± 18.6 b | 29.9 ± 20.0 a |
EC2 | 116.4 ± 68.0 a | 12.4–457.9 | 48.3 ± 36.4 b | 3.2–163.8 | 18.9 ± 5.1 b | 48.0 ± 20.7 b | 28.0 ± 17.6 a |
EC3 | 81.9 ± 55.0 c | 4.3–443.9 | 44.7 ± 25.9 b | 1.0–188.6 | 25.4 ± 3.9 a | 90.0 ± 16.6 a | 25.8 ± 16.9 b |
Daytime and Nighttime | EC1 | EC2 | EC3 | |||
---|---|---|---|---|---|---|
TSP (μg m−3) | PM2.5 (μg m−3) | TSP (μg m−3) | PM2.5 (μg m−3) | TSP (μg m−3) | PM2.5 (μg m−3) | |
Daytime (07:00–22:00) | 105.3 a | 56.5 a | 112.7 a | 47.0 a | 75.3 b | 41.7 b |
Nighttime (22:00–07:00) | 82.6 b | 58.5 a | 125.0 a | 51.1 a | 94.8 a | 50.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Yang, X.; E, L.; Fang, Z.; Li, Y.; Liang, C.; Shi, Z.; Wang, C. Characterizing a Year-Round Particulate Matter Concentration and Variation under Different Environmental Controls in a Naturally Ventilated Dairy Barn. Agriculture 2023, 13, 902. https://doi.org/10.3390/agriculture13040902
Lu Y, Yang X, E L, Fang Z, Li Y, Liang C, Shi Z, Wang C. Characterizing a Year-Round Particulate Matter Concentration and Variation under Different Environmental Controls in a Naturally Ventilated Dairy Barn. Agriculture. 2023; 13(4):902. https://doi.org/10.3390/agriculture13040902
Chicago/Turabian StyleLu, Yujian, Xiao Yang, Lei E, Zhiwei Fang, Yongzhen Li, Chao Liang, Zhengxiang Shi, and Chaoyuan Wang. 2023. "Characterizing a Year-Round Particulate Matter Concentration and Variation under Different Environmental Controls in a Naturally Ventilated Dairy Barn" Agriculture 13, no. 4: 902. https://doi.org/10.3390/agriculture13040902
APA StyleLu, Y., Yang, X., E, L., Fang, Z., Li, Y., Liang, C., Shi, Z., & Wang, C. (2023). Characterizing a Year-Round Particulate Matter Concentration and Variation under Different Environmental Controls in a Naturally Ventilated Dairy Barn. Agriculture, 13(4), 902. https://doi.org/10.3390/agriculture13040902