Screening and Prioritization of Pesticide Application for Potential Human Health and Environmental Risks in Largescale Farms in Western Kenya
Abstract
:1. Introduction
2. Materials and Methods
- n: is the number of respondents to be involved in the study,
- p: is the standard deviation, assumed to be 0.5,
- q: is 1-p.
3. Results
3.1. Farming and Cropping Systems
3.2. Soil Quality Monitoring and Management
3.3. Intensity and Frequency of Pesticide Application
3.4. Types of Pesticides Applied in Large-Scale Farms
3.5. Environmental Exposure Potential of Pesticide Application
3.6. Human Toxicity Potentials of the Pesticides Applied in the Study Area
3.7. Handling and Awareness of Potential Environmental Impacts of Pesticides
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandya, I.Y. Pesticides and their applications in agriculture. Asian J. Appl. Sci. Technol. 2018, 2, 894–900. [Google Scholar]
- Kim, K.; Ehsanul, K.; Shamin, A.J. Exposure to pesticides and associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [PubMed]
- Gyawali, K. Pesticide Uses and its Effects on Public Health and Environment. J. Health Promot. 2018, 6, 28–37. [Google Scholar]
- Sharma, A.; Vinod, K.; Babar, S.; Mohsin, T.; Gagan, P.; Singh, S.; Neha, H.; Sukhmeen, K.; Poonam, Y.; Aditi, S.; et al. Worldwide pesticide usage and its impacts on ecosystem. App. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Tudi, M.; Huada, D.R.; Jia, L.; Ross, S.; Des, C.; Cordia, C.; Dung, T.P. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Nicolopoulou, S.P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar]
- Jallow, M.F.A.; Dawood, G.A.; Mohammed, S.A.; Vimala, Y.D.; Binson, M.T. Pesticide Knowledge and Safety Practices among Farm Workers in Kuwait: Results of a Survey. Int. J. Environ. Res. Public Health 2017, 14, 340. [Google Scholar] [CrossRef]
- Akashe, M.M.; Uday, V.P.; Ashwin, V.N. Classification of pesticides: A review. Int. J. Res. Ayurveda Pharm. 2018, 9, 144–152. [Google Scholar]
- Kole, R.K.; Roy, K.; Panja, B.N.; Sankarganesh, E.; Mandal, T.; Worede, R.E. Use of pesticides in agriculture and emergence of resistant pests. Indian J. Anim. Health 2019, 58, 53–70. [Google Scholar]
- Yawson, D.O. Pesticide use culture among food crop farmers: Implications for subtle exposure and management in Barbados. Agriculture 2022, 12, 288. [Google Scholar] [CrossRef]
- Maksymiv, I. Pesticides: Benefits and Hazards. J. Vasyl Stef. Prec. Nat. Univ. 2015, 2, 70–76. [Google Scholar]
- Singh, G. Movement of Crop Protection Chemicals in Different Environmental Components. Int. J. Plant Anim. Environ. Sci. 2019, 5, 206–209. [Google Scholar] [CrossRef]
- Sudhanshu, B.N.; Alok, K.; Elango, K.; Sankara, R. Role of pesticide application in environmental degradation and its remediation strategies. Environ. Degrad. Causes Remediat. Strateg. 2022, 1, 36. [Google Scholar] [CrossRef]
- Al-Kazafy, H.S. Synthetic fertilizers, roles and hazards. Fertil. Technol. 2015, 1, 111–133. [Google Scholar]
- Damalas, C.; Eleftherohorinos, I. Pesticide exposure, safety issues and risk assessment indicators. Int. J. Environ Res Public Health 2011, 8, 1402–1419. [Google Scholar] [PubMed]
- Cech, R.; Leisch, F.; Zaller, J.G. Pesticide use and associated greenhouse gas emissions in sugar beet, apples, and viticulture in Austria from 2000 to 2019. Agriculture 2022, 12, 879. [Google Scholar] [CrossRef]
- Wandiga, O.S. Use and distribution of organochlorine pesticides. The future in Africa. Pure Appl. Chem. 2001, 73, 1147–1155. [Google Scholar] [CrossRef]
- Boulanger, P.; Dudu, H.; Ferrari, E.; Alfredo, M.J.; Ramos, M.P. Effectiveness of fertilizer policy reforms to enhance food security in Kenya: A macro-micro simulation analysis. Appl. Econ. 2022, 54, 841–861. [Google Scholar] [CrossRef]
- Agrochemical Association of Kenya. Annual Report; Agrochemical Association of Kenya: Nairobi, Kenya, 2018; pp. 20–22. [Google Scholar]
- FAO. Practical Guidelines on Pesticides Risk Reduction for Locust Control in Caucasus and Central Asia; FAO: Rome, Italy, 2019; pp. 1–10. [Google Scholar]
- Abdou, K.; Hend, M. Epidemiology of Pesticides in Developing Countries. Adv. Clin. Toxicol. 2018, 3, 000128. [Google Scholar]
- Zheng, S.; Chen, B.; Qiu, X.; Chen, M.; Ma, Z.; Yu, X. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary. Chemosphere 2016, 144, 1177–1192. [Google Scholar] [CrossRef]
- Njoroge, S.; Munyao, T.M.; Odipo, O. Modeling Relationship between Organic Carbon Partition Coefficient and pesticides solubility of pesticides used along the shore of Lake Naivasha, Kenya. Am. J. Environ. Eng. 2016, 6, 33–37. [Google Scholar]
- Varghese, P.; Timothy, B.E. Pesticide poisoning among children in India: The need for an urgent solution. Glob. Pediatr. Health 2022, 9, 1–7. [Google Scholar] [CrossRef]
- Kaur, R.; Mavi, G.K.; Raghay, S. Pesticides Classification and its Impact on Environment. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1889–1897. [Google Scholar] [CrossRef]
- Silva-Madera, R.J.; Joel, S.; Aarón, A.P.; Mendoza, J.; Hazael, R.C.; Daniel, R.; Mireya, Z.R.; Erandis, D.S. Pesticide Contamination in Drinking and Surface Water in the Cienega, Jalisco, Mexico. Water Air Soil Pollut. 2021, 232, 43. [Google Scholar] [CrossRef]
- Menger, F.; Gustaf, B.; Ove, J.; Lutz, A.; Karin, W.; Jenny, K.; Pablo, G. Identification of Pesticide transformation products in surface water using suspect screening combined with national monitoring data. Environ. Sci. Technol. 2021, 55, 10343–10353. [Google Scholar] [CrossRef] [PubMed]
- Phung, D.T.; Des, C.; Greg, M.; Rutherford, S.; Chu, C. Pesticide regulations and farm worker safety: The need to improve pesticide regulations in Viet Nam. Bull. World Health Organ. 2012, 90, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Marete, G.; Lalah, J.O.; Mputhia, J.; Wekesa, V.W. Pesticide usage practices as sources of occupational exposure and health impacts on horticultural farmers in Meru County, Kenya. Heliyon 2021, 7, e06118. [Google Scholar] [CrossRef] [PubMed]
- Eddleston, M.; Hiroshi, N.; Chien-Yu, L.; Mark, L.D.; Shu-Sen, C. Pesticide use, agricultural outputs, and pesticide poisoning deaths in Japan. Clin. Toxicol. 2022, 60, 933–941. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Lalah, J.O.; Omwoma, S.; Osano, F.O.; Omukunda, E.; Wafubwa, G.; Muyekho, D.; Schramm, K.W. Assessment of potential risks and effectiveness of agrochemical usage in a catchment: A case study of the Nzoia Nucleus Estate sugarcane farms in western Kenya. In Integrated Analytical Approaches for Pesticide Management; Paperback; Maestroni, B., Cannavan, A., Eds.; Academic Press Publishers, Elsevier: Cambridge, MA, USA, 2018; p. 338. [Google Scholar]
- Boedeker, W.; Watts, M.; Clausing, P.; Marquez, E. The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health 2020, 20, 1875. [Google Scholar] [CrossRef]
- Blakey, D.H.; Marc, L.; Lavigne, J.; Danny, S.; Jean-Marc, P.; Jean-Marc, S.; Biederbick, W.; Regine, H.; Willi, B.; Hisayoshi, K.; et al. A screening tool to prioritize public health risk associated with accidental or deliberate release of chemicals into the atmosphere. BMC Public Health 2013, 13, 253271. [Google Scholar]
- Hoppin, J.A.; John, L.A.; Monty, E.; Marcia, N.; Barry, R. Environmental Exposure Assessment of Pesticides in Farmworker Homes. Environ. Health Perspect. 2006, 114, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Qingwei, B.; Donghong, W.; Zijian, W. Review of screening systems for prioritizing chemical substances. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1011–1041. [Google Scholar]
- Gustafson, D.I. Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environ. Toxicol. Chem. 1989, 8, 339–357. [Google Scholar] [CrossRef]
- Dabrowski, J.; Micael, S.; Justinus, M.; Wepener, V. Prioritizing agricultural pesticides in South Africa based on their environmental mobility and potential human health effects. Environ. Int. 2014, 62, 31–40. [Google Scholar] [CrossRef]
- Harmon, J.O.; Siggins, A.; Healy, M.G.; McGinley, J.; Mellander, P.E.; Morrison, L.; Ryan, P.C. A risk ranking of pesticides in Irish drinking water considering chronic health effects. Sci. Total Environ. 2022, 829, 154532. [Google Scholar] [CrossRef]
- Abong’o, D.A.; Wandiga, S.O.; Jumba, I.O.; Odongomadadi, V.; Henrikkylin, L. Impacts of pesticides on human health and environment in the River Nyando catchment, Kenya. Int. J. Humanit. Arts Med. Sci. 2014, 2, 1–14. [Google Scholar]
- Otieno, P.O.; Okinda, P.O.; Lalah, J.O.; Pfister, G.; Schramm, K.W. Monitoring the occurrence and distribution of selected organophosphates and carbamate pesticide residues in the ecosystem of Lake Naivasha, Kenya. Toxicol. Environ. Chem. 2014, 97, 51–61. [Google Scholar] [CrossRef]
- Mutai, C.; Inonda, R.; Njage, E.; Ngeranwa, J. Determination of Pesticide Residues in Locally Consumed Vegetables in Kenya. Afr. J. Pharmacol. Ther. 2015, 4, 1–6. [Google Scholar]
- Macharia, I. Pesticides and Health in Vegetable Production in Kenya. BioMed Res. Int. 2015, 24, 15–16. [Google Scholar] [CrossRef]
- Swati, S.; Dawa, B.; Sanjib, S.; Benoy, K.; Rai, J.P.; Soumen, H.; Min, B. Analyses of pesticide residues in water, sediment and fish tissue from river Deomoni flowing through the tea gardens of Terai Region of West Bengal, India. Int. J. Fish. Aquat. Sci. 2015, 3, 17–23. [Google Scholar]
- Momanyi, V.N.; Keraka, M.; Abong’o, D.A.; Warutere, P.N. Types and Classification of Pesticides Used on Tomatoes Grown in Mwea Irrigation Scheme Kirinyaga County, Kenya. Eur. J. Nutr. Food Saf. 2019, 11, 83–97. [Google Scholar]
- Omwenga, I.; Kanja, L.; Zoomer, P.; Louisse, J.; Ivonne, M.C.; Mol, H. Organophosphate and carbamate pesticide residues and accompanying risks in commonly consumed vegetables in Kenya. Food Addit. Contam: Part B 2021, 14, 48–58. [Google Scholar]
- KEPHIS. Annual Report and Financial Statements for the Year Ended 30th June 2017; KEPHIS: Nairobi, Kenya, 2017; pp. 12–14. [Google Scholar]
- Government of Kenya. 7th Annual Report on Progress Made in Fulfilling the International Obligations of the Republic of Kenya; Government Printer: Nairobi, Kenya; pp. 194–195.
- Sarkar, S.; Bernardes, J.; Kelly, J.; Niklas, M.; Kees, J. The Use of Pesticides in Developing Countries and Their Impact on Health and Right to Food; Directorate General for External Policies; Policy Department: Brussels, Belgium, 2021; pp. 1–3. [Google Scholar]
- Shete, A.; Shete, A.A.; Dube, S.P.; Dubewar, A.P. Sample size calculation in bio statistics with special reference to unknown population. Int. J. Innov. Res. Multidiscip. Field 2020, 6, 236–238. [Google Scholar]
- Abbasi, A.; Ayesha, S.; Namra, H.; Sammia, R.; Zujaja-tul, M.; Gul, S.; Ashraf, M.; Alvina, G.K. Agricultural Pollution: An Emerging Issue. In Improvement of Crops in the Era of Climatic Changes; Ahmad, P., Ed.; Springer: New York, NY, USA, 2014; Volume 1, pp. 347–388. [Google Scholar]
- Government of Kenya. Trans Nzoia County Integrated Development Plan 2018–2022 Indicator Handbook; Government Printer: Nairobi, Kenya, 2018; pp. 1–13. [Google Scholar]
- Adusumilli, N.C.; Ronald, D.L.; Edward, R.; Joshua, D.W.; Allen, W.S. Effect of Agricultural Activity on River Water Quality: A Case Study for the Lower Colorado River Basin. In Proceedings of the Southern Agricultural Economics Association Annual Meeting, Corpus Christi, TX, USA, 5–8 February 2011. [Google Scholar]
- Rohila, K.; Ansul, D.; Maan, A.K.; Krishan, K. Impact of Agricultural practices on Environment. Asian J. Microbiol. Biotechnol. Environ. Sci. 2017, 19, 145–148. [Google Scholar]
- Zajícová, K.; Chuman, T. Effect of land use on soil chemical properties after 190 years of forest to agricultural land conversion. Soil Water Res. 2019, 14, 121–131. [Google Scholar] [CrossRef]
- Gunawardhana, W.D.T.M.; Jayawardhana, J.M.C.K.; Udayakumara, E.P.N. Impacts of agricultural practices on water quality in Uma Oya catchment area in Sri Lanka. Procedia Food Sci. 2015, 6, 339–343. [Google Scholar] [CrossRef]
- Arunrat, N.; Serenonchani, S.; Wang, C. Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit Province, Thailand. J. Environ. Manag. 2021, 289, 112458. [Google Scholar] [CrossRef] [PubMed]
- Uzoh, I.; Igwe, C.; Okebalama, C.B.; Olubukola, O.B. Legume-maize rotation effect on maize productivity and soil fertility parameters under selected agronomic practices in a sandy loam soil. Sci. Rep. 2019, 9, 8539. [Google Scholar] [CrossRef]
- Yu, H.; Wang, F.; Shao, M.; Huang, L.; Xie, Y.; Xu, Y.; Kong, L. Effects of Rotations with legume on soil functional microbial communities involved in phosphorus transformation. Front. Microbiol. 2021, 12, 661100. [Google Scholar] [CrossRef]
- Bullock, D.G. Crop rotation. Cric. Rev. Plant Sci. 1992, 11, 309–326. [Google Scholar] [CrossRef]
- Deen, W.; Martin, R.; Hooker, D.; Gaudin, A. Crop rotation trends: Past, present and future benefits and drivers. In Crop Rotations: Farming Practices, Monitoring and Environmental Benefits; Nova Science Publications: New York, NY, USA, 2016. [Google Scholar]
- Nielson, D.C.; Calderon, F.J. Fallow Effects on Soil. In Soil Management: Building a Stable Base for Agriculture; Jerry, L.H., Thomas, J.S., Eds.; USDA-ARS: New York, NY, USA, 2011; pp. 287–290. [Google Scholar]
- Hasanuzzaman, M.; Rahman, M.A.; Islam, M.S.; Salam, M.A.; Nabim, R. Pesticide residues analysis in water samples of Nagarpur and Saturia Upazila, Bangladesh. Appl. Water Sci. 2018, 8, 8. [Google Scholar] [CrossRef]
- Aziz, I.; Ashraf, M.; Islam, K.R. Crop rotation impact on soil quality. Pak. J. Bot. 2011, 43, 949–960. [Google Scholar]
- Piekut, A.; Renata, B.; Ewa, M.; Małgorzata, Ć.; Ilona, H.; Grzegorz, D.; Elżbieta, G. Is the soil quality monitoring an effective tool in consumers’mprotection of agricultural crops from cadmium soilmcontamination?—A case of the Silesia region (Poland). Environ. Monit. Assess 2018, 190, 25–34. [Google Scholar] [CrossRef]
- Shangman, H.; Na, Z.; Lim, T.; Xiao, J.; Unyang, L. Effects of soil PH and organic matter content on nutrient availability in maize, Zea mays L., rhizospheric soils of non-ferrous smelting area. Environ. Monit. Assess. 2019, 191, 634. [Google Scholar]
- Kicinska, A.; Radosław, P.; Miguel, I. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil microbial diversity and community composition in rice–fish co-culture and rice monoculture farming system. Biology 2022, 11, 1242. [Google Scholar] [CrossRef]
- Zheng, Z.; Changbin, C.; Deping, Z.; Qingfeng, W.; Shuhang, W.; Xianqing, Z.; Ke, S.; Weiguang, L. Soil bacterial community composition in rice–fish integrated farming systems with different planting years. Sci. Rep. 2021, 11, 10855. [Google Scholar]
- Muendo, B.M.; Shikuku, V.S.; Getenga, Z.M.; Lalah, J.O.; Wandiga, S.O.; Muriira, K.G.; Rothballer, M. Enhanced hexazinone degradation by a Bacillus species and Staphylococcus species isolated from pineapple and sugarcane cultivated soils in Kenya. Environ. Chem. Ecotoxicl. 2022, 4, 106–112. [Google Scholar]
- Afolabi, T.; Morakinyo, O.B.; Adeboye, O.T. Environmental Effects of Application of Fertilizers and Pesticides on Water and Soil in Ibadan, Nigeria. J. Emerg. Trends Eng. Appl. Sci. 2013, 4, 773–777. [Google Scholar]
- Yanjun, S.; Huimin, L.; Dawen, Y.; Shinjiro, K. Effects of agricultural activities on nitrate contamination of groundwater in a Yellow River irrigated region. In Proceedings of the Water Quality: Current Trends and Expected Climate Change Impacts, Melbourne, Australia, 28 June–7 July 2011. [Google Scholar]
- Tang, C.; Chen, J.; Shindo, S.; Sakura, Y.; Zhang, W.; Shen, Y. Assessment of groundwater contamination by nitrates associated with wastewater irrigation: A case study in Shijiazhuang region, China. Hydrol. Processes 2004, 18, 2303–2312. [Google Scholar]
- Anitha, P.; Sylvester, L.; Lyantagaye, G.N. A Review of Agricultural Pesticides Use and the Selection for Resistance to Insecticides in Malaria Vectors. Adv. Entomol. 2014, 2, 120–128. [Google Scholar]
- Démares, F.J.; Schmehl, D.; Bloomquist, J.R.; Cabrera, A.R.; Huang, Z.Y.; Lau, P.; Rangel, J.; Sullivan, J.; Xie, X.; Ellis, J.D. Honey Bee (Apis mellifera) Exposure to Pesticide Residues in Nectar and Pollen in Urban and Suburban Environments from Four Regions of the United States. Environ. Toxicol. Chem. 2022, 41, 991–1003. [Google Scholar] [CrossRef]
- Swati, S.; Dawa, B.; Sanjib, S.; Benoy, K.; Joydeb, P.; Soumen, H.; Min, B. Analysis of pesticide residues in water, sediment and fish tissue from river Deomoni flowing through the tea gardens of Terai Region of West Bengal, India. Int. J. Fish. Aquat. Stud. 2015, 2, 17–23. [Google Scholar]
- Behfar, A.; Zahra, N.; Mahammad, H.; Gholamreza, R.; Mohammad, R.; Nafiseh, S.; Behrooz, J. The organochlorine pesticide levels in Kariun River water. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 41–46. [Google Scholar] [CrossRef]
- Abong’o, D.A.; Wandiga, S.O.; Jumba, I.O.; Van den, B.P.; Nazariwo, B.B.; Madadi, V.O.; Wafula, G.A.; Kylin, H.; Nkedi-Kizza, P. Organochlorine pesticide residue levels in soil from the Nyando River Catchment, Kenya. Afr. J. Phys. Sci. 2015, 2, 18–32. [Google Scholar]
- Nakata, H.; Kawazoe, M.; Arizono, K.; Abe, S.; Kitano, T.; Shimada, H. Organochlorine pesticides and polychlorinated biphenyl residues in foodstuffs and human tissues from china: Status of contamination, historical trend, and human dietary exposure. Arch. Environ. Contam. Toxicol. 2002, 43, 473–480. [Google Scholar] [CrossRef]
- Yarpuz-Bozdogan, N. The importance of personal protective equipment in pesticide applications in agriculture. Curr. Opin. Environ. Sci. Health 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Mengistie, T.; Belay, A.; Mol, P.P.; Oosterveer, P. Pesticide use practices among smallholder vegetable farmers in Ethiopian Central Rift Valley. Environ. Dev. Sustain. 2017, 19, 301–324. [Google Scholar]
- Nerozzi, C.; Sandra, R.; Giovanna, G.; Diego, B.; Marcella, S.; Marc, Y. Effects of Roundup and its main component, glyphosate, upon mammalian sperm function and survival. Sci. Rep. 2020, 10, 11026. [Google Scholar] [CrossRef]
- Kwiatkowska, M.; Huras, B.; Bukowska, B. The effect of metabolites and impurities of glyphosate on human erythrocytes (in vitro). Pestic Biochem. Phys. 2014, 109, 34–43. [Google Scholar]
Pesticides | % Applying | % Not Applying | Total |
---|---|---|---|
Inorganic fertilizers | 100.00 | 0.00 | 100.00 |
Fungicides | 46.35 | 53.65 | 100.00 |
Insecticides | 82.18 | 17.82 | 100.00 |
Growth hormones | 43.10 | 56.90 | 100.00 |
Acaricides | 48.56 | 51.44 | 100.00 |
Preservatives | 100.00 | 0.00 | 100.00 |
Herbicides | 79.48 | 20.52 | 100.00 |
Fungicides | % Proportions | Insecticides | % Proportion | Herbicides | % Proportion | Acaricides | % Proportion |
---|---|---|---|---|---|---|---|
thiomethoxam | 2.12 | ||||||
copper oxychloride | 13.49 | ||||||
azoxystrobin | 5.17 | imidacloprid | 23.58 | ||||
difenoconazole | 5.17 | λ-cyhalothrin | 4.07 | ||||
carbendazim | 32.94 | diazinon | 20.40 | ||||
β-cyfluthrin | 1.44 | α-cypermethrin | 5.46 | ||||
chlorpyrifos | 1.44 | chlorpyrifos | 10.60 | ||||
fludioxonil | 2.33 | mefenoxam | 5.75 | S-Metachlor | 28.17 | ||
mancozeb | 2.23 | profenophos | 5.75 | mesotrione | 13.88 | ||
epoxiconazole | 17.62 | β-cyfluthrin | 2.65 | terbuthylazine | 1.72 | ||
tebuconazole | 0.58 | β-cyahalothrin | 10.86 | acetochlor | 19.11 | ||
trifloxystrobin | 0.58 | lufemuron | 0.29 | Atrazine | 1.43 | ||
propoxur | 1.15 | actamiprid | 0.29 | bipyridylium | 2.14 | ||
imidacloprid | 0.10 | carbosulfan | 2.01 | lambda-cyhalothrin | 3.43 | ||
cypermethrin | 4.13 | abamectin | 7.14 | Glyphosate | 25.52 | ||
triazophos | 4.13 | carbaryl | 4.02 | Bentazon | 2.30 | Cypermethrin | 21.84 |
λ-cyhalothrin | 4.13 | acephate | 1.44 | Glycine | 1.15 | Chlorpyrifos | 21.84 |
acetamiprid | 1.15 | heptachlor | 1.15 | chlorimuron ethyl | 1.15 | Amitraz | 56.32 |
Pesticides | Persistence in | Solubility | Volatility | Ease of Transfer | Potentially Toxic to | Bioaccumulation Ease | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil | Water | GUS Index | SWMI Score | Birds | Mammals | Aquatic Invertebrates | Bees | Earthworms | ||||
thiomethoxam | 1 | 3 | 4 | 1 | 4 | 4 * | 4 * | 4 * | 4 * | 4 * | 1 | 2 |
copper oxychloride | 4 * | 4 * | 2 | 2 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 4 * |
azoxystrobin | 3 | 3 | 2 | 1 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 * |
difenoconazole | 3 | 3 | 2 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
carbendazim | 3 | 4 * | 3 | 4 * | 4 * | 3 | 1 | 2 | 3 | 3 | 4 * | 1 |
β-cyfluthrin | 1 | 4 | 2 | 3 | 2 | 1 | 4 | 4 | 4 * | 4 * | 3 | 2 |
chlorpyrifos | 3 * | 1 | 2 | 3 | 2 | 2 | 4 * | 4 * | 4 * | 4 * | 3 | 2 |
fludioxonil | 4 * | 3 | 2 | 2 | 2 | 1 | 3 | 2 | 3 | 2 | 3 | 2 |
mancozeb | 1 | 3 | 2 | 3 | 2 | 3 | 3 | 2 | 4 * | 2 | 3 | 2 |
epoxiconazole | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 4 * | 4 * | 4 * | 4 * | 1 |
tebuconazole | 3 | 4 * | 2 | 2 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 2 |
trifloxystrobin | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 4 * | 3 | 2 | 2 |
Propoxur | 4 * | 2 | 4 * | 4 * | 4 * | 4 * | 4 * | 4 * | 4 * | 4 * | 4 * | 2 |
Triazophos | 3 | 4 * | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 3 | 3 | 2 |
acetamiprid | 1 | 4 * | 4 * | 4 * | 1 | 4 * | 4 * | 3 * | 3 * | 0 | 4 * | 4 * |
imidacloprid | 4 * | 4 * | 4 * | 1 | 4 * | 3 | 4 * | 4 * | 3 | 4 * | 3 | 2 |
λ-cyhalothrin | 1 | 1 | 2 | 4 | 2 | 1 | 3 | 4 | 4 * | 4 * | 3 | 2 |
diazinon | 1 | 4 * | 3 | 4 * | 2 | 3 | 4 * | 3 | 4 * | 3 | 3 | 2 |
α-cypermethrin | 1 | 4 * | 3 | 3 | 1 | 4 * | 1 | 4 * | 4 * | 4 * | 3 | 2 |
profenophos | 1 | 4 * | 2 | 2 | 2 | 3 | 4 * | 3 | 3 | 4 * | 4 * | 2 |
s-metachlor | 3 | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 3 | 2 |
lufemuron | 1 | 3 | 1 | 2 | 2 | 2 | 3 | 2 | 3 | 2 | 3 | 4 * |
carbosulfan | 1 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 4 * | 4 * | 4 * | 2 |
carbaryl | 1 | 1 | 2 | 4 * | 3 | 3 | 3 | 4 * | 2 | 4 * | 4 * | 2 |
acephate | 1 | 1 | 4 | 4 | 2 | 3 | 2 | 3 | 2 | 2 | 2 | 2 |
heptachlor | 4 * | 1 | 2 | 4 * | 2 | 1 | 3 | 4 * | 4 * | 4 * | 3 | 3 * |
mesotrione | 2 | 3 | 4 | 2 | 2 | 3 | 2 | 4 * | 2 | 2 | 3 | 2 |
terbuthylazine | 3 | 4 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 2 |
acetochlor | 1 | 4 | 3 | 3 | 3 | 3 | 3 | 4 * | 3 | 3 | 3 | 2 |
atrazine | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 1 |
glyphosate | 1 | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 2 |
bentazon | 2 | 3 | 4 * | 4 * | 3 | 4 * | 3 | 3 | 3 | 3 | 3 | 2 |
chlorimuron ethyl | 3 | 2 | 3 | 1 | 3 | 3 | 1 | 2 | 1 | 3 | 1 | 4 * |
amitraz | 4 * | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 * |
cypermethrin | 3 | 3 | 2 | 3 | 1 | 2 | 2 | 3 | 4 * | 4 * | 3 | 2 |
malathion | 4 * | 4 * | 3 | 3 | 2 | 3 | 3 | 3 | 4 * | 4 * | 1 | 2 |
Toxicity Potential Class | % Proportion of Pesticides | Examples |
---|---|---|
Multiple toxicity potential | 10.53 | mancozeb, acephate, heptachlor, epoxiconazole |
Endocrine disruption | 7.90 | mancozeb, carbaryl, acephate |
Carcinogenicity | 7.90 | carbaryl, heptachlor, epoxiconazole |
Mutagenicity | 2.63 | Acetachlor |
Teratogenicity | 31.58 | cabendazim, alpha-cypermethrin, chlorpyrifos, carbaryl, heptachlor, acetochlor, imidachloprid, epoxiconazole, tebuconazole, influxystrobin, mancozeb, S-metachlor |
Neurotoxicity | 28.95 | acephate, chlorpyrifos, diazinon, beta cyfluthrin, amitraz, hepachlor, meta-cyhlothrin, malathion, profeofos, triazophos, mesotrione |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyando, Z.O.; Omukunda, E.; Okoth, P.; Khatiebi, S.; Omwoma, S.; Otieno, P.; Osano, O.; Lalah, J. Screening and Prioritization of Pesticide Application for Potential Human Health and Environmental Risks in Largescale Farms in Western Kenya. Agriculture 2023, 13, 1178. https://doi.org/10.3390/agriculture13061178
Onyando ZO, Omukunda E, Okoth P, Khatiebi S, Omwoma S, Otieno P, Osano O, Lalah J. Screening and Prioritization of Pesticide Application for Potential Human Health and Environmental Risks in Largescale Farms in Western Kenya. Agriculture. 2023; 13(6):1178. https://doi.org/10.3390/agriculture13061178
Chicago/Turabian StyleOnyando, Zedekiah Odira, Elizabeth Omukunda, Patrick Okoth, Sandra Khatiebi, Solomon Omwoma, Peter Otieno, Odipo Osano, and Joseph Lalah. 2023. "Screening and Prioritization of Pesticide Application for Potential Human Health and Environmental Risks in Largescale Farms in Western Kenya" Agriculture 13, no. 6: 1178. https://doi.org/10.3390/agriculture13061178
APA StyleOnyando, Z. O., Omukunda, E., Okoth, P., Khatiebi, S., Omwoma, S., Otieno, P., Osano, O., & Lalah, J. (2023). Screening and Prioritization of Pesticide Application for Potential Human Health and Environmental Risks in Largescale Farms in Western Kenya. Agriculture, 13(6), 1178. https://doi.org/10.3390/agriculture13061178