Classification of Fresh and Frozen-Thawed Beef Using a Hyperspectral Imaging Sensor and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material and Experimental Classes
2.2. Drip Loss Test
2.3. Data Acquisition and Image Processing
2.4. Construction of Classification Models
3. Results
3.1. Spectrum Extraction
3.2. Drip Loss Test
3.3. Performance of Classification Model
3.4. Confusion Matrix
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sofos, J.N.; Geornaras, I. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157: H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci. 2010, 86, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.S.; Bastarrachea, L.J.; Martini, S.; Matarneh, S.K. Crystallization behavior and quality of frozen meat. Foods 2021, 10, 2707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, M.; Mujumdar, A.S. Technological innovations or advancement in detecting frozen and thawed meat quality: A review. Crit. Rev. Food Sci. Nutr. 2021, 63, 1483–1499. [Google Scholar] [CrossRef] [PubMed]
- Aubourg, S.P.; Torres, J.A.; Saraiva, J.A.; Guerra-Rodríguez, E.; Vázquez, M. Effect of high-pressure treatments applied before freezing and frozen storage on the functional and sensory properties of Atlantic mackerel (Scomber scombrus). LWT-Food Sci. Technol. 2013, 53, 100–106. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, H.; Xu, R.; Lu, B.; Song, X.; Liu, B. Effects of temperature fluctuations on the meat quality and muscle microstructure of frozen beef. Int. J. Refrig. 2020, 116, 1–8. [Google Scholar] [CrossRef]
- Barbin, D.F.; Sun, D.W.; Su, C. NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen–thawed porcine longissimus dorsi muscles. Innov. Food Sci. Emerg. Technol. 2013, 18, 226–236. [Google Scholar] [CrossRef]
- Bozzetta, E.; Pezzolato, M.; Cencetti, E.; Varello, K.; Abramo, F.; Mutinelli, F.; Ingravalle, F.; Teneggi, E. Histology as a valid and reliable tool to differentiate fresh from frozen-thawed fish. J. Food Prot. 2012, 75, 1536–1541. [Google Scholar] [CrossRef]
- Ramos, E.M.; Gomide, L.A.; Ramos, A.L.; Peternelli, L.A. Effect of stunning methods on the differentiation of frozen-thawed bullfrog meat based on the assay of β-hydroxyacyl-CoA-dehydrogenase. Food Chem. 2004, 87, 607–611. [Google Scholar] [CrossRef]
- Gottesmann, P.; Hamm, R. New biochemical methods of differentiating between fresh meat and thawed, frozen meat. Fleischwirtschaft 1983, 63, 219–221. [Google Scholar]
- Ballin, N.Z.; Lametsch, R. Analytical methods for authentication of fresh vs. thawed meat—A review. Meat Sci. 2008, 80, 151–158. [Google Scholar] [CrossRef]
- Bertram, H.C.; Andersen, H.J. NMR and the water-holding issue of pork. J. Anim. Breed. Genet. 2007, 124, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Bertram, H.C.; Andersen, R.H.; Andersen, H.J. Development in myofibrillar water distribution of two pork qualities during 10-month freezer storage. Meat Sci. 2007, 75, 128–133. [Google Scholar] [CrossRef]
- Mortensen, M.; Andersen, H.J.; Engelsen, S.B.; Bertram, H.C. Effect of freezing temperature, thawing and cooking rate on water distribution in two pork qualities. Meat Sci. 2006, 72, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, R.; Cheng, S.; Wang, Z.; Tan, M. Assessment of water mobility in surf clam and soy protein system during gelation using LF-NMR technique. Foods 2020, 9, 213. [Google Scholar] [CrossRef]
- Artavia, G.; Cortés-Herrera, C.; Granados-Chinchilla, F. Selected instrumental techniques applied in food and feed: Quality, safety and adulteration analysis. Foods 2021, 10, 1081. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Zhang, W.; Rajput, N.; Khan, M.A.; Li, C.B.; Zhou, G.H. Effect of multiple freeze–thaw cycles on the quality of chicken breast meat. Food Chem. 2015, 173, 808–814. [Google Scholar] [CrossRef]
- Johnson, J.; Atkin, D.; Lee, K.; Sell, M.; Chandra, S. Determining meat freshness using electrochemistry: Are we ready for the fast and furious? Meat Sci. 2019, 150, 40–46. [Google Scholar] [CrossRef]
- Grassi, S.; Benedetti, S.; Opizzio, M.; di Nardo, E.; Buratti, S. Meat and fish freshness assessment by a portable and simplified electronic nose system (Mastersense). Sensors 2019, 19, 3225. [Google Scholar] [CrossRef]
- Wu, X.; Liang, X.; Wang, Y.; Wu, B.; Sun, J. Non-Destructive Techniques for the Analysis and Evaluation of Meat Quality and Safety: A Review. Foods 2022, 11, 3713. [Google Scholar] [CrossRef]
- Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Curr. Opin. Food Sci. 2018, 22, 17–21. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Miniaturized NIR spectroscopy in food analysis and quality control: Promises, challenges, and perspectives. Foods 2022, 11, 1465. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Ropodi, A.I.; Panagou, E.Z.; Nychas, G.J.E. Rapid detection of frozen-then-thawed minced beef using multispectral imaging and Fourier transform infrared spectroscopy. Meat Sci. 2018, 135, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.; Su, H.; Liu, K. Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 2014, 6, 5795–5814. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Barbin, D.; ElMasry, G.; Sun, D.W.; Allen, P. Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innov. Food Sci. Emerg. Technol. 2012, 16, 316–325. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S.; Liu, S. Assessment of visible near-infrared hyperspectral imaging as a tool for detection of horsemeat adulteration in minced beef. Food Bioprocess Technol. 2015, 8, 1054–1062. [Google Scholar] [CrossRef]
- Lam, T.K.; Heales, J.; Hartley, N.; Hodkinson, C. Consumer trust in food safety requires information transparency. Australas. J. Inf. Syst. 2020, 24. [Google Scholar] [CrossRef]
- Silva, S.; Guedes, C.; Rodrigues, S.; Teixeira, A. Non-destructive imaging and spectroscopic techniques for assessment of carcass and meat quality in sheep and goats: A review. Foods 2020, 9, 1074. [Google Scholar] [CrossRef]
- Cama-Moncunill, R.; Cafferky, J.; Augier, C.; Sweeney, T.; Allen, P.; Ferragina, A.; Sullivan, C.; Cromie, A.; Hamill, R.M. Prediction of Warner-Bratzler shear force, intramuscular fat, drip-loss and cook-loss in beef via Raman spectroscopy and chemometrics. Meat Sci. 2020, 167, 108157. [Google Scholar] [CrossRef]
- Anese, M.; Manzocco, L.; Panozzo, A.; Beraldo, P.; Foschia, M.; Nicoli, M.C. Effect of radiofrequency assisted freezing on meat microstructure and quality. Food Res. Int. 2012, 46, 50–54. [Google Scholar] [CrossRef]
- Feldhusen, F.; Warnatz, A.; Erdmann, R.; Wenzel, S. Influence of storage time on parameters of colour stability of beef. Meat Sci. 1995, 40, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yang, M.; Yim, D.G.; Jo, C.; Kim, G. VIS/NIR hyperspectral imaging with artificial neural networks to evaluate the content of thiobarbituric acid reactive substances in beef muscle. J. Food Eng. 2023, 350, 111500. [Google Scholar] [CrossRef]
- Indahl, U.G.; Martens, H.; Næs, T. From dummy regression to prior probabilities in PLS-DA. J. Chemom. 2007, 21, 529–536. [Google Scholar] [CrossRef]
- Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.R.; Ram, B.; Koparan, C.; Howatt, K.; Zhang, Y.; Sun, X. Multiclass Classification on Soybean and Weed Species using A Customized Greenhouse Robotic and Hyperspectral Combination System. J. ASABE 2022, 65, 1071–1080. [Google Scholar] [CrossRef]
- Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar]
- Debnath, R.; Takahide, N.; Takahashi, H. A decision based one-against-one method for multi-class support vector machine. Pattern Anal. Appl. 2004, 7, 164–175. [Google Scholar] [CrossRef]
- Patle, A.; Chouhan, D.S. SVM kernel functions for classification. In Proceedings of the 2013 International Conference on Advances in Technology and Engineering (ICATE), Mumbai, India, 23–25 January 2013. [Google Scholar]
- Lalkhen, A.G.; McCluskey, A. Clinical tests: Sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain 2008, 8, 221–223. [Google Scholar] [CrossRef]
- Dentamaro, V.; Impedovo, D.; Pirlo, G. LICIC: Less important components for imbalanced multiclass classification. Information 2018, 9, 317. [Google Scholar] [CrossRef]
- Lagerstedt, Å.; Enfält, L.; Johansson, L.; Lundström, K. Effect of freezing on sensory quality, shear force and water loss in beef M. longissimus dorsi. Meat Sci. 2008, 80, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Hossain, M.M.; Rahman SM, E.; Hashem, M.A.; Oh, D.H. Effect of repeated freeze-thaw cycles on beef quality and safety. Korean J. Food Sci. Anim. Resour. 2014, 34, 482. [Google Scholar] [CrossRef] [PubMed]
Class | M ± S.D. | F Value for ANOVA | Scheffe Test (p < 0.05) |
---|---|---|---|
Fresh (a) | 0.423 ± 0.128 | ||
Abused (b) | 1.505 ± 0.487 | 39.572 | ab < c |
Frozen (c) | 5.690 ± 1.776 |
Preprocessing | Training Accuracy | Test Accuracy | Test F1 Score | ||
---|---|---|---|---|---|
Fresh | Abused | Frozen | |||
No preprocess | 95.18 | 94.37 | 99.28 | 90.58 | 92.28 |
MSC | 94.84 | 94.60 | 98.91 | 90.16 | 93.25 |
SNV | 95.87 | 95.66 | 99.44 | 92.76 | 94.13 |
Savitzky–Golay 1st | 95.06 | 93.47 | 99.03 | 88.92 | 90.97 |
Min-Max | 94.91 | 92.71 | 98.69 | 87.90 | 90.48 |
Preprocessing | Kernel Function | Training Accuracy | Test Accuracy | Test F1 Score | ||
---|---|---|---|---|---|---|
Fresh | Abused | Frozen | ||||
No preprocessing | Linear | 95.51 | 90.30 | 98.67 | 85.00 | 86.92 |
Polynomial | 93.99 | 93.13 | 99.55 | 88.40 | 90.98 | |
RBF | 100 | 33.33 | 50.00 | 0.00 | 0.00 | |
Sigmoid | 28.86 | - | - | - | - | |
MSC | Linear | 95.05 | 90.00 | 98.40 | 85.51 | 85.53 |
Polynomial | 91.74 | 90.20 | 98.55 | 84.68 | 86.80 | |
RBF | 100 | 33.33 | 50.00 | 0.00 | 0.00 | |
Sigmoid | 85.73 | 83.84 | 95.38 | 72.22 | 81.57 | |
SNV | Linear | 96.54 | 94.44 | 99.59 | 91.11 | 91.85 |
Polynomial | 93.01 | 91.62 | 99.59 | 85.81 | 88.02 | |
RBF | 99.97 | 96.57 | 100 | 94.10 | 95.03 | |
Sigmoid | 84.97 | 84.65 | 96.40 | 72.36 | 81.59 | |
Savitzky–Golay 1st | Linear | 95.33 | 90.81 | 99.27 | 84.55 | 87.82 |
Polynomial | 93.48 | 93.74 | 99.42 | 88.93 | 92.10 | |
RBF | 100 | 33.33 | 50.00 | 0.00 | 0.00 | |
Sigmoid | 29.32 | - | - | - | - | |
Min-Max | Linear | 94.85 | 93.61 | 99.79 | 91.68 | 92.53 |
Polynomial | 98.48 | 96.97 | 99.85 | 95.18 | 95.69 | |
RBF | 99.39 | 97.68 | 99.71 | 96.43 | 96.76 | |
Sigmoid | 30.58 | - | - | - | - |
True Class | Predicted Class | ||
---|---|---|---|
Fresh | Abused | Frozen | |
Fresh | 357 (99.2%) | 2 (0.5%) | 1 (0.3%) |
Abused | 1 (0.3%) | 269 (89.7%) | 30 (10.0%) |
Frozen | 0 (0.0%) | 9 (2.7%) | 321 (97.3%) |
True Class | Predicted Class | ||
---|---|---|---|
Fresh | Abused | Frozen | |
Fresh | 360 (100%) | 0 (0%) | 0 (0%) |
Abused | 0 (0%) | 271 (90.3%) | 29 (9.7%) |
Frozen | 0 (0%) | 5 (1.5%) | 325 (98.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Hong, S.-J.; Kim, S.; Ryu, J.; Roh, S.; Kim, G. Classification of Fresh and Frozen-Thawed Beef Using a Hyperspectral Imaging Sensor and Machine Learning. Agriculture 2023, 13, 918. https://doi.org/10.3390/agriculture13040918
Park S, Hong S-J, Kim S, Ryu J, Roh S, Kim G. Classification of Fresh and Frozen-Thawed Beef Using a Hyperspectral Imaging Sensor and Machine Learning. Agriculture. 2023; 13(4):918. https://doi.org/10.3390/agriculture13040918
Chicago/Turabian StylePark, Seongmin, Suk-Ju Hong, Sungjay Kim, Jiwon Ryu, Seungwoo Roh, and Ghiseok Kim. 2023. "Classification of Fresh and Frozen-Thawed Beef Using a Hyperspectral Imaging Sensor and Machine Learning" Agriculture 13, no. 4: 918. https://doi.org/10.3390/agriculture13040918
APA StylePark, S., Hong, S. -J., Kim, S., Ryu, J., Roh, S., & Kim, G. (2023). Classification of Fresh and Frozen-Thawed Beef Using a Hyperspectral Imaging Sensor and Machine Learning. Agriculture, 13(4), 918. https://doi.org/10.3390/agriculture13040918