Carbon Emissions from Agricultural Inputs in China over the Past Three Decades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
- ①
- Quantifying Carbon Emissions from Agricultural Inputs
- ②
- Calculating Carbon Emission Intensity
- ③
- Analyzing the Driving Mechanisms of Carbon Emissions from Agricultural Inputs
3. Results
3.1. Carbon Emissions from Agricultural Inputs in China from 1991 to 2019
3.2. Carbon Emission Intensity
3.3. The Driving Factors of Agricultural Carbon Emissions
4. Discussion
4.1. Driving Mechanism of Agricultural Carbon Emissions in China
4.2. Policy Implications
4.3. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Y.; Luan, X.; Sun, J.; Zhao, J.; Yin, Y.; Wang, Y.; Sun, S. Impact assessment of climate change and human activities on GHG emissions and agricultural water use. Agric. For. Meteorol. 2021, 296, 108218. [Google Scholar] [CrossRef]
- Kay, J. Early models successfully predicted global warming. Nature 2020, 578, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Qiao, F.; Williams, J. Topic Modelling and Sentiment Analysis of Global Warming Tweets: Evidence from Big Data Analysis. J. Organ. End User Comput. 2022, 34, 1–18. [Google Scholar] [CrossRef]
- WMO. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018. In WMO Greenhouse Gas Bulletin; WMO: Geneva, Switzerland, 2019; Volume 15, Available online: https://library.wmo.int/index.php?lvl=notice_display&id=21620#.ZCp-hHtBwrY (accessed on 5 April 2023).
- Dai, X.; Wu, X.; Chen, Y.; He, Y.; Wang, F.; Liu, Y. Real Drivers and Spatial Characteristics of CO2 Emissions from Animal Husbandry: A Regional Empirical Study of China. Agriculture 2022, 12, 510. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- El-sharkawy, M. Global warming: Causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. Photosynthetica 2014, 52, 161–178. [Google Scholar] [CrossRef]
- Lin, X.; Zhu, X.; Han, Y.; Geng, Z.; Liu, L. Economy and carbon dioxide emissions effects of energy structures in the world: Evidence based on SBM-DEA model. Sci. Total Environ. 2020, 729, 138947. [Google Scholar] [CrossRef]
- Fan, S.; Cho, E.; Meng, T.; Rue, C. How to Prevent and Cope with Coincidence of Risks to the Global Food System. Annu. Environ. Resour. 2021, 46, 601–623. [Google Scholar] [CrossRef]
- Panchasara, H.; Samrat, N.; Islam, N. Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Bennetzen, E.; Smith, P.; Porter, J. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob. Chang. Biol. 2016, 22, 763–781. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Madden, S.; Ryan, A.; Walsh, P. Exploratory Study on Modelling Agricultural Carbon Emissions in Ireland. Agriculture 2022, 12, 34. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Z.; Dai, Z.; Duan, J.; Wang, D.; Feng, Y. Temporal and Spatial Differentiation and Driving Factors of China’s Agricultural Eco-Efficiency Considering Agricultural Carbon Sinks. Agriculture 2022, 12, 1726. [Google Scholar] [CrossRef]
- Huang, J.; Hu, R.; Yi, H.; Sheng, Y.; Wang, J.; Bao, M.; Liu, X. Development Visions and Policies of China’s Agriculture by 2050. China Eng. Sci. 2022, 24, 11–19. [Google Scholar] [CrossRef]
- Huang, J.; Xie, W.; Sheng, Y.; Wang, X.; Wang, J.; Liu, C.; Hou, L. Global Agricultural Development Trends and Prospects for China’s Agricultural Development in 2050. China Eng. Sci. 2022, 24, 29–37. [Google Scholar] [CrossRef]
- Song, S.; Zhang, L.; Ma, Y. Evaluating the impacts of technological progress on agricultural energy consumption and carbon emissions based on multi-scenario analysis. Environ. Sci. Pollut. Res. 2022, 30, 16673–16686. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, S. The Structure, Efficiency and Determination Mechanism of Agricultural Carbon Emissions in China. J. Agric. Econ. 2014, 35, 18–26. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Li, Z.; Wu, X.; Wang, X.; Zhong, H.; Chen, J.; Ma, X. Measurement and Analysis of Contribution Rate for China Rice Input Factors via a Varying-Coefficient Production Function Model. Agriculture 2022, 12, 1431. [Google Scholar] [CrossRef]
- Ye, X.; Cheng, Y.; Zhang, Y.; Wu, Z.; Li, Q.; Liu, C. Scenario Simulation, Main Paths and Policy Measures of Greenhouse Gas Emission Reduction of Agricultural Activities in China. Issues Agric. Econ. 2022, 2, 4–16. [Google Scholar] [CrossRef]
- Kherif, O.; Seghouani, M.; Zemmouri, B.; Bouhenache, A.; Keskes, M.; Yacer-Nazih, R.; Ouaret, W.; Latati, M. Understanding the Response of Wheat-Chickpea Intercropping to Nitrogen Fertilization Using Agro-Ecological Competitive Indices under Contrasting Pedoclimatic Conditions. Agronomy 2021, 11, 1225. [Google Scholar] [CrossRef]
- Latati, M.; Dokukin, P.; Aouiche, A.; Rebouh, N.; Takouachet, R.; Hafnaoui, E.; Hamdani, F.; Bacha, F.; Ounane, S. Species Interactions Improve Above-Ground Biomass and Land Use Efficiency in Intercropped Wheat and Chickpea under Low Soil Inputs. Agronomy 2019, 9, 765. [Google Scholar] [CrossRef]
- Han, H.; Zhong, Z.; Guo, Y.; Xi, F.; Liu, S. Coupling and decoupling effects of agricultural carbon emissions in China and their driving factors. Environ. Sci. Pollut. Res. 2018, 25, 25280–25293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, J.; Kang, X. Effect of Fiscal Expenditure for Supporting Agriculture on Agricultural Economic Efficiency inCentral China—A Case Study of Henan Province. Agriculture 2023, 13, 822. [Google Scholar] [CrossRef]
- Yasmeen, R.; Tao, R.; Shah, W.; Padda, I.; Tang, C. The nexuses between carbon emissions, agriculture production efficiency, research and development, and government effectiveness: Evidence from major agriculture-producing countries. Environ. Sci. Pollut. Res. 2022, 29, 52133–52146. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Lin, Y.; Niu, K. Green transformation of agriculture driven by low carbon: Characteristics of China’s agricultural carbon emissions and its emission reduction path. Reform 2021, 5, 29–37. [Google Scholar]
- Chen, J.; Cheng, S.; Song, M. Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013. Renew. Sustain. Energ. Rev. 2018, 94, 748–761. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, L.; Song, S.; Yu, S. Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis. Sustainability 2022, 14, 3002. [Google Scholar] [CrossRef]
- Wang, X. Changes in CO2 Emissions Induced by Agricultural Inputs in China over 1991–2014. Sustainability 2016, 8, 414. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Lu, Z.; Zhang, W.; Yang, J.; Hou, Y.; Wang, X.; Zhou, S.; Li, Y.; Wu, L.; et al. Carbon footprint of a typical pomelo production region in China based on farm survey data. J. Clean. Prod. 2020, 277, 124041. [Google Scholar] [CrossRef]
- Zhang, L.; Ruiz-Menjivar, J.; Tong, Q.; Zhang, J.; Yue, M. Examining the carbon footprint of rice production and consumption in Hubei, China: A life cycle assessment and uncertainty analysis approach. J. Environ. Manag. 2021, 300, 113698. [Google Scholar] [CrossRef]
- Wen, S.; Hu, Y.; Liu, H. Measurement and Spatial-Temporal Characteristics of Agricultural Carbon Emission in China: An Internal Structural Perspective. Agriculture 2022, 12, 1749. [Google Scholar] [CrossRef]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yan, M. Carbon footprint of China’s crop production-An estimation using agro-statistics data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Zhang, L. Reducing the carbon footprint per unit of economic benefit is a new method to accomplish low-carbon agriculture. A case study: Adjustment of the planting structure in Zhangbei County, China. J. Sci. Food Agric. 2019, 99, 4889–4897. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, J.; Mao, S.; Han, Y.; Chen, F.; Zhang, L.; Li, Y.; Li, C. Comparison of greenhouse gas emissions of chemical fertilizer types in China’s crop production. J. Clean. Prod. 2017, 141, 1267–1274. [Google Scholar] [CrossRef]
- Liu, C.; Cutforth, H.; Chai, Q.; Gan, Y. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agron. Sustain. Dev. 2016, 36, 4. [Google Scholar] [CrossRef]
- Xiong, C.; Chen, S.; Xu, L. Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China. Growth Chang. 2020, 51, 1401–1416. [Google Scholar] [CrossRef]
- Huang, W.; Wu, F.; Han, W.; Li, Q.; Han, Y.; Wang, G.; Feng, L.; Li, X.; Yang, B.; Fan, Z.; et al. Carbon footprint of cotton production in China: Composition, spatiotemporal changes and driving factors. Sci. Total Environ. 2022, 821, 153407. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Factors Affecting CO2 Emissions in China’s Aagriculture Sector: Evidence from Geographically Weighted Regression Model. Energy Policy 2017, 104, 404–414. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, M. Impact Mechanism and Effect of Agricultural Land Transfer on Agricultural Carbon Emissions in China: Evidence from Mediating Effect Test and Panel Threshold Regression Model. Sustainability 2022, 14, 3014. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, S.; Song, Y.; Tang, M.; Li, H. Green Finance, Chemical Fertilizer Use and Carbon Emissions from Agricultural Production. Agriculture 2022, 12, 313. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S.; Shamshirband, S.; Yousefinejad-Ostadkelayeh, M. Resource Management in Cropping Systems Using Artificial Intelligence Techniques: A Case Study of Orange Orchards in North of Iran. Stoch. Environ. Res. Risk. Assess. 2015, 30, 413–427. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Zou, C. How does Agricultural Specialization Affect Carbon Emissions in China? J. Clean. Prod. 2022, 370, 133463. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.; Liao, H.; Wei, Y. Impacts of Urbanization on Carbon Emissions: An Empirical Analysis from OECD Countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]
- Liu, H.; Wen, S.; Wang, Z. Agricultural Production Agglomeration and Total Factor Carbon Productivity: Based on NDDF–MML Index Analysis. China Agric. Econ. Rev. 2022, 14, 709–740. [Google Scholar] [CrossRef]
- You, L.; Spoor, M.; Ulimwengu, J.; Zhang, S. Land Use Change and Environmental Stress of Wheat, Rice and Corn Production in China. China Econ. Rev. 2011, 22, 461–473. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Li, Y.; Ge, D.; Tu, S. How does Off-farm Work Affect Chemical Fertilizer Application? Evidence from China’s Mountainous and Plain Areas. Land Use Policy 2020, 99, 104848. [Google Scholar] [CrossRef]
- Jiang, S.; Zhou, J.; Qiu, S. Digital Agriculture and Urbanization: Mechanism and Empirical Research. Technol. Forecast. Soc. Chang. 2022, 180, 121724. [Google Scholar] [CrossRef]
- Zhao, Z.; Peng, P.; Zhang, F.; Wang, J.; Li, H. The Impact of the Urbanization Process on Agricultural Technical Efficiency in Northeast China. Sustainability 2022, 14, 2144. [Google Scholar] [CrossRef]
Explanatory Variables | Quantitative Indicators | Descriptions |
---|---|---|
Fertilizer input structure | There are significant direct and implicit carbon emissions in the process of nitrogen fertilizer production and use. The higher the proportion of nitrogen fertilizer use, the higher the agricultural carbon emission intensity [42]. | |
Agricultural industry structure | The higher the output value of the main crops (wheat, maize, and rice), the higher the agricultural carbon emission intensity [43]. | |
Investment in agriculture | The higher the level of investment in agriculture, the higher the production efficiency and the lower the carbon intensity [44]. | |
Energy use intensity | The higher the energy use intensity, the higher the agricultural carbon emission intensity [45]. | |
Urbanization rate | The higher the degree of urban feedback to rural areas, the lower the agricultural carbon emission intensity [46,47]. | |
The extent of disaster | Disasters will reduce yields, and then reduce agricultural output and increase the carbon emission intensity [48]. | |
Planting scale | The scale effect will increase production and resource use efficiency, thereby reducing the intensity of agricultural carbon emissions [49,50]. |
Periods | Explanatory Variables | Partial Regression Coefficients (Standard Error) | Standardized Partial Regression Coefficients | p-Value |
---|---|---|---|---|
1991–2019 | Fertilizer input structure | 0.0049 (0.0006) | 0.1441 | 0.0000 |
Agricultural industry structure | 0.0160 (0.0014) | 0.2632 | 0.0000 | |
Investment in agriculture | 0.0012 (0.0011) | 0.0272 | 0.3218 | |
Energy use intensity | 0.2926 (0.0184) | 0.3981 | 0.0000 | |
Urbanization rate | −0.0839 (0.0143) | −0.0838 | 0.0000 | |
The extent of disaster | 0.0992 (0.0374) | 0.0739 | 0.0150 | |
Planting scale | −0.0104 (0.0056) | −0.0403 | 0.0792 | |
1991–2007 | Fertilizer input structure | 0.0055 (0.0014) | 0.1432 | 0.0030 |
Agricultural industry structure | 0.0144 (0.0022) | 0.2741 | 0.0001 | |
Investment in agriculture | 0.0026 (0.0011) | 0.0863 | 0.5633 | |
Energy use intensity | 0.3340 (0.0291) | 0.4955 | 0.0000 | |
Urbanization rate | −0.1032 (0.0275) | −0.0665 | 0.0045 | |
The extent of disaster | 0.1548 (0.1309) | 0.0597 | 0.2673 | |
Planting scale | −0.0063 (0.0242) | −0.0086 | 0.8010 | |
2008–2019 | Fertilizer input structure | 0.0030 (0.0010) | 0.1196 | 0.0437 |
Agricultural industry structure | 0.0154 (0.0028) | 0.2074 | 0.0054 | |
Investment in agriculture | −0.0008 (0.0012) | −0.0386 | 0.0433 | |
Energy use intensity | 0.2421 (0.0711) | 0.1891 | 0.0272 | |
Urbanization rate | −0.0632 (0.0514) | −0.1442 | 0.0148 | |
The extent of disaster | 0.0718 (0.0273) | 0.1909 | 0.0582 | |
Planting scale | −0.0090 (0.0028) | −0.1238 | 0.0324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Zhao, S.; Zhang, Y.; Ma, Y. Carbon Emissions from Agricultural Inputs in China over the Past Three Decades. Agriculture 2023, 13, 919. https://doi.org/10.3390/agriculture13050919
Song S, Zhao S, Zhang Y, Ma Y. Carbon Emissions from Agricultural Inputs in China over the Past Three Decades. Agriculture. 2023; 13(5):919. https://doi.org/10.3390/agriculture13050919
Chicago/Turabian StyleSong, Shixiong, Siyuan Zhao, Ye Zhang, and Yongxi Ma. 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades" Agriculture 13, no. 5: 919. https://doi.org/10.3390/agriculture13050919
APA StyleSong, S., Zhao, S., Zhang, Y., & Ma, Y. (2023). Carbon Emissions from Agricultural Inputs in China over the Past Three Decades. Agriculture, 13(5), 919. https://doi.org/10.3390/agriculture13050919