Scaling-Up of the Production of Biochar from Olive Tree Pruning for Agricultural Use: Evaluation of Biochar Characteristics and Phytotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Char Production
2.3. Analysis Method
2.3.1. Chemical Characterisation
2.3.2. Phytotoxicity Test
2.3.3. Heavy Metals and PAHs Analysis
2.4. Stability Test: R50 Index
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biochar Characterisation
3.2. Phytotoxicity Test and Its Relationship to the Contaminants Present in Biochar
3.2.1. Concentration of Heavy Metals (HM) in the Biochar
3.2.2. Concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in the Biochar Samples
3.3. Evaluation of the Stability of Biochar Samples
3.3.1. Preliminary Analysis of Stability According to H/C and O/C Ratios
3.3.2. Recalcitrant Index (R50)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langgut, D.; Cheddadi, R.; Carrión, J.S.; Cavanagh, M.; Colombaroli, D.; Eastwood, W.J.; Greenberg, R.; Litt, T.; Mercuri, A.M.; Miebach, A.; et al. The Origin and Spread of Olive Cultivation in the Mediterranean Basin: The Fossil Pollen Evidence. Holocene 2019, 29, 902–922. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Chiappero, M.; Norouzi, O.; Hu, M.; Demichelis, F.; Berruti, F.; Di Maria, F.; Mašek, O.; Fiore, S. Review of Biochar Role as Additive in Anaerobic Digestion Processes. Renew. Sustain. Energy Rev. 2020, 131, 110037. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Sánchez, M.E.; Mora, M.; Barrón, V. Slow Pyrolysis of Relevant Biomasses in the Mediterranean Basin. Part 2. Char Characterisation for Carbon Sequestration and Agricultural Uses. J. Clean. Prod. 2016, 120, 191–197. [Google Scholar] [CrossRef]
- Akhil, D.; Lakshmi, D.; Kartik, A.; Vo DV, N.; Arun, J.; Gopinath, K.P. Production, Characterization, Activation and Environmental Applications of Engineered Biochar: A Review. Environ. Chem. Lett. 2021, 19, 2261–2297. [Google Scholar] [CrossRef]
- Guo, X.X.; Liu, H.T.; Zhang, J. The Role of Biochar in Organic Waste Composting and Soil Improvement: A Review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef]
- Khorram, M.S.; Zhang, Q.; Lin, D.; Zheng, Y.; Fang, H.; Yu, Y. Biochar: A Review of Its Impact on Pesticide Behavior in Soil Environments and Its Potential Applications. J. Environ. Sci. 2016, 44, 269–279. [Google Scholar] [CrossRef]
- Nair, V.D.; Ramachandran Nair, P.K.; Dari, B.; Freitas, A.M.; Chatterjee, N.; Pinheiro, F.M. Biochar in the Agroecosystem-Climate-Change-Sustainability Nexus. Front. Plant Sci. 2017, 8, 2051. [Google Scholar] [CrossRef]
- Ali, E.F.; Al-Yasi, H.M.; Kheir, A.M.S.; Eissa, M.A. Effect of Biochar on CO2 Sequestration and Productivity of Pearl Millet Plants Grown in Saline Sodic Soils. J. Sci. Plant Nutr. 2021, 21, 897–907. [Google Scholar] [CrossRef]
- Inyang, M.; Dickenson, E. The Potential Role of Biochar in the Removal of Organic and Microbial Contaminants from Potable and Reuse Water: A Review. Chemosphere 2015, 134, 232–240. [Google Scholar] [CrossRef]
- Pastor-Bueis, R.; Sánchez-Cañizares, C.; James, E.K.; González-Andrés, F. Formulation of a Highly Effective Inoculant for Common Bean Based on an Autochthonous Elite Strain of Rhizobium Leguminosarum Bv. Phaseoli, and Genomic-Based Insights Into Its Agronomic Performance. Front. Microbiol. 2019, 10, 2724. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, P.; Ok, Y.S.; Oleszczuk, P. The dark side of black gold: Ecotoxicological Aspects of Biochar and Biochar-Amended Soils. J. Hazard. Mater. 2021, 403, 123833. [Google Scholar] [CrossRef] [PubMed]
- Basu, P. Government Purchases and the Real Exchange Rate: A Comment. Open Econ. Rev. 2010, 21, 65–67. [Google Scholar] [CrossRef]
- Gómez, N.; Rosas, J.G.; Cara, J.; Martínez, O.; Alburquerque, J.A.; Sánchez, M.E. Slow Pyrolysis of Relevant Biomasses in the Mediterranean Basin. Part 1. Effect of Temperature on Process Performance on a Pilot Scale. J. Clean. Prod. 2016, 120, 181–190. [Google Scholar] [CrossRef]
- Rosas, J.G.; Gómez, N.; Cara, J.; Ubalde, J.; Sort, X.; Sánchez, M.E. Assessment of Sustainable Biochar Production for Carbon Abatement from Vineyard Residues. J. Anal. Appl. Pyrolysis 2015, 113, 239–247. [Google Scholar] [CrossRef]
- Zucconi, F.; Pera, A.; Forte, M.; De Bertoldi, M. Evaluating Toxicity of Immature Compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Varnero, M.T.; Orellana, R.; Rojas, C.; Santibáñez, C. Evaluación de Especies Sensibles a Metabolitos Fitotóxicos Mediante Bioensayos de Germinación. In Medioambiente En Iberoamérica: Visión Desde La Física Y La Química En Los Albores Del Siglo XXI; Juan Fernando Gallardo Lancho: Salamanca, Spain, 2007; Volume 3, pp. 363–370. [Google Scholar]
- Hilber, I.; Blum, F.; Leifeld, J.; Schmidt, H.P.; Bucheli, T.D. Quantitative Determination of PAHs in Biochar: A Prerequisite to Ensure Its Quality and Safe Application. J. Agric. Food Chem. 2012, 60, 3042–3050. [Google Scholar] [CrossRef]
- Harvey, O.R.; Kuo, L.J.; Zimmerman, A.R.; Louchouarn, P.; Amonette, J.E.; Herbert, B.E. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars). Environ. Sci. Technol. 2012, 46, 1415–1421. [Google Scholar] [CrossRef]
- Gómez, N.; Rosas, J.G.; Singh, S.; Ross, A.B.; Sánchez, M.E.; Cara, J. Development of a Gained Stability Index for Describing Biochar Stability: Relation of High Recalcitrance Index (R50) with Accelerated Ageing Tests. J. Anal. Appl. Pyrolysis 2016, 120, 37–44. [Google Scholar] [CrossRef]
- González-Arias, J.; Sánchez, M.E.; Martínez, E.J.; Covalski, C.; Alonso-Simón, A.; González, R.; Cara-Jiménez, J. Hydrothermal Carbonization of Olive Tree Pruning as a Sustainable Way for Improving Biomass Energy Potential: Effect of Reaction Parameters on Fuel Properties. Processes 2020, 8, 1201. [Google Scholar] [CrossRef]
- International Biochar Initiative (IBI). Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. Version 2.1 (23 November 2015): International Biochar Initiative (IBI). 2015. Available online: http://www.biochar-international.org/characterizationstandard (accessed on 21 November 2022).
- European Biochar Foundation (EBC). Guidelines for a Sustainable Production of Biochar. Version 10.1 (10 January 2022). European Biochar Foundation (EBC). Arbaz Switzerland. 2022. Available online: https://www.european-biochar.org/media/doc/2/version_en_10_1.pdf (accessed on 14 March 2022).
- Ameloot, N.; Graber, E.R.; Verheijen, F.G.A.; De Neve, S. Interactions between Biochar Stability and Soil Organisms: Review and Research Needs. Eur. J. Soil Sci. 2013, 64, 379–390. [Google Scholar] [CrossRef]
- Crombie, K.; Mašek, O.; Sohi, S.P.; Brownsort, P.; Cross, A. The Effect of Pyrolysis Conditions on Biochar Stability as Determined by Three Methods. GCB Bioenergy 2013, 5, 122–131. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Zimmerman, A.R.; Li, Y.; Ma, L.; Harris, W.G.; Migliaccio, K.W. Physicochemical and Sorptive Properties of Biochars Derived from Woody and Herbaceous Biomass. Chemosphere 2015, 134, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of Feedstock Type, Production Method, and Pyrolysis Temperature on Biochar and Hydrochar Properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. Effect of Pyrolysis Temperature, Heating Rate, and Residence Time on Rapeseed Stem Derived Biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock Choice, Pyrolysis Temperature and Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review. Biochar 2020, 1, 421–438. [Google Scholar] [CrossRef]
- Picca, G.; Goñi-Urtiaga, A.; Gomez-Ruano, C.; Plaza, C.; Panettieri, M. Suitability of Co-Composted Biochar with Spent Coffee Grounds Substrate for Tomato (Solanum Lycopersicum) Fruiting Stage. Horticulturae 2023, 9, 89. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The Forms of Alkalis in the Biochar Produced from Crop Residues at Different Temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis Temperature Induced Changes in Characteristics and Chemical Composition of Biochar Produced from Conocarpus Wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Calero, J.M.; Barrón, V.; Torrent, J.; del Campillo, M.C.; Gallardo, A.; Villar, R. Effects of Biochars Produced from Different Feedstocks on Soil Properties and Sunflower Growth. J. Plant Nutr. Soil Sci. 2014, 177, 16–25. [Google Scholar] [CrossRef]
- Morán, A.; Rosas, J.G.; Sánchez, M.E.; Cara, J.; Martínez, A.; López, O. Pirolizador Móvil y Autotérmico. E.S. Patent 2 557 492, October 2016. [Google Scholar]
- Intani, K.; Latif, S.; Müller, J. Phytotoxicity of Corncob Biochar before and after Heat Treatment and Washing. Sustainability 2019, 11, 30. [Google Scholar] [CrossRef]
- Xiao, R.; Sun, X.; Wang, J.; Feng, J.; Li, R.; Zhang, Z.; Wang, J.J.; Amjad, A. Characteristics and Phytotoxicity Assay of Biochars Derived from a Zn-Rich Antibiotic Residue. J. Anal. Appl. Pyrolysis 2015, 113, 575–583. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: Oxon, UK, 2015. [Google Scholar]
- Gell, K.; van Groenigen, J.W.; Cayuela, M.L. Residues of Bioenergy Production Chains as Soil Amendments: Immediate and Temporal Phytotoxicity. J. Hazard. Mater. 2011, 186, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of Biochar on Chemical Properties of Acidic Soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Shetty, R.; Vidya, C.S.N.; Prakash, N.B.; Lux, A.; Vaculík, M. Aluminum Toxicity in Plants and Its Possible Mitigation in Acid Soils by Biochar: A Review. Sci. Total Environ. 2021, 765, 142744. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Li, Z.; Yu, G.; Wang, Y. Effect of Pyrolysis Temperature on Characteristics, Chemical Speciation and Risk Evaluation of Heavy Metals in Biochar Derived from Textile Dyeing Sludge. Ecotoxicol. Environ. Saf. 2019, 168, 45–52. [Google Scholar] [CrossRef]
- Real Decreto 506/2013, de 28 de Junio, Sobre Productos Fertilizantes, Boletín Oficial del Estado (BOE). 2013. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2013-7540 (accessed on 14 March 2022).
- Hilber, I.; Bastos, A.C.; Loureiro, S.; Soja, G.; Marsz, A.; Cornelissen, G.; Bucheli, T.D. The Different Faces of Biochar: Contamination Risk versus Remediation Tool. J. Environ. Eng. Landsc. Manag. 2017, 25, 86–104. [Google Scholar] [CrossRef]
- Phoungthong, K.; Zhang, H.; Shao, L.M.; He, P.J. Leaching Characteristics and Phytotoxic Effects of Sewage Sludge Biochar. J. Mater. Cycles Waste Manag. 2018, 20, 2089–2099. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P. Effect of Pyrolysis Temperatures on Freely Dissolved Polycyclic Aromatic Hydrocarbon (PAH) Concentrations in Sewage Sludge-Derived Biochars. Chemosphere 2016, 153, 68–74. [Google Scholar] [CrossRef]
- Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K.L.; Arp, H.P.H.; Cornelissen, G. Quantifying the Total and Bioavailable Polycyclic Aromatic Hydrocarbons and Dioxins in Biochars. Environ. Sci. Technol. 2012, 46, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- De La Rosa, J.M.; Paneque, M.; Hilber, I.; Blum, F.; Knicker, H.E.; Bucheli, T.D. Assessment of Polycyclic Aromatic Hydrocarbons in biochar and Biochar-Amended Agricultural Soil from Southern Spain. J. Soils Sediments 2015, 16, 557–565. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Jośko, I.; Kuśmierz, M. Biochar Properties Regarding to Contaminants Content and Ecotoxicological Assessment. J. Hazard. Mater. 2013, 260, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar Stability Assessment Methods: A Review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A. Review of the Stability of Biochar in Soils: Predictability of O:C Molar Ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of Biochars to Evaluate Recalcitrance and Agronomic Performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
- Windeatt, J.H.; Ross, A.B.; Williams, P.T.; Forster, P.M.; Nahil, M.A.; Singh, S. Characteristics of Biochars from Crop Residues: Potential for Carbon Sequestration and Soil Amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. A Method for Screening the Relative Long-Term Stability of Biochar. GCB Bioenergy 2013, 5, 215–220. [Google Scholar] [CrossRef]
Code | Reactor | Temperature (°C) | Residence Time (min) |
---|---|---|---|
B400 | Semi-pilot | 400 ± 3 | 40 |
B500 | 500 ± 3 | 40 | |
B600 | 600 ± 3 | 40 | |
BF600 | Pilot | 600 ± 15 | 40 |
BMEC | Industrial | 666 ± 50 | 40 |
Code | Olive Tree Pruning | B400 | B500 | B600 | BF600 | BMEC |
---|---|---|---|---|---|---|
Moisture (%) | 6.20 | 0.04 ± 0.01 | 3.95 ± 0.30 | 5.36 ± 0.32 | 2.83 ± 0.48 | 8.26 ± 0.14 |
Volatile matter (%) a | 79.91 | 33.50 ± 0.57 | 22.25 ± 0.93 | 21.80 ± 0.17 | 17.97 ± 0.51 | 19.65 ± 0.75 |
Fixed Carbon (%) a | 17.31 | 62.47 ± 0.14 | 70.88 ± 0.33 | 68.81 ± 2.25 | 73.98 ± 2.03 | 71.27 ± 1.08 |
Ash (%) a | 2.78 | 4.03 ± 0.20 | 6.87 ± 0.21 | 9.40 ± 0.16 | 8.05 ± 0.57 | 9.08 ± 0.24 |
Corg (%) | 48.15 | 81.63 ± 0.50 | 84.08 ± 1.62 | 82.62 ± 0.32 | 70.39 ± 1.74 | 75.14 ± 1.18 |
H (%) | 5.74 | 3.30 ± 0.07 | 3.25 ± 0.14 | 5.08 ± 0.50 | 6.65 ± 0.11 | 3.44 ± 0.25 |
N (%) | 0.39 | 1.33 ± 0.37 | 1.53 ± 0.27 | 0.94 ± 0.26 | 0.76 ± 0.05 | 0.51 ± 0.08 |
H/Corg | 1.43 | 0.49 ± 0.01 | 0.464 ± 0.03 | 0.74 ± 0.07 | 1.13 ± 0.05 | 0.55 ± 0.04 |
S (%) | 0.05 | 0.34 ± 0.02 | 0.38 ± 0.05 | 0.20 ± 0.02 | 0.02 ± 0.01 | 0.60 ± 0.02 |
O (%) | 45.67 | 13.40 ± 0.39 | 10.76 ± 0.19 | 11.16 ± 0.26 | 22.18 ± 0.29 | 20.31 ± 0.31 |
O/Corg | 0.71 | 0.12 ± 0.01 | 0.10 ± 0.01 | 0.10 ± 0.01 | 0.24 ± 0.01 | 0.20 ± 0.01 |
pH | - | 8.14 ± 0.18 | 8.70 ± 0.24 | 9.10 ± 0.06 | 9.71 ± 0.19 | 11.52 ± 0.43 |
CE (dS/m) | - | 0.84 ± 0.02 | 0.41 ± 0.01 | 0.32 ± 0.01 | 1.17 ± 0.01 | 1.71 ± 0.01 |
Code | Tomato | Cress | Radish | Lettuce |
---|---|---|---|---|
B400 | 5.2 ± 0.018 d | 119.9 ± 2.69 b | 79.9 ± 0.26 c | 4.6 ± 0.23 d |
B500 | 108.4 ± 1.76 b | 56.6 ± 0.69 c | 275.3 ± 1.56 b | 19.1 ± 0.16 c |
B600 | 130.5 ± 2.54 a | 249.7 ± 2.80 a | 368.3 ± 2.29 a | 162.3 ± 1.97 a |
BF600 | 63.0 ± 1.32 c | 2.4 ± 0.19 d | 20.8 ± 0.30 d | 53.5 ± 1.89 b |
BMEC | 8.3 ± 0.36 d | 1.2 ± 0.06 d | 19.1 ± 0.62 d | 3.2 ± 0.09 d |
Metal (mg/kg) | Code | IBI (2015) | EBC-Agro (2022) | ||||
---|---|---|---|---|---|---|---|
B400 | B500 | B600 | BF600 | BMEC | |||
As | <4 | <4 | <4 | <4 | <4 | 13–100 | 13 |
Cd | <0.8 | <0.8 | <0.8 | <0.8 | <0.8 | 1.4–39 | 1.5 |
Co | 0.49 ± 0.001 | 0.86 ± 0.02 | 0.99 ± 0.04 | 0.89 ± 0.04 | 2.76 ± 0.07 | 34–100 | - |
Cr | 1.84 ± 0.01 | 10.33 ± 0.02 | 40.99 ± 0.08 | 21.44 ± 0.07 | 129.34 ± 0.13 | 93–1200 | 90 |
Cu | 115.41 ± 0.19 | 137.52 ± 0.26 | 102.42 ± 0.32 | 149.26 ± 0.09 | 221.46 ± 0.33 | 143–600 | 100 |
Hg | <1 | <1 | <1 | <1 | <1 | 1–17 | 1 |
Mo | <2 | <2 | <2 | <2 | 2.33 ± 0.01 | 5–75 | - |
Ni | <2 | 5.8 ± 0.08 | 19.07 ± 0.08 | 10.75 ± 0.13 | 75.64 ± 0.29 | 47–420 | 50 |
Pb | <4 | <4 | <4 | <4 | 5.99 ± 0.32 | 121–300 | 120 |
Se | <4 | <4 | <4 | <4 | <4 | 2–200 | - |
Zn | 43.26 ± 0.31 | 56.91 ± 0.21 | 36.69 ± 0.22 | 49.98 ± 0.33 | 51.31 ± 51.31 | 416–7400 | 400 |
PAHs (mg/kg) | Code | ||||
---|---|---|---|---|---|
B400 | B500 | B600 | BF600 | BMEC | |
Naphtalene | 4 | 5 | 4.2 | 28 | 1.3 |
Acenaphthylene | <0.1 | <0.1 | 0.2 | 1 | <0.1 |
Acenaphthene | 0.2 | 0.1 | 0.2 | 1.4 | 0.5 |
Fluorene | 0.6 | 0.4 | 0.4 | 1.4 | <0.1 |
Phenanthrene | 0.5 | 0.5 | 0.4 | 1.3 | 0.5 |
Anthracene | 0.2 | 0.1 | 0.1 | 0.4 | <0.1 |
Fluoranthene | 0.2 | 0.1 | 0.2 | 0.3 | 0.1 |
Pyrene | 0.3 | 0.2 | 0.1 | 0.6 | 0.2 |
Benzo[a]anthracene | <0.1 | <0.1 | <0.1 | 0.2 | <0.1 |
Chrysene | 0.1 | <0.1 | <0.1 | 0.2 | <0.1 |
Benzo[b]fluoranthene | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Benzo[k]fluoranthene | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Benzo[a]pyrene | <0.1 | <0.1 | <0.1 | 0.1 | <0.1 |
Indeno[123cd]pyrene | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Benzo[ghi]perylene | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Dibenz[ah]anthracene | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
16∑PAHs | 6.1 | 6.4 | 5.8 | 34.9 | 2.6 |
Benzo(ee)pyrene | <0.1 | <0.1 | <0.1 | 0.1 | <0.1 |
Benzo-(j)-fluoranthene | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Code | T °C | R50 | GS | Stability. Non-Labile Carbon (%) |
---|---|---|---|---|
B400 | 400 | 0.48 | 0.45 | 90.00 |
B500 | 500 | 0.50 | 0.52 | 91.53 |
B600 | 600 | 0.51 | 0.57 | 92.50 |
BF600 | 600 | 0.51 | 0.55 | 92.12 |
BMEC | 600 | 0.54 | 0.66 | 94.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo-Barreiro, A.; Gómez, N.; González-Arias, J.; Ortiz-Liébana, N.; González-Andrés, F.; Cara-Jiménez, J. Scaling-Up of the Production of Biochar from Olive Tree Pruning for Agricultural Use: Evaluation of Biochar Characteristics and Phytotoxicity. Agriculture 2023, 13, 1064. https://doi.org/10.3390/agriculture13051064
Crespo-Barreiro A, Gómez N, González-Arias J, Ortiz-Liébana N, González-Andrés F, Cara-Jiménez J. Scaling-Up of the Production of Biochar from Olive Tree Pruning for Agricultural Use: Evaluation of Biochar Characteristics and Phytotoxicity. Agriculture. 2023; 13(5):1064. https://doi.org/10.3390/agriculture13051064
Chicago/Turabian StyleCrespo-Barreiro, Andrea, Natalia Gómez, Judith González-Arias, Noemí Ortiz-Liébana, Fernando González-Andrés, and Jorge Cara-Jiménez. 2023. "Scaling-Up of the Production of Biochar from Olive Tree Pruning for Agricultural Use: Evaluation of Biochar Characteristics and Phytotoxicity" Agriculture 13, no. 5: 1064. https://doi.org/10.3390/agriculture13051064
APA StyleCrespo-Barreiro, A., Gómez, N., González-Arias, J., Ortiz-Liébana, N., González-Andrés, F., & Cara-Jiménez, J. (2023). Scaling-Up of the Production of Biochar from Olive Tree Pruning for Agricultural Use: Evaluation of Biochar Characteristics and Phytotoxicity. Agriculture, 13(5), 1064. https://doi.org/10.3390/agriculture13051064