Technological Capabilities for the Adoption of New Technologies in the Agri-Food Sector of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Method
2.2. Information Collection and Treatment
2.3. Statistic Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Federal Entities | Information and Communication Technologies | Computer Use | Internet Use | Cell Phone Use | Use of Satellite Navigation Systems |
---|---|---|---|---|---|
% | |||||
Aguascalientes | 61 | 9 | 12 | 91 | 1 |
Baja California | 91 | 20 | 22 | 97 | 3 |
Baja California Sur | 92 | 19 | 12 | 96 | 2 |
Campeche | 28 | 4 | 4 | 86 | 0 |
Chiapas | 18 | 4 | 5 | 97 | 2 |
Chihuahua | 77 | 7 | 11 | 97 | 0 |
Mexico City | 22 | 16 | 23 | 73 | 0 |
Coahuila | 44 | 10 | 41 | 96 | 2 |
Colima | 69 | 7 | 7 | 85 | 4 |
Durango | 76 | 4 | 4 | 90 | 1 |
Mexico State | 26 | 5 | 10 | 91 | 1 |
Guanajuato | 46 | 7 | 9 | 90 | 0 |
Guerrero | 27 | 3 | 5 | 71 | 0 |
Hidalgo | 27 | 1 | 6 | 97 | 1 |
Jalisco | 69 | 7 | 10 | 87 | 3 |
Michoacan | 43 | 4 | 6 | 88 | 2 |
Morelos | 50 | 8 | 10 | 83 | 1 |
Nayarit | 62 | 3 | 4 | 87 | 1 |
Nuevo Leon | 50 | 7 | 7 | 94 | 3 |
Oaxaca | 34 | 4 | 7 | 82 | 2 |
Puebla | 36 | 6 | 7 | 90 | 1 |
Queretaro | 22 | 9 | 9 | 91 | 1 |
Quintana Roo | 37 | 3 | 31 | 90 | 1 |
San Luis Potosi | 27 | 3 | 4 | 84 | 1 |
Sinaloa | 70 | 8 | 8 | 96 | 1 |
Sonora | 86 | 18 | 20 | 95 | 3 |
Tabasco | 45 | 3 | 3 | 94 | 0 |
Tamaulipas | 71 | 6 | 7 | 97 | 1 |
Tlaxcala | 24 | 1 | 1 | 79 | 0 |
Veracruz | 37 | 8 | 10 | 80 | 1 |
Yucatan | 33 | 5 | 6 | 97 | 0 |
Zacatecas | 42 | 3 | 5 | 85 | 1 |
Federal Entities | Education Level Bachelor’s Degree | Credit Availability | Competitiveness Index | Agri-Food Gross Domestic Product | Exportations |
---|---|---|---|---|---|
% | Millions of MXN | Thousands of USD | |||
Aguascalientes | 6 | 6 | 67 | 9076 | 11,794,073 |
Baja California | 17 | 40 | 38 | 15,458 | 42,396,951 |
Baja California Sur | 12 | 9 | 56 | 5368 | 291,812 |
Campeche | 5 | 11 | 83 | 5751 | 16,579,076 |
Chiapas | 10 | 2 | 73 | 19,522 | 820,170 |
Chihuahua | 7 | 12 | 57 | 33,904 | 57,434,140 |
Mexico City | 3 | 4 | 37 | 1246 | 2,667,127 |
Coahuila | 6 | 11 | 78 | 14,054 | 47,659,461 |
Colima | 15 | 1 | 43 | 5061 | 684,838 |
Durango | 7 | 14 | 78 | 19,263 | 2,737,229 |
Mexico State | 3 | 15 | 48 | 19,881 | 20,010,001 |
Guanajuato | 4 | 11 | 59 | 26,645 | 25,065,798 |
Guerrero | 3 | 1 | 34 | 12,636 | 966,475 |
Hidalgo | 6 | 19 | 64 | 9902 | 2,299,343 |
Jalisco | 2 | 1 | 58 | 71,044 | 21,659,641 |
Michoacan | 5 | 11 | 55 | 55,622 | 5,586,480 |
Morelos | 7 | 19 | 37 | 6595 | 3,086,705 |
Nayarit | 8 | 37 | 66 | 8679 | 266,760 |
Nuevo Leon | 12 | 3 | 70 | 6325 | 39,857,053 |
Oaxaca | 3 | 6 | 59 | 15,255 | 712,575 |
Puebla | 2 | 3 | 58 | 24,433 | 17,547,974 |
Querétaro | 2 | 4 | 62 | 9844 | 12,868,797 |
Quintana Roo | 5 | 6 | 54 | 2099 | 80,908 |
San Luis Potosi | 3 | 7 | 63 | 14,367 | 15,531,677 |
Sinaloa | 17 | 44 | 66 | 47,074 | 2,840,002 |
Sonora | 15 | 29 | 63 | 40,736 | 19,840,531 |
Tabasco | 7 | 4 | 33 | 8641 | 5,012,816 |
Tamaulipas | 12 | 18 | 59 | 14,920 | 29,130,161 |
Tlaxcala | 6 | 3 | 59 | 3427 | 1,460,866 |
Veracruz | 6 | 8 | 57 | 42,870 | 6,697,248 |
Yucatan | 3 | 3 | 85 | 9989 | 1,119,624 |
Zacatecas | 4 | 9 | 41 | 12,636 | 2,873,522 |
References
- Vargas-Canales, J.M. El sector agroalimentario mexicano y las nuevas tecnologías. e-Agronegocios 2022, 8, 89–113. [Google Scholar] [CrossRef]
- Bardi, U. Los Límites Del Crecimiento Retomados; Los Libros de la Catarata: Madrid, Spain, 2014. [Google Scholar]
- United Nations. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423); Department of Economic and Social Affairs: New York, NY, USA, 2019; Available online: https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf (accessed on 31 March 2023).
- Gaspar, P.D.; Fernandez, C.M.; Soares, V.N.G.J.; Caldeira, J.M.L.P.; Silva, H. Development of Technological Capabilities through the Internet of Things (IoT): Survey of Opportunities and Barriers for IoT Implementation in Portugal’s Agro-Industry. Appl. Sci. 2021, 11, 3454. [Google Scholar] [CrossRef]
- Comisión Económica Para América Latina y el Caribe (CEPAL). Tecnología e Innovación en la Economía Digital. La situación de América Latina y el Caribe; Naciones Unidas: Santiago, Chile, 2016; Volume 96. [Google Scholar]
- Vargas-Canales, J.M.; Brambila-Paz, J.D.J.; Pérez-Cerecedo, V.; Rojas-Rojas, M.M.; López-Reyna, M.D.C.; Omaña-Silvestre, J.M. Trends in science, technology, and innovation in the agri-food sector. Tapuya Lat. Am. Sci. Technol. Soc. 2022, 5, 2115829. [Google Scholar] [CrossRef]
- Trendov, N.M.; Varas, S.; Zeng, M. Tecnologías Digitales en la Agricultura y las Zonas Rurales; Organización de las Naciones Unidas Para la Alimentación y la Agricultura: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Canales, J.M.V.; Melchor, N.G.; Cirilo, S.O.; Cuéllar, S.E.M. Especialización agrícola e innovación tecnológica. In Economía y Crecimiento Económico; Soto, F.P., Hernández, E.F., Montoya, L.G., Moreno, R.S., Eds.; Asociación Mexicana de Investigación Interdisciplinaria A.C. (ASMIIA, A.C.): Texcoco, Mexico, 2021; pp. 85–102. [Google Scholar]
- Guzev, M.M.; Ledeneva, M.V.; Trukhlyaeva, A.A.; Mishura, N.A. Smart Technologies in Agriculture. In Lecture Notes in Networks and Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 155, pp. 1573–1584. [Google Scholar]
- Kovács, I.; Husti, I. The role of digitalization in the agricultural 4.0—How to connect the industry 4.0 to agriculture? Hung. Agric. Eng. 2018, 7410, 38–42. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Pivoto, D.; Barham, B.; Waquil, P.D.; Foguesatto, C.R.; Corte, V.F.D.; Zhang, D.; Talamini, E. Factors influencing the adoption of smart farming by Brazilian grain farmers. Int. Food Agribus. Manag. Rev. 2019, 22, 571–588. [Google Scholar] [CrossRef]
- Zscheischler, J.; Brunsch, R.; Rogga, S.; Scholz, R.W. Perceived risks and vulnerabilities of employing digitalization and digital data in agriculture—Socially robust orientations from a transdisciplinary process. J. Clean. Prod. 2022, 358, 132034. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C.; De Rosa, M. Digitalization of agriculture: A way to solve the food problem or a trolley dilemma? Technol. Soc. 2021, 67, 101744. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Rolandi, S.; Brunori, G.; Bacco, M.; Scotti, I. The Digitalization of Agriculture and Rural Areas: Towards a Taxonomy of the Impacts. Sustainability 2021, 13, 5172. [Google Scholar] [CrossRef]
- MacPherson, J.; Voglhuber-Slavinsky, A.; Olbrisch, M.; Schöbel, P.; Dönitz, E.; Mouratiadou, I.; Helming, K. Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agron. Sustain. Dev. 2022, 42, 70. [Google Scholar] [CrossRef] [PubMed]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Casalet, M. El futuro incierto de la digitalización en México: ¿Podremos despegar? Econ. Teoría Práctica 2020, SPE5, 45–68. [Google Scholar] [CrossRef]
- Spieth, P.; Röth, T.; Clauss, T.; Klos, C. Technological Frames in the Digital Age: Theory, Measurement Instrument, and Future Research Areas. J. Manag. Stud. 2021, 58, 1962–1993. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Rizou, M.; Aldawoud, T.M.S.; Ucak, I.; Rowan, N.J. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends Food Sci. Technol. 2021, 110, 193–200. [Google Scholar] [CrossRef]
- Galanakis, C.M. The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef]
- Vargas-Canales, J.M.; Orozco-Cirilo, S.; Medina-Cuéllar, S.E.; Camacho-Vera, J.H. Characteristics, roles, and functions of the innovation agents in the agri-food sector. Agrociencia 2022, 56, 383–404. [Google Scholar] [CrossRef]
- Mercado, A.; Sánchez-Rose, I.; Cervilla, M.A.; Sánchez, R.; Siem, G.; Colina, B. Disrupciones tecnológicas y crisis socioambiental: Los grandes desafíos de las ingenierías en Venezuela. Rev. Espacios 2022, 43, 61–78. [Google Scholar] [CrossRef]
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Expectativas Agroalimentarias 2021; SIAP: Mexico City, Mexico, 2021. [Google Scholar]
- Bell, M.; Pavitt, K. Accumulating Technological Capability in Developing Countries. World Bank Econ. Rev. 1992, 6, 257–281. [Google Scholar] [CrossRef]
- Lis, A.M.; Rozkwitalska, M. Technological capability dynamics through cluster organizations. Balt. J. Manag. 2020, 15, 587–606. [Google Scholar] [CrossRef]
- Salisu, Y.; Bakar, L.A.J. Technological capability, innovativeness and the performance of manufacturing small and medium enterprises (SMEs) in developing economies of Africa. IOSR J. Bus. Manag. 2019, 21, 58. [Google Scholar]
- Anderson, M.B.; Woodrow, P.J. Rising from the Ashes: Development Strategies in Times of Disaster; Lynne Rienner Publishers: Boulder, CO, USA, 1998. [Google Scholar] [CrossRef]
- Sen, A. Human Rights and Capabilities. J. Hum. Dev. 2005, 6, 151–166. [Google Scholar] [CrossRef]
- Rosales, M.A.; Giocochea, M.E.S. Technological capabilities in mexican agrobiotechnology: A proposal for their measurement. Investig. Económica 2023, 82, 72–97. [Google Scholar] [CrossRef]
- Lin, F.-J.; Lai, C. Key factors affecting technological capabilities in small and medium-sized Enterprises in Taiwan. Int. Entrep. Manag. J. 2021, 17, 131–143. [Google Scholar] [CrossRef]
- Vergara, S. El papel de las capacidades productivas y tecnológicas en la dinámica de las exportaciones de los países en desarrollo. Rev. CEPAL 2021, 133, 7–32. [Google Scholar]
- Dutrénit, G. Technological capability accumulation. In The Knowledge Spillover Theory of Entrepreneurship; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 460–467. [Google Scholar] [CrossRef]
- Dutrénit, G.; Natera, J.M.; Anyul, M.P.; Vera-Cruz, A.O. Development profiles and accumulation of technological capabilities in Latin America. Technol. Forecast. Soc. Chang. 2019, 145, 396–412. [Google Scholar] [CrossRef]
- Aydin, H. Market orientation and product innovation: The mediating role of technological capability. Eur. J. Innov. Manag. 2021, 24, 1233–1267. [Google Scholar] [CrossRef]
- Ceballos, L.D.; Maisonnave, A.M.; Britto Londoño, C.R. Soberanía tecnológica digital en Latinoamérica. Rev. Propuestas Para El Desarro. 2020, 4, 151–167. [Google Scholar]
- Secretaría de Agricultura y Desarrollo Rural (SADER). Regiones Agroalimentarias de México. 2021. Available online: https://www.gob.mx/agricultura/articulos/regiones-agroalimentarias-de-mexico?idiom=es (accessed on 31 March 2023).
- Secretaría de Agricultura y Desarrollo Rural (SADER). Cinco Estados Con Cinco Estrellas en Producción Agrícola. 2021. Available online: https://www.gob.mx/agricultura/articulos/cinco-estados-con-cinco-estrellas-en-produccion-agricola (accessed on 20 March 2022).
- Ragazou, K.; Garefalakis, A.; Zafeiriou, E.; Passas, I. Agriculture 5.0: A New Strategic Management Mode for a Cut Cost and an Energy Efficient Agriculture Sector. Energies 2022, 15, 3113. [Google Scholar] [CrossRef]
- Halcomb, E.J.; Hickman, L. Mixed methods research Mixed methods research Recommended Citation Recommended Citation. Nurs. Stand. Promot. Excell. Nurs. Care 2015, 29, 41–47. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Encuesta Nacional Agropecuaria (ENA). 2022. Available online: https://www.inegi.org.mx/programas/ena/2019/ (accessed on 20 March 2022).
- Carbajal, M.D.L.L.M.; Ovando, I.C.; Guerra, D.D.R. Innovación, generación de capacidades tecnológicas y competitividad empresarial de Mipymes del sector manufacturero en la Ciudad de Morelia. Econ. Soc. 2016, 20, 21–48. [Google Scholar]
- Rosales, M.A.; Marín, J.M.N. Technological capabilities accumulation and internationalization strategies of Mexican biotech firms: A multi case study from agro-food & pharma industries. Econ. Innov. New Technol. 2020, 29, 720–739. [Google Scholar]
- Instituto Mexicano Para la Competitividad (IMCO). Competitividad Estatal. 2022. Available online: https://imco.org.mx (accessed on 20 March 2022).
- Instituto Nacional de Estadística y Geografía (INEGI). Sistema de Cuentas Nacionales de México. 2022. Available online: https://www.inegi.org.mx/sistemas/bie/?idserPadre=10200070#D10200070 (accessed on 20 March 2022).
- Cirilo, S.O.; Canales, J.M.V. Estadística Paramétrica Fácil. Incluye Problemario Con Respuestas; Plaza y Valdés: Asturias, Spain, 2021. [Google Scholar]
- Hair, J.; Aanderson, R.; Tatham, R.; Black, W. Análisis Multivariante; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Cirilo, S.O. Estadística No Paramétrica, Con Ejemplos en SPSS; Plaza y Valdés: Asturias, Spain, 2022. [Google Scholar]
- Pérez Hernández, C.P.; Lara Gómez, G.; Gómez Hernández, D.G. Evolution of state clusters related with technological capability in Mexico: Application of a multivariate statistical analysis of cluster. Contaduría y Adm. 2017, 62, 528–555. [Google Scholar] [CrossRef]
- Baryshnikova, N.; Altukhov, P.; Naidenova, N.; Shkryabina, A. Ensuring Global Food Security: Transforming Approaches in the Context of Agriculture 5.0. IOP Conf. Ser. Earth Environ. Sci. 2022, 988, 032024. [Google Scholar] [CrossRef]
- da Silveira, F.; da Silva, S.L.C.; Machado, F.M.; Barbedo, J.G.A.; Amaral, F.G. Farmers’ perception of the barriers that hinder the implementation of agriculture 4.0. Agric. Syst. 2023, 208, 103656. [Google Scholar] [CrossRef]
- Pinto, H. Universities and institutionalization of regional innovation policy in peripheral regions: Insights from the smart specialization in Portugal. Reg. Sci. Policy Pract. 2023, 1–22. [Google Scholar] [CrossRef]
- Chevalier, F. La Formación de los Latifundios en México; Fondo de Cultura Económica: Mexico City, Mexico, 1985. [Google Scholar]
- Capdevielle, M. Globalización, especialización y heterogeneidad estructural en México. In Heterogeneidad Estructural, Asimetrías Tecnológicas y Crecimiento en América Latina; Cimoli, M., Ed.; Naciones Unidas: New York, NY, USA, 2005; pp. 101–126. [Google Scholar]
- Pérez, C. Cambio tecnológico y oportunidades de desarrollo como blanco móvil. Rev. CEPAL 2001, 75, 115–136. [Google Scholar] [CrossRef]
- Vargas-Canales, J.M.; Rangel, M.I.P.; Ávila, J.A.; Ledesma, J.G.O.; Kreimer, P.R.; Martínez, G.O. Technological innovation in a case of protected agriculture in Mexico. Rev. Geogr. Agrícola 2018, 61, 9–38. [Google Scholar] [CrossRef]
- Mochi, S. Capacidades tecnológicas y vínculos territoriales en empresas argentinas de maquinaria agrícola. Rev. Bras. Inovação 2020, 19, 1–36. [Google Scholar] [CrossRef]
- Alam, M.F.B.; Tushar, S.R.; Zaman, S.M.; Gonzalez, E.D.S.; Bari, A.M.; Karmaker, C.L. Analysis of the drivers of Agriculture 4.0 implementation in the emerging economies: Implications towards sustainability and food security. Green Technol. Sustain. 2023, 1, 100021. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Vargas-Canales, J.M.; Carbajal-Flores, G.; Bustamante-Lara, T.I.; Camacho-Vera, J.H.; Fresnedo-Ramírez, J.; Palacios-Rangel, M.I.; Rodríguez-Haros, B. Impact of the Market on the Specialization and Competitiveness of Avocado Production in Mexico. Int. J. Fruit Sci. 2020, 20, S1942–S1958. [Google Scholar] [CrossRef]
- González-Ramírez, M.G.; Santoyo-Cortés, V.H.; Arana-Coronado, J.J.; Muñoz-Rodríguez, M. The insertion of Mexico into the global value chain of berries. World Dev. Perspect. 2020, 20, 100240. [Google Scholar] [CrossRef]
- Patiño-Ordoñez, T.E.; Bustamante-Lara, T.I.; Camacho-Vera, J.H.; Mendoza-Castillo, V.M.; Rodríguez-Haros, B.; Vargas-Canales, J.M. Especialización y competitividad de la producción de chile en México. Reg. Desarro. Sustentable 2021, 22, 101–121. [Google Scholar]
- Vargas-Canales, J.M.; Guido-López, D.L.; Rodríguez-Haros, B.; Bustamante-Lara, T.I.; Camacho-Vera, J.H.; Orozco-Cirilo, S. Evolution of the specialization and competitiveness of lemon production in Mexico. Rev. Mex. Cienc. Agrícolas 2020, 11, 1043–1056. [Google Scholar] [CrossRef]
- Barrientos, M.G.; Vera-Cruz, A.O. Industria 4.0: ¿una nueva revolución tecnológica? Ciencia 2023, 74, 8–13. [Google Scholar]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Trans. Ind. Inform. 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
- Quintero, S.; Ruiz-Castañeda, W.; Jiménez, S.C.; Sánchez, B.M.M.; Giraldo, D.P.; Acosta, L.M.V. Medición de las capacidades tecnológicas para la innovación en los sistemas de conocimiento e innovación agrícola. Cienc. Tecnol. Agropecu. 2021, 22. [Google Scholar] [CrossRef]
- Sotomayor, O.; Ramirez, E.; Martinez, H. Digitalización y Cambio Tecnológico en las Mipymes Agrícolas y Agroindustriales en América Latina; Comisión Económica para América Latina y el Caribe (CEPAL)/Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): Santiago, Chile, 2021. [Google Scholar]
- Salvador, L.E.M. Capacidades tecnológicas en la agroindustria en México. Marco analítico para su investigación. Análisis Económico 2018, 33, 169–189. [Google Scholar] [CrossRef]
- Hernández, A.A. La Capacidad de Innovación Tecnológica en la Universidad Autónoma del Estado de México. Converg. Rev. Cienc. Soc. 1996, 55–88. [Google Scholar] [CrossRef]
- Martins, J.T.; Singh, S.H. Boundary organisations in regional innovation systems: Traversing knowledge boundaries for industry 4.0 regional transformations. RD Manag. 2023, 53, 364–390. [Google Scholar] [CrossRef]
- Vargas-Canales, J.M.; Palacios-Rangel, M.I.; García-Cruz, J.C.; Camacho-Vera, J.H.; Sánchez-Torres, Y.; Simón-Calderón, C. Analysis of the impact of the regional innovation system of protected agriculture in Hidalgo, Mexico. J. Agric. Educ. Ext. 2023, 29, 269–294. [Google Scholar] [CrossRef]
- Focacci, C.N.; Perez, C. The importance of education and training policies in supporting technological revolutions: A comparative and historical analysis of UK, US, Germany, and Sweden (1830–1970). Technol. Soc. 2022, 70, 102000. [Google Scholar] [CrossRef]
- INCyTU (Oficina de Información Científica y Tecnológica para el Congreso de la Unión). Inversión Para Ciencia, Tecnología e Innovación en México; INCyTU: Mexico City, Mexico, 2018; Volume 52, pp. 1–6. [Google Scholar]
- Rodríguez, L.M.Z. Dinámica del potencial humano en el Sistema de Ciencia, Tecnología e Innovación en Cuba. An. Acad. Cienc. Cuba 2022, 12, 1–14. [Google Scholar]
- Bartis, H.; Neira, P. Las tecnologías de la industria 4.0 en la provincia de Buenos Aires y algunas propuestas para promoverlas. Rev. Propuestas Para Desarro. 2020, 4, 93–115. [Google Scholar]
- Ingram, J.; Maye, D.; Bailye, C.; Barnes, A.; Bear, C.; Bell, M.; Cutress, D.; Davies, L.; de Boon, A.; Dinnie, L.; et al. What are the priority research questions for digital agriculture? Land Use Policy 2022, 114, 105962. [Google Scholar] [CrossRef]
- Ehlers, M.-H.; Huber, R.; Finger, R. Agricultural policy in the era of digitalisation. Food Policy 2021, 100, 102019. [Google Scholar] [CrossRef]
- Contreras-Medina, D.I.; Medina-Cuéllar, S.E.; Rodríguez-García, J.M. Roadmapping 5.0 Technologies in Agriculture: A Technological Proposal for Developing the Coffee Plant Centered on Indigenous Producers’ Requirements from Mexico, via Knowledge Management. Plants 2022, 11, 1502. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Lutton, E.; Bisquert, P.; Brossard, L.; Chambaron-Ginhac, S.; Labarthe, P.; Lagacherie, P.; Martignac, F.; Molenat, J.; Parisey, N.; et al. Digital revolution for the agroecological transition of food systems: A responsible research and innovation perspective. Agric. Syst. 2022, 203, 103524. [Google Scholar] [CrossRef]
- Qin, T.; Wang, L.; Zhou, Y.; Guo, L.; Jiang, G.; Zhang, L. Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU. Agriculture 2022, 12, 297. [Google Scholar] [CrossRef]
- Ollerenshaw, A.; Murphy, A.; Walters, J.; Robinson, N.; Thompson, H. Use of digital technology for research data and information transfer within the Australian grains sector: A case study using Online Farm Trials. Agric. Syst. 2023, 206, 103591. [Google Scholar] [CrossRef]
- Kukk, M.; Põder, A.; Viira, A.-H. The role of public policies in the digitalisation of the agri-food sector. A systematic review. NJAS Impact Agric. Life Sci. 2022, 94, 217–248. [Google Scholar] [CrossRef]
- Buenrostro Mercado, E.B. Propuesta de adopción de tecnologías asociadas a la industria 4.0 en las pymes mexicanas. Entreciencias Diálogos Soc. Conoc. 2022, 10, 1–19. [Google Scholar] [CrossRef]
- Kreimer, P.; Vessuri, H. Latin American science, technology, and society: A historical and reflexive approach. Tapuya Lat. Am. Sci. Technol. Soc. 2018, 1, 17–37. [Google Scholar] [CrossRef]
- Vlčková, J.; Kaspříková, N.; Vlčková, M. Technological relatedness, knowledge space and smart specialisation: The case of Germany. Morav. Geogr. Rep. 2018, 26, 95–108. [Google Scholar] [CrossRef]
- Boyacι-Gündüz, C.P.; Ibrahim, S.A.; Wei, O.C.; Galanakis, C.M. Transformation of the Food Sector: Security and Resilience during the COVID-19 Pandemic. Foods 2021, 10, 497. [Google Scholar] [CrossRef]
- Asheim, B.T. Smart specialisation, innovation policy and regional innovation systems: What about new path development in less innovative regions? Innov. Eur. J. Soc. Sci. Res. 2019, 32, 8–25. [Google Scholar] [CrossRef]
- Balland, P.-A.; Boschma, R.; Crespo, J.; Rigby, D.L. Smart specialization policy in the European Union: Relatedness, knowledge complexity and regional diversification. Reg. Stud. 2019, 53, 1252–1268. [Google Scholar] [CrossRef]
- Rodríguez, A.G.; Aramendis, R.H. El Financiamiento en América Latina: Identificación de Fuentes Nacionales, Regionales y de Cooperación Internacional; Serie Recursos Naturales y Desarrollo, 193; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2019. [Google Scholar]
Variables | N | Minimum | Maximum | Mean | Standard Error | Standard Deviation | Variance |
---|---|---|---|---|---|---|---|
Information and communication technologies | 32 | 17.86 | 92.17 | 48.11 | 3.89 | 22.01 | 484.52 |
Computer use | 32 | 0.95 | 20.00 | 6.93 | 0.88 | 5.02 | 25.21 |
Internet use | 32 | 0.81 | 40.59 | 10.20 | 1.50 | 8.53 | 72.85 |
Cell phone use | 32 | 70.55 | 97.28 | 89.29 | 1.25 | 7.11 | 50.61 |
Use of satellite navigation systems | 32 | 0.01 | 4.28 | 1.25 | 0.19 | 1.09 | 1.19 |
Education level, Bachelor’s degree | 32 | 1.62 | 17.45 | 7.07 | 0.81 | 4.61 | 21.20 |
Credit availability | 32 | 0.63 | 44.03 | 11.58 | 2.01 | 11.32 | 128.19 |
Agri-food Gross Domestic Product | 32 | 1245.77 | 71,043.77 | 18,510.10 | 2949.06 | 16,682.44 | 278,303,879.80 |
Competitiveness Index | 32 | 32.63 | 85.14 | 58.09 | 2.45 | 13.88 | 192.83 |
Exportations | 32 | 80,908 | 57,434,140 | 13,049,369.81 | 2,754,923.82 | 15,584,202.56 | 242,867,369,300,000.00 |
Variables | General | Cluster 1 | Cluster 2 | Cluster 3 |
---|---|---|---|---|
No. of states | 32 | 18 | 10 | 4 |
Information and communication technologies | 43.25 | 39.72 a | 40.72 a | 63.36 a |
Computer use | 5.9 | 4.13 b | 6.25 ab | 8.44 a |
Internet use | 7.29 | 5.91 b | 8.88 ab | 16.48 a |
Cell phone use | 90.44 | 87.34 b | 90.50 ab | 96.22 a |
Use of satellite navigation systems | 0.86 | 0.59 a | 1.08 a | 2.12 a |
Education level, Bachelor’s degree | 6.11 | 6.36 ab | 3.81 b | 9.73 a |
Credit availability | 8.28 | 6.78 a | 9.04 a | 11.71 a |
Agri-food Gross Domestic Product | 13,345.07 | 9945.27 a | 17,400.72 a | 14,755.88 a |
Competitiveness Index | 58.73 | 56.23 a | 60.61 a | 63.80 a |
Exportations | 5,299,648.00 | 1,880,104.50 c | 18,694,252.50 b | 45,028,206.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Canales, J.M. Technological Capabilities for the Adoption of New Technologies in the Agri-Food Sector of Mexico. Agriculture 2023, 13, 1177. https://doi.org/10.3390/agriculture13061177
Vargas-Canales JM. Technological Capabilities for the Adoption of New Technologies in the Agri-Food Sector of Mexico. Agriculture. 2023; 13(6):1177. https://doi.org/10.3390/agriculture13061177
Chicago/Turabian StyleVargas-Canales, Juan Manuel. 2023. "Technological Capabilities for the Adoption of New Technologies in the Agri-Food Sector of Mexico" Agriculture 13, no. 6: 1177. https://doi.org/10.3390/agriculture13061177
APA StyleVargas-Canales, J. M. (2023). Technological Capabilities for the Adoption of New Technologies in the Agri-Food Sector of Mexico. Agriculture, 13(6), 1177. https://doi.org/10.3390/agriculture13061177