Ascophyllum nodosum (L.) Le Jolis, a Pivotal Biostimulant toward Sustainable Agriculture: A Comprehensive Review
Abstract
:1. Introduction
2. Seaweeds
3. Ascophyllum nodosum (L.) Le Jolis and Its Composition
- Foley et al. [40] found a fucoidan with a dry weight of 1.75%, carbohydrates at 65.4%, polyphenols at 13.5%, and proteins at 18.5%. The carbohydrates comprise L-fucose (52.1%), glucose (21.3%), galactose (6.1%), and xylose (16.5%) at a molecular size of 420 kDa.
- Kloareg et al. [41] discovered sulfated polysaccharide, a fucoidan with 38.7% L-fucose and 33.7% sulfate by weight.
- Fucoidan sulfate at 26.1%, uronic acid at 5.7%, and L-fucose at 31.3% at 556 kDa [42].
- A fucoidan of 47% L-fucose, 30% sulfate, and 6% uronic acid at 25 kDa [43].
- A fucoidan of L-fucose (39.7%), sulfate (27%), and uronic acid (4.1%) with a molecular weight of 18.6 kDa [44].
- The fucoidan of L-fucose is 45.4%, sulfate is 22.1%, and uronic acid is 9.9% at 417 kDa [45].
- At 1323 kDa, the fucoidan of sulfate contains 19.4% sulfate, 28.4% L-fucose, and 5.8% uronic acid [45].
4. Ascophyllum nodosum Extract (AnE) Enhances Plant Morphological and Physiological Characteristics
5. Ascophyllum nodosum Extract (AnE) Promote Abiotic Stress Tolerance in Plants
6. Ascophyllum nodosum Extract (AnE) Reduced Oxidative Stress
7. Ascophyllum nodosum Extract (AnE) Induced Defense Enzymatic Activity
8. Ascophyllum nodosum Extract (AnE) Improves Disease Resistance in Plants
9. Ascophyllum nodosum Extract (AnE) Has Antimicrobial Activity
10. Ascophyllum nodosum Extract (AnE) Stimulates the Production and Antioxidant Activities of Secondary Metabolites
11. Ascophyllum nodosum Extract (AnE) Regulates the Biosynthesis of Growth Hormones in Plants
12. Ascophyllum nodosum Extract (AnE) Improves the Soil Health and Rhizospheric Microbial Population
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zodape, S.T. Seaweeds as a Biofertilizer. J. Sci. Ind. Res. 2001, 60, 378–382. [Google Scholar]
- European Union. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri¼OJ:L:2019:170:FULL&from¼EN (accessed on 4 October 2020).
- Smit, A.J. Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol. 2004, 16, 245–262. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2008, 25, 35–94. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Francini, A.; Sebastiani, L. Abiotic stress effects on performance of horticultural crops. Horticulturae 2019, 5, 67. [Google Scholar] [CrossRef]
- Basu, S.; Ramegowda, V.; Kumar, A.; Pereira, A. Plant Adaptation to Drought Stress. F1000Research 2016, 5, 1554. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Hussain, S.; Matloob, A.; Khan, F.A.; Khaliq, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.; Ullah, N.; et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul. 2015, 75, 391–404. [Google Scholar] [CrossRef]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal biostimulants and biofertilisers in crop productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef]
- De Saeger, J.; Van Praet, S.; Vereecke, D.; Park, J.; Jacques, S.; Han, T.; Depuydt, S. Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J. Appl. Phycol. 2020, 32, 573–597. [Google Scholar] [CrossRef]
- Arioli, T.; Hepworth, G.; Farnsworth, B. Effect of seaweed extract application on sugarcane production. Proc. Aust. Soc. Sugar Cane Technol. 2020, 42, 393–396. [Google Scholar]
- Hussain, H.I.; Kasinadhuni, N.; Arioli, T. The effect of seaweed extract on tomato plant growth, productivity and soil. J. Appl. Phycol. 2021, 33, 1305–1314. [Google Scholar] [CrossRef]
- Renaut, S.; Masse, J.; Norrie, J.; Blal, B.; Hijri, M. A commercial seaweed extract structured microbial communities associated with tomato and pepper roots and significantly increased crop yield. Microb. Biotechnol. 2019, 12, 1346–1358. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulatory activities of Ascophyllum nodosum extract in tomato and Sweet pepper crops in a tropical environment. PLoS ONE 2019, 14, e0216710. [Google Scholar] [CrossRef]
- Elansary, H.O.; Yessoufou, K.; Abdel-Hamid, A.M.E.; El-Esawi, M.A.; Ali, H.M.; Elshikh, M.S. Seaweed extracts enhance Salam turfgrass performance during prolonged irrigation intervals and saline shock. Front. Plant Sci. 2017, 8, 830. [Google Scholar] [CrossRef]
- Jayaraj, J.; Wan, A.; Rahman, M.; Punja, Z.K. Seaweed extract reduces foliar fungal diseases on carrot. Crop Prot. 2008, 27, 1360–1366. [Google Scholar] [CrossRef]
- Jayaraman, J.; Norrie, J.; Punja, Z.K. Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J. Appl. Phycol. 2011, 23, 353–361. [Google Scholar] [CrossRef]
- Abkhoo, J.; Sabbagh, S.K. Control of Phytophthora melonis damping-off, induction of defence responses, and gene expression of cucumber treated with a commercial extract from Ascophyllum nodosum. J. Appl. Phycol 2016, 28, 1333–1342. [Google Scholar] [CrossRef]
- Panjehkeh, N.; Abkhoo, J. Influence of marine brown alga extract (Dalgin) on damping-off tolerance of tomato. J. Mater. Environ. Sci. 2016, 7, 2369–2374. [Google Scholar]
- Sathya, B.; Indu, H.; Seenivasan, R.; Geetha, S. Influence of seaweed liquid fertilizer on the growth and biochemical composition of legume crop, Cajanus cajan (L.) Mill sp. J. Phytol. 2010, 2, 50–63. [Google Scholar]
- Fornes, F.; Sánchez-Perales, M.; Guardiola, J.L. Effect of a Seaweed Extract on the Productivity of ‘de Nules’ Clementine Mandarin and Navelina Orange. Bot. Mar. 2002, 45, 486–489. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extracts stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Verkleij, F.N. Seaweed extracts in agriculture and horticulture: A review. Biol. Agric. Hortic. 1992, 8, 309–324. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S.; Ahmad, B.; Jaskani, M.J.; Ahmad, R.; Malik, A.U. Foliar application of mixture of amino acids and seaweed (Ascophylum. nodosum) extract improve growth and physicochemical properties of grapes. Int. J. Agric. Biol. 2012, 14, 383–388. [Google Scholar]
- Cardozo, K.H.; Guaratini, T.; Barros, M.P.; Falcão, V.R.; Tonon, A.P.; Lopes, N.P.; Pinto, E. Metabolites from algae with economical impact. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 60–78. [Google Scholar] [CrossRef]
- Norrie, J. Seaweed extract research and applications in agriculture. Agro. Food Ind. Hi-Tech. 1999, 10, 15–18. [Google Scholar]
- Connan, S.; Goulard, F.; Stiger, V.; Deslandes, E.; Gall, E.A. Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot. Mar. 2004, 47, 410–416. [Google Scholar] [CrossRef]
- Chater, P.I.; Wilcox, M.; Cherry, P.; Herford, A.; Mustar, S.; Wheater, H.; Brownlee, I.; Seal, C.; Pearson, J. Inhibitory activity of extracts of Hebridean brown seaweeds on lipase activity. J. Appl. Phycol. 2016, 28, 1303–1313. [Google Scholar] [CrossRef]
- Chevolot, L.; Foucault, A.; Chaubet, F.; Kervarec, N.; Sinquin, C.; Fisher, A.M.; Boisson-Vidal, C. Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity. Carbohydr. Res. 1999, 319, 154–165. [Google Scholar] [CrossRef]
- Chevolot, L.; Mulloy, B.; Ratiskol, J.; Foucault, A.; Colliec-Jouault, S. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr. Res. 2001, 330, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobio 2007, 17, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Okimura, T.; Yamaguchi, K.; Oda, T. The potent activity of sulfated polysaccharide, ascophyllan, isolated from Ascophyllum nodosum to induce nitric oxide and cytokine production from mouse macrophage RAW264. 7 cells: Comparison between ascophyllan and fucoidan. Nitric Oxide 2011, 25, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, Z.; Kim, D.; Ueno, M.; Okimura, T.; Yamaguchi, K.; Oda, T. Stimulatory effect of the sulfated polysaccharide ascophyllan on the respiratory burst in RAW264. 7 macrophages. Int. J. Biol. Macromol. 2013, 52, 164–169. [Google Scholar] [CrossRef]
- Heffernan, N.; Brunton, N.P.; FitzGerald, R.J.; Smyth, T.J. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar. Drugs 2015, 13, 509–528. [Google Scholar] [CrossRef]
- Bocanegra, A.; Bastida, S.; Benedi, J.; Rodenas, S.; Sanchez-Muniz, F.J. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J. Med. Food 2009, 12, 236–258. [Google Scholar] [CrossRef]
- Wijesekara, I.; Yoon, N.Y.; Kim, S.-K. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors 2010, 36, 408–414. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeon, Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013, 86, 129–136. [Google Scholar] [CrossRef]
- Foley, S.A.; Szegezdi, E.; Mulloy, B.; Samali, A.; Tuohy, M.G. An unfractionated fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. J. Nat. Prod. 2011, 74, 1851–1861. [Google Scholar] [CrossRef]
- Kloareg, B.; Demarty, M.; Mabeau, S. Polyanionic characteristics of purified sulphated homofucans from brown algae. Int. J. Biol. Macromol. 1986, 8, 380–386. [Google Scholar] [CrossRef]
- Nardella, A.; Chaubet, F.; Boisson-Vidal, C.; Blondin, C.; Durand, P.; Jozefonvicz, J. Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum. Carbohydr. Res. 1996, 289, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Daniel, R.; Berteau, O.; Jozefonvicz, J.; Goasdoue, N. Degradation of algal (Ascophyllum. nodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine mollusc Pecten maximus. Carbohydr. Res. 1999, 322, 291–297. [Google Scholar] [CrossRef]
- Haroun-Bouhedja, F.; Ellouali, M.; Sinquin, C.; Boisson-Vidal, C. Relationship between sulfate groups and biological activities of fucans. Thromb. Res. 2000, 100, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Characterization of polysac-charides extracted from brown seaweeds. Carbohydr. Polym. 2007, 69, 530–537. [Google Scholar] [CrossRef]
- Baardseth, E. Synopsis of Biological Data on Knobbed Wrack Ascophyllum nodosum (Linnaeus) Le Jolis; FAO Fisheries: Synopsis; Food and Agriculture Organization of the United Nations: Rome, Italy, 1970; Volume 38, pp. 1–38. [Google Scholar]
- Indergaard, M.; Minsaas, J. Animal and human nutrition. In Seaweed Resources in Europe: Uses and Potential; Guiry, M.D., Blunden, G., Eds.; John Wiley & Sons: Chichester, UK, 1991; pp. 21–64. [Google Scholar]
- DaSilva, E.; Jensen, A. Benthic marine and blue-green algal species as a source of choline. J. Sci. Food Agric. 1973, 24, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Blunden, G.; Currie, M.; Mathe, J.; Hohmann, J.; Critchley, A. Variations in betaine yields from marine algal species commonly used in the preparation of seaweed extracts used in agriculture. Phycologist 2009, 76, 14. [Google Scholar]
- Rayirath, P.; Benkel, B.; Mark Hodges, D.; Allan-Wojtas, P.; MacKinnon, S.; Critchley, A.T.; Prithiviraj, B. Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta 2009, 230, 135–147. [Google Scholar] [CrossRef]
- Audibert, L.; Fauchon, M.; Blanc, N.; Hauchard, D.; Ar Gall, E. Phenolic compounds in the brown seaweed Ascophyllum. nodosum: Distribution and radical-scavenging activities. Phytochem. Anal. 2010, 21, 399–405. [Google Scholar] [CrossRef]
- Apostolidis, E.; Lee, C.M. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated α-glucosidase and α-amylase inhibition. J. Food Sci. 2010, 75, H97–H102. [Google Scholar] [CrossRef]
- Hartung, J.; Brücher, O.; Hach, D.; Schulz, H.; Vilter, H.; Ruick, G. Bromoperoxidase activity and vanadium level of the brown alga Ascophyllum nodosum. Phytochemistry 2008, 69, 2826–2830. [Google Scholar] [CrossRef]
- Tutour, B.; Benslimane, F.; Gouleau, M.P.; Gouygou, J.P.; Saadan, B.; Quemeneur, F. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J. Appl. Phycol. 1998, 10, 121–129. [Google Scholar] [CrossRef]
- Moen, E.; Horn, S.; Østgaard, K. Biological degradation of Ascophyllum nodosum. J. Appl. Phycol. 1997, 9, 347–357. [Google Scholar] [CrossRef]
- Van Ginneken, V.J.; Helsper, J.P.; Visser, W.; Van Keulen, H.; Brandenburg, W.A. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids Health Dis. 2011, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Kundel, M.; Thorenz, U.R.; Petersen, J.H.; Huang, R.J.; Bings, N.H.; Hoffmann, T. Application of mass spectrometric techniques for the trace analysis of short-lived iodine-containing volatiles emitted by seaweed. Anal. Bioanal. Chem. 2012, 402, 3345–3357. [Google Scholar] [CrossRef]
- Kandasamy, S.; Khan, W.; Kulshreshtha, G.; Evans, F. The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. Protects Caenohabditis elegans against Pseudomonas aeruginosa by triggering innate immune signalling pathways and suppression of pathogen virulence factors. Algae 2015, 30, 147–161. [Google Scholar] [CrossRef]
- Khan, W.; Palanisamy, R.; Hankins, S.D.; Critchley, A.T.; Smith, D.L.; Papadopoulos, Y.A.; Prithiviraj, B. Ascophyllum nodosum (L.) Le Jolis extract improves root nodulation in alfalfa. Can. J. Plant Sci. 2008, 88, 728. [Google Scholar]
- Sharma, H.S.; Shekhar, C.F.; Selby, C.; Rao, J.R.; Trevor, M. Plant Biostimulants: A Review on the Processing of Macroalgae and Use of Extracts for Crop Management to Reduce Abiotic and Biotic Stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Hepworth, G.; McClintock, D.; McClinock, R. Effect of seaweed extract application on wine grape yield in Australia. J. Appl. Phycol. 2021, 33, 1883–1891. [Google Scholar] [CrossRef]
- Elansary, H.O. Green roof Petunia, Ageratum, and Mentha responses to water stress, seaweeds, and trinexapac-ethyl treatments. Acta Physiol. Plant. 2017, 39, 145. [Google Scholar] [CrossRef]
- Rayorath, P.; Jithes, M.N.; Farid, A.; Khan, W.; Palanisamy, R.; Hankins, S.D.; Critchley, A.T.; Prithiviraj, B. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L) Heynh. J. Appl. Phycol. 2008, 20, 423–429. [Google Scholar] [CrossRef]
- Elansary, H.O.; Norrie, J.; Ali, H.M.; Salem, M.Z.M.; Mahmoud, E.A.; Yessoufou, K. Enhancement of Calibrachoa growth, secondary metabolites and bioactivity using seaweed extracts. BMC Complement. Altern. Med. 2016, 16, 341. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, B.; Szymona, J. Yielding of permanent meadows under the influence of fertilization accepted as organic. In Integrating Efficient Grassland Farming and Biodiversity, Proceedings of the 13th International Occasional Symposium of the European Grassland Federation, Integrating Efficient Grassland Farming and Biodiversity, Volume 10: Grassland Science in Europe, Tartu, Estonia, 29–31 August 2005; Lillak, R., Viiralt, R., Linke, A., Geherman, V., Eds.; Estonian Grassland Society: Tartu, Estonia, 2005; pp. 409–412. [Google Scholar]
- Pospíšil, M.; Pospíšil, A.; Gunjača, J.; Husnjak, S.; Hrgović, S.; Redžepović, S. Application of the growth stimulant Bio-algeen S 90 increases sugar beet yield. Int. Sugar J. 2006, 108, 576–581. [Google Scholar]
- Dobromilska, R.; Mikiciuk, M.; Gubarewiczi, K. Evaluation of cherry tomato yielding and fruit mineral composition after using of Bio-algeen S-90 preparation. J. Elementol. 2008, 13, 491–499. [Google Scholar]
- Mikiciuk, M.; Dobromilska, R. Assessment of yield and physiological indices of small-sized tomato cv. Bianka F-1′ under the influence of biostimulators of marine algae origin. Acta Sci. Pol. Hortorum Cultus 2014, 13, 31–41. [Google Scholar]
- Kwiatkowski, C.A.; Kołodziej, B.; Woźniak, A. Yield and quality parameters of carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. Acta Sci. Pol. Hortorum Cultus 2013, 12, 55–68. [Google Scholar]
- Di Stasio, E.; Van Oosten, M.J.; Silletti, S.; Raimondi, G.; Carillo, P.; Maggio, A. Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. J. Appl. Phycol. 2018, 30, 2675–2686. [Google Scholar] [CrossRef]
- Danesh, R.K.; Bidarigh, S.; Azarpour, E.; Moraditochaee, M.; Bozorgi, H.R. Study effects of nitrogen fertilizer management and foliar spraying of marine plant Ascophyllum nodosum extract on yield of cucumber (Cucumis sativus L.). Int. J. Agric. Crop. Sci. 2012, 4, 1492–1495. [Google Scholar]
- Blunden, G.E.R.A.L.D.; Gordon, S.M. Betaines and their sulphonio analogues in marine algae. Prog. Phycol. Res. 1986, 4, 39–80. [Google Scholar]
- Ali, N.; Farrell, A.; Ramsubhag, A.; Jayaraman, J. The effect of Ascophyllum nodosum extracts on the growth, yield and fruit quality of tomato grown under tropical conditions. J. Appl. Phycol. 2016, 28, 1353–1362. [Google Scholar] [CrossRef]
- Mohamed, S.B.; Dalia, A.H.S.; Rania, M.A.N.; Azza, M.S. Influence of foliar spray with seaweed extract on growth, yield and its quality, the profile of protein pattern and anatomical structure of chickpea plant (Cicer arietinum L.). Middle East J. Appl. Sci. 2016, 6, 207–221. [Google Scholar]
- Abbas, M.; Anwar, J.; Zafar-ul-Hye, M.; Iqbal Khan, R.; Saleem, M.; Rahi, A.A.; Danish, S.; Datta, R. Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae 2020, 6, 28. [Google Scholar] [CrossRef]
- Kocira, A.; Lamorska, J.; Kornas, R.; Nowosad, N.; Tomaszewska, M.; Leszczyńska, D.; Kozłowicz, K.; Tabor, S. Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 189. [Google Scholar] [CrossRef]
- Cassan, L.; Jeannin, I.; Lamaze, T.; Morot-Gaudry, J.F. The effect of the Ascophyllum nodosum extracts Goëmar GA 14 on the growth of spinach. Bot. Mar. 1992, 35, 437–440. [Google Scholar] [CrossRef]
- Whapham, C.A.; Blunden, G.; Jenkins, T.; Hankins, S.D. Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J. Appl. Phycol. 1993, 5, 231–234. [Google Scholar] [CrossRef]
- Eris, A.; Sivritepe, H.Ö.; Sivritepe, N. The effect of seaweed (Ascophyllum nodosum) extracts on yield and quality criteria in peppers. In I International Symposium on Solanacea for Fresh Market; Fernández-Muñoz, R., Cuartero, J., Gómez-Guillamón, M.L., Eds.; ISHS: Malaga, Spain, 1995; Volume 412, pp. 185–192. [Google Scholar] [CrossRef]
- Fornes, F.; Sánchez-Perales, M.; Guardiola, J.L. Effect of a seaweed extract on citrus fruit maturation. Acta Hortic. 1995, 379, 75–82. [Google Scholar] [CrossRef]
- De Lucia, B.; Vecchietti, L. Type of biostimulant and application method effects on stem quality and root system growth in LA Lily. Eur. J. Hortic. Sci. 2012, 77, 10–15. [Google Scholar]
- Russo, R.; Poincelot, R.P.; Berlyn, G.P. The use of a commercial organic biostimulant for improved production of marigold cultivars. J. Home Consum. Hortic. 1994, 1, 83–93. [Google Scholar] [CrossRef]
- Chouliaras V, Gerascapoulos D, Lionakis S Effect of seaweed extract on fruit growth, weight, and maturation of ‘Hayward’ kiwifruit. Acta Hortic. 1997, 444, 485–489.
- Colapietra, M.; Alexander, A. Effect of foliar fertilization on yield and quality of table grapes. Acta Hortic. 2006, 721, 213–218. [Google Scholar] [CrossRef]
- Turan, M.; Köse, C. Seaweed extracts improve copper uptake of grapevine. Acta Agric. Scand. Sect. B Soi. Plant Sci. 2004, 54, 213–220. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.R.; Tantaway, A.S.; Hafez, M.M.; Habib, H.A.M. Seaweed extract improves growth, yield and quality of different watermelon hybrids. Res. J. Agric. Biol. Sci. 2010, 6, 161–168. [Google Scholar]
- Loyola, N.; Munoz, C. Effect of the biostimulant foliar addition of marine algae on cv O’Neal blueberries production. J. Agric. Sci. Technol. 2011, 1, 1059–1074. [Google Scholar]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Gunupuru, L.; Patel, J.; Sumarah, M.; Renaud, J.; Mantin, E.; Prithiviraj, B. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. PLoS ONE 2019, 14, e220562. [Google Scholar] [CrossRef]
- Basak, A. Effect of preharvest treatment with seaweed products, Kelpak and Goemar BM 86 on fruit quality in apple. Int. J. Fruit Sci. 2008, 8, 1–14. [Google Scholar] [CrossRef]
- Chouliaras, V.; Tasioula, M.; Chatzissavvidis, C.; Therios, I.; Tsabolatidou, E. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J. Sci. Food Agric. 2009, 89, 984–988. [Google Scholar] [CrossRef]
- Blunden, G.; Jenkins, T.; Liu, Y.W. Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J. Appl. Phycol. 1996, 8, 535–543. [Google Scholar] [CrossRef]
- Fan, D.; Kandasamy, S.; Hodges, D.M.; Critchley, A.T.; Prithiviraj, B. Pre-harvest treatment of spinach with Ascophyllum nodosum extract improves post-harvest storage and quality. Sci. Hortic. 2014, 170, 70–74. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Critchley, A.T.; Prithiviraj, B. A commercial extract of Brown Macroalga (Ascophyllum. nodosum) affects yield and the nutritional quality of Spinach in vitro. Commun. Soil Sci. Plant Anal. 2013, 44, 1873–1884. [Google Scholar] [CrossRef]
- Lola-Luz, T.; Hennequart, F.; Gaffney, M. Effect on yield, total phenolic, total flavonoid and total isothiocyanate content of two broccoli cultivars (Brassica oleraceae var italica) following the application of a commercial brown seaweed extract (Ascophyllum nodosum). Agric. Food Sci. 2014, 23, 28–37. [Google Scholar] [CrossRef]
- Blunden, G.; Wildgoose, P.B. Effects of aqueous seaweed extract and kinetin on potato yields. J. Sci. Food Agric. 1977, 28, 121–125. [Google Scholar] [CrossRef]
- Kuisma, P. The effect of foliar application of seaweed extract on potato. J. Agric. Sci. 1989, 61, 371–377. [Google Scholar] [CrossRef]
- Moller, M.; Smith, M.L. The effects of priming treatments using seaweed suspensions on the water sensitivity of barley (Hordeum. vulgare L.) caryopses. Ann. Appl. Biol. 1999, 135, 515–521. [Google Scholar] [CrossRef]
- Steveni, C.M.; Norrington-Davies, J.; Hankins, S.D. Effect of seaweed concentrate on hydroponically grown spring barley. J. Appl. Phycol. 1992, 4, 173–180. [Google Scholar] [CrossRef]
- Rayorath, P.; Khan, W.; Palanisamy, R.; MacKinnon, S.L.; Stefanova, R.; Hankins, S.D.; Critchley, A.T.; Prithiviraj, B. Extracts of the brown seaweed Ascophyllum nodosum induce gibberellic acid (GA3)-independent amylase activity in barley. J. Plant Growth Regul. 2008, 27, 370–379. [Google Scholar] [CrossRef]
- Munshaw, G.C.; Ervin, E.H.; Shang, C.; Askew, S.D.; Zhang, X.; Lemus, R.W. Influence of late-season iron, nitrogen, and seaweed extract on fall colour retention and cold tolerance of four bermudagrass cultivars. Crop Sci. 2006, 46, 273–283. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Ervin, E.H.; Schmidt, R.E. Physiological effects of liquid applications of a seaweed extract and a humic acid on creeping bentgrass. J. Am. Soc. Hortic. Sci. 2003, 128, 492–496. [Google Scholar] [CrossRef]
- Lola-Luz, T.; Franck, H.; Michael, G. Enhancement of Phenolic and Flavonoid Compounds in Cabbage (Brassica Oleraceae) Following Application of Commercial Seaweed Extracts of the Brown Seaweed, (Ascophyllum Nodosum). Agric. Food Sci. 2013, 22, 288–295. [Google Scholar] [CrossRef]
- Mac, J.E.; Hacking, J.; Weng, Y.; Norrie, J. Effects of Ascophyllum nodosum extract application in the nursery on root growth of containerized white spruce seedlings. Can. J. Plant Sci. 2013, 93, 735–739. [Google Scholar]
- Popescu, G.C.; Popescu, M. Effect of the brown alga Ascophyllum nodosum as biofertilizer on vegetative growth in grapevine (Vitis. vinifera L). Curr. Trends. Nat. Sci. 2014, 3, 61–67. [Google Scholar]
- Lorenc, F.; Pešková, V.; Modlinger, R.; Podrázský, V.; Baláš, M.; Kleinová, D. Effect of Bio-Algeen® preparation on growth and mycorrhizal characteristics of Norway spruce seedlings. J. For. Sci. 2016, 62, 285–291. [Google Scholar] [CrossRef]
- Hurtado, A.Q.; Yunque, D.A.; Tibubos, K.; Critchley, A.T. Use of Acadian Marine Plant Extract Powder from Ascophyllum nodosum in Tissue Culture of Kappaphycus Varieties. J. Appl. Phycol. 2009, 21, 633–639. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M. Brassica. napus growth is promoted by Ascophyllum nodosum (L). Le Jol. seaweed extract: Microarray analysis and physiological characterization of N, C, and S metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Sebastian, S.; Olivos-Del Rio, A.; Castro, S.; Brown, P.H. Foliar application of microbial and plant-based biostimulants increases growth and potassium uptake in almond (Prunus. dulcis [Mill.] D. A. Webb). Front. Plant. Sci. 2015, 6, 87. [Google Scholar]
- Pappachan, A.; Lungjo, B.; Kanika, T. Effect of application of Ascophyllum nodosum extract on the yield and quality of Mulberry leaves. Biosci. Discov. 2017, 8, 235–240. [Google Scholar]
- Colavita, G.M.; Spera, N.; Blackhall, V.; Sepulveda, G.M. Effects of seaweed extract on pear fruit quality and yield. Acta Hortic. 2011, 909, 601–607. [Google Scholar] [CrossRef]
- Mohamed, A.Y.; El-Sehrawy, O.A.M. Effect of seaweed extraction fruiting of Hindy Bisinnara mango trees. J. Am. Sci. 2013, 9, 537–544. [Google Scholar]
- Bozorgi, H.R. Effects of Foliar Spraying with Marine Plant Ascophyllum nodosum Extract and Nano Iron Chelate Fertilizer on Fruit Yield and Several Attributes of Eggplant (Solanum. melongena. L.). J. Agric. Biol. Sci. 2012, 7, 357–362. [Google Scholar]
- Ayub, R.A.; Sousa, A.M.D.; Viencz, T.; Botelho, R.V. Fruit set and yield of apple trees cv. Gala treated with seaweed extract of Ascophyllum nodosum and thidiazuron. Rev. Bras. Frutic. 2019, 41, 1–12. [Google Scholar] [CrossRef]
- Ozbay, N.; Demirkiran, A.R. Enhancement of growth in ornamental pepper (Capsicum. annuum L.) Plants with the application of a commercial seaweed product, stimplex®. Appl. Ecol. Environ. Res. 2019, 17, 4361–4375. [Google Scholar] [CrossRef]
- Melo, T.A.D.; Serra, I.M.R.D.S.; Sousa, A.A.; Sousa, T.Y.O.; Pascholati, S.F. Effect of Ascophyllum nodosum seaweed extract on post-harvest’ Tommy Atkins’ mangoes. Rev. Bras. Frutic. 2018, 40, 1–12. [Google Scholar] [CrossRef]
- Hidangmayum, A.; Sharma, R. Effect of different concentrations of commercial seaweed liquid extract of Ascophyllum nodosum as a plant biostimulant on growth, yield and biochemical constituents of onion (Allium cepa L). J. Pharmacogn. Phytochem. 2017, 6, 658–663. [Google Scholar]
- De Júnior, A.F.; Dos Santos Rodrigues, A.P.M.; Júnior, R.S.; Negreiros, A.M.P.; Bettini, M.O.; Freitas, C.D.M.; Da Silva França, K.R.; Gomes, T.R.R. Seaweed Extract Ascophyllum nodosum (L.) on the growth of watermelon plants. J. Exp. Agric. Int. 2019, 31, 1–12. [Google Scholar] [CrossRef]
- Valencia, R.T.; Acosta, L.S.; Fortis Hernández, M.; Rangel, P.P.; Robles, M.Á.G.; Del Antonio Cruz, R.C.; Vázquez, C.V. Effect of Seaweed Aqueous Extracts and Compost on Vegetative Growth, Yield, and Nutraceutical Quality of Cucumber (Cucumis sativus L.) Fruit. Agronomy 2018, 8, 264. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D.; Nardi, S. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front. Plant Sci. 2018, 9, 428. [Google Scholar] [CrossRef]
- Pohl, A.; Grabowska, A.; Kalisz, A.; Sekara, A. Preliminary screening of biostimulative effects of Goemar BM-86 on eggplant cultivars grown under field conditions in Poland. Acta Agrobot. 2018, 71, 1–10. [Google Scholar] [CrossRef]
- Pacheco, A.C.; Sobral, L.A.; Gorni, P.H.; Carvalho, M.E.A. Ascophyllum nodosum extract improves phenolic compound content and antioxidant activity of medicinal and functional food plant Achillea millefolium L. Aust. J. Crop Sci. 2019, 13, 418–423. [Google Scholar] [CrossRef]
- Manna, D.; Sarkar, A.; Maity, T.K. Impact of biozyme on growth, yield and quality of chilli (Capsicum. annuum L.). J. Crop Weed 2012, 8, 40–43. [Google Scholar]
- Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hortic. 2014, 175, 1–8. [Google Scholar] [CrossRef]
- Frioni, T.; Sabbatini, P.; Tombesi, S.; Norrie, J.; Poni, S.; Gatti, M.; Palliotti, A. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic. 2018, 232, 97–106. [Google Scholar] [CrossRef]
- Mattner, S.W.; Milinkovic, M.; Arioli, T. Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. J. Appl. Phycol. 2018, 30, 2943–2951. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.; Bonini, P.; Colla, G. Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Kocira, A.; Czerwińska, E.; Wójtowicz, A.; Bronowicka-Mielniczuk, U.; Findura, P. Modeling biometric traits, yield and nutritional and antioxidant properties of seeds of three soybean cultivars through the application of biostimulant containing seaweed and amino acids. Front. Plant Sci. 2018, 9, 388. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Morais, M.C.; Sequeira, A.; Ribeiro, C.; Guedes, F.; Silva, A.P.; Aires, A. Quality preservation of sweet cherry cv.‘staccato’by using glycine-betaine or Ascophyllum nodosum. Food Chem. 2020, 322, 126713. [Google Scholar] [CrossRef] [PubMed]
- Wadas, W.; Dziugieł, T. Quality of new potatoes (Solanum. tuberosum L.) in response to plant biostimulants application. Agriculture 2020, 10, 265. [Google Scholar] [CrossRef]
- Prisa, D. Ascophyllum nodosum extract on growing plants in Rebutia. heliosa and Sulcorebutia canigueralli. GSC Biol. Pharm. Sci. 2020, 10, 039–045. [Google Scholar] [CrossRef]
- Goñi, O.; Łangowski, Ł.; Feeney, E.; Quille, P.; O’Connell, S. Reducing Nitrogen Input in Barley Crops While Maintaining Yields Using an Engineered Biostimulant Derived From Ascophyllum. nodosum to Enhance Nitrogen Use Efficiency. Front. Plant Sci. 2021, 12, 664682. [Google Scholar] [CrossRef]
- Bernardes, R.D.S.; Santos, S.C.; Santos, C.C.; Heid, D.M.; Vieira, M.D.C.; Torales, E.P. Ascophyllum nodosum seaweed extract and mineral nitrogen in Alibertia edulis seedlings. Rev. Bras. Eng. Agrícola Ambient. 2023, 27, 173–180. [Google Scholar] [CrossRef]
- Zhang, X.; Schmidt, R.E. Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 2000, 40, 1344–1349. [Google Scholar] [CrossRef]
- Ross, R.; Holden, D. Commercial extracts of the brown seaweed Ascophyllum nodosum enhance the growth and yield of strawberries. In Hortscience; American Society for Horticultural Science: Alexandria, VA, USA, 2010; Volume 45, p. S141. [Google Scholar]
- Little, H.; Spann, T.M. Commercial extracts of Ascophyllum nodosum increase growth and improve the water status of potted citrus rootstocks under deficit irrigation. In Hortscience; American Society for Horticultural Science: Alexandria, VA, USA, 2010; Volume 45, p. S63.139. [Google Scholar]
- Neily, W.; Shishkov, W.; Nickerson, S.; Titus, D.; Norrie, J. Commercial extract from the brown seaweed Ascophyllum nodosum (Acadian®) improves early establishment and helps resist water stress in vegetable and flower seedlings. Hortscience 2010, 45, S105–S106. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Ervin, E.H. Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci. 2008, 48, 364–370. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Wang, K.H.; Ervin, E.H. Optimizing dosages of seaweed extract based cytokinins and zeatin riboside for improving creeping bentgrass heat tolerance. Crop Sci. 2010, 50, 316–320. [Google Scholar] [CrossRef]
- Spann, T.M.; Little, H.A. Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown “hamlin” ANEet orange nursery trees. HortScience 2011, 46, 577–582. [Google Scholar] [CrossRef]
- MacDonald, J.E.; Hacking, J.; Weng, Y.; Norrie, J. Root growth of containerized lodgepole pine seedlings in response to Ascophyllum nodosum extract application during nursery culture. Can. J. Plant Sci. 2012, 92, 1207–1212. [Google Scholar] [CrossRef]
- Nair, P.; Kandasamy, S.; Zhang, J.; Ji, X.; Kirby, C.; Benkel, B.; Hodges, M.D.; Critchley, A.T.; Hiltz, D.; Prithiviraj, B. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genom. 2012, 13, 643. [Google Scholar] [CrossRef]
- Nair, P.; Kandasamy, S.; Zhang, J.; Ji, X.; Kirby, C.; Benkel, B.; Hodges, M.D.; Critchley, A.T.; Hiltz, D.; Prithiviraj, B. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genom. 2012, 13, 643. [Google Scholar] [CrossRef]
- Guinan, K.J.; Sujeeth, N.; Copeland, R.B.; Jones, P.W.; O’brien, N.M.; Sharma, H.S.S.; Prouteau, P.F.J.; O’sullivan, J.T. Discrete roles for extracts of Ascophyllum nodosum in enhancing plant growth and tolerance to abiotic and biotic stresses. In I World Congress on the Use of Biostimulants in Agriculture; ISHS: Leuven, Belgium, 2012; Volume 1009, pp. 127–135. [Google Scholar]
- Xu, C.; Leskovar, D.I. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. 2015, 183, 39–47. [Google Scholar] [CrossRef]
- Kumar, M.; Reddy, C.R.K.; Jha, B. The ameliorating effect of Acadian marine plant extracts against ionic liquids-induced oxidative stress and DNA damage in marine macroalga Ulva lactuca. J. Appl. Phycol. 2013, 25, 369–378. [Google Scholar] [CrossRef]
- Elansary, H.O.; Skalicka-Wo’zniak, K.; King, I.W. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiol. Biochem. 2016, 105, 310–320. [Google Scholar] [CrossRef]
- Marroig, R.G.; Loureiro, R.R.; Reis, R.P. The effect of Ascophyllum nodosum (Ochrophyta) extract powderon the epibiosis of Kappaphycus. alvarezii (Rhodophyta) commercially cultivated on floating rafts. J. Appl. Phycol. 2016, 28, 2471–2477. [Google Scholar] [CrossRef]
- Loureiro, R.R.; Reis, R.P.; Marroig, R.G. Effect of the commercial extract of the brown alga Ascophyllum nodosum Mont. on Kappaphycus alvarezii (Doty) Doty ex P.C. Silva in situ submitted to lethal temperatures. J. Appl. Phycol. 2014, 26, 629–634. [Google Scholar] [CrossRef]
- El-Sharkawy, M.; El-Beshsbeshy, T.; Al-Shal, R.; Missaoui, A. Effect of Plant Growth Stimulants on Alfalfa Response to Salt Stress. Agric. Sci. 2017, 8, 267–291. [Google Scholar] [CrossRef]
- Santaniello, A.; Scartazza, A.; Gresta, F.; Loreti, E.; Biasone, A.; Di Tommaso, D.; Piaggesi, A.; Perata, P. Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front. Plant Sci. 2017, 8, 1362. [Google Scholar] [CrossRef] [PubMed]
- Goni, O.; Quille, P.; OConnell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant. Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.S.; Shotton, K.; Norman, E.; Neily, W.; Critchley, A.T.; Prithiviraj, B. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AOB Plants 2018, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Gil, S.; Hernandez-Apaolaza, L.; Lucena, J.J. Effect of several commercial seaweed extracts in the mitigation of iron chlorosis of tomato plants (Solanum. lycopersicum L.). Plant Growth Regul. 2018, 86, 401–411. [Google Scholar] [CrossRef]
- Martynenko, A.; Shotton, K.; Astatkie, T.; Petrash, G.; Fowler, C.; Neily, W.; Critchley, A.T. Thermal imaging of soybean response to drought stress: The effect of Ascophyllum nodosum seaweed extract. SpringerPlus 2016, 5, 1393. [Google Scholar] [CrossRef]
- Bonomelli, C.; Celis, V.; Lombardi, G.; Mártiz, J. Salt Stress Effects on Avocado (Persea americana Mill.) Plants with and without Seaweed Extract (Ascophyllum nodosum) Application. Agronomy 2018, 8, 64. [Google Scholar] [CrossRef]
- Carvalho, M.E.A.; De Camargo, E.; Castro, P.R.; Gaziola, S.A.; Azevedo, R.A. Is seaweed extract an elicitor compound? Changing proline content in drought-stressed bean plants. Comun. Sci. 2018, 9, 292–297. [Google Scholar] [CrossRef]
- Spyridon, P.A.; Fernandes, Â.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R. Biostimulants Application Alleviates Water Stress Effects on Yield and Chemical Composition of Greenhouse Green Bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 181. [Google Scholar] [CrossRef]
- Chrysargyris, X.P.; Anastasiou, M.; Pantelides, I.; Tzortzakis, N. Effects of Ascophyllum nodosum seaweed extracts on lettuce growth, physiology and fresh-cut salad storage under potassium deficiency. J. Sci. Food Agric. 2018, 98, 5861–5872. [Google Scholar] [CrossRef] [PubMed]
- Linda, S.; Cecilia, B.; Eleonora, C.; Paolo, S.; Giovan, B.M. Eco-Physiological Traits and Phenylpropanoid Profiling on Potted Vitis vinifera L. cv Pinot Noir Subjected to Ascophyllum nodosum Treatments under Post-Veraison LowWater Availability. Appl. Sci. 2020, 10, 4473. [Google Scholar]
- Carmody, N.; Goñi, O.; Łangowski, Ł.; O’Connell, S. Ascophyllum nodosum Extract Biostimulant Processing and Its Impact on Enhancing Heat Stress Tolerance During Tomato Fruit Set. Front. Plant Sci. 2020, 11, 807. [Google Scholar] [CrossRef]
- Cabo, S.; Morais, M.C.; Aires, A.; Carvalho, R.; Pascual-Seva, N.; Silva, A.P.; Gonçalves, B. Kaolin and seaweed-based extracts can be used as a middle and long-term strategy to mitigate negative effects of climate change in physiological performance of hazelnut tree. J. Agron. Crop Sci. 2020, 206, 28–42. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Agliassa, C.; Mannino, G.; Vigliante, I.; Contartese, V.; Secchi, F.; Bertea, C.M. A Biostimulant Based on Seaweed (Ascophyllum nodosum and Laminaria digitata) and Yeast Extracts Mitigates Water Stress Effects on Tomato (Solanum lycopersicum L.). Agriculture 2021, 11, 557. [Google Scholar] [CrossRef]
- Dell’Aversana, E.; Cirillo, V.; Van Oosten, M.J.; Di Stasio, E.; Saiano, K.; Woodrow, P.; Ciarmiello, L.F.; Maggio, A.; Carillo, P. Ascophyllum nodosum Based Extracts Counteract Salinity Stress in Tomato by Remodeling Leaf Nitrogen Metabolism. Plants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A. Ascophyllum. nodosum and Silicon-Based Biostimulants Differentially Affect the Physiology and Growth of Watermelon Transplants under Abiotic Stress Factors: The Case of Drought. Horticulturae 2022, 8, 1177. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.H. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci. 2004, 44, 1737–1745. [Google Scholar] [CrossRef]
- Repke, R.A.; Silva, D.M.R.; Dos Santos, J.C.C.; De Almeida Silva, M. Increased soybean tolerance to high-temperature through biostimulant based on Ascophyllum nodosum (L.) seaweed extract. J. Appl. Phycol. 2022, 34, 3205–3218. [Google Scholar] [CrossRef]
- Shukla, P.S.; Borza, T.; Critchley, A.T.; Hiltz, D.; Norrie, J.; Prithiviraj, B. Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS ONE 2018, 13, e206221. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.; Faizan, M.; Tonny, S.H.; Rajput, V.D.; Minkina, T.; Alatar, A.A.; Pathirana, R. Strigolactone-Mediated Mitigation of Negative Effects of Salinity Stress in Solanum lycopersicum through Reducing the Oxidative Damage. Sustainability 2023, 15, 5805. [Google Scholar] [CrossRef]
- Akhtar, M.; Jaiswal, A.; Taj, G.; Jaiswal, J.P.; Qureshi, M.I.; Singh, N.K. DREB1/CBF transcription factors: Their structure, function and role in abiotic stress tolerance in plants. J. Genet. 2012, 91, 385–395. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Benn, D., Jr.; Ramnarine, S.; Jayaraman, J. Transcriptomic changes induced by applications of a commercial extract of Ascophyllum nodosum on tomato plants. Sci. Rep. 2022, 12, e11263. [Google Scholar] [CrossRef] [PubMed]
- Cocetta, G.; Landoni, M.; Pilu, R.; Repiso, C.; Nolasco, J.; Alajarin, M.; Ugena, L.; Levy, C.C.B.; Scatolino, G.; Villa, D.; et al. Priming Treatments with Biostimulants to Cope the Short-Term Heat Stress Response: A Transcriptomic Profile Evaluation. Plants 2022, 11, 1130. [Google Scholar] [CrossRef]
- Karuppanapandian, T.; Moon, J.C.; Kim, C.; Manoharan, K.; Kim, W. Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop Sci. 2011, 5, 709–725. [Google Scholar]
- Fan, D.; Hodges, D.M.; Zhang, J.; Kirby, C.W.; Ji, X.; Locke, S.J.; Critchley, A.T.; Prithiviraj, B. Commercial extract of the brown seaweed Ascophyllum nodosum enhances the phenolic antioxidant content of spinach (Spinacia oleracea L) which protects Caenorhabditis elegans against oxidative and thermal stress. Food. Chem. 2011, 124, 195–202. [Google Scholar] [CrossRef]
- Burchett, S.; Fuller, M.P.; Jellings, A.J. Application of seaweed extract improves winter hardiness of winter barley cv Igri. In The Society for Experimental Biology, Annual Meeting, The York University; Experimental Biology Online; Springer: Berlin/Heidelberg, Germany, 1998; pp. 22–27. ISSN 1430-34-8. [Google Scholar]
- Jithesh, M.N.; Shukla, P.S.; Kant, P.; Joshi, J.; Critchley, A.T.; Prithiviraj, B. Physiological and transcriptomics analyses reveal that Ascophyllum nodosum extracts induce salinity tolerance in Arabidopsis by regulating the expression of stress responsive genes. J. Plant Growth Regul. 2019, 38, 463–478. [Google Scholar] [CrossRef]
- Patier, P.; Yvin, J.C.; Kloareg, B.; Liénart, Y.; Rochas, C. Seaweed liquid fertilizer from Ascophyllum nodosum contains elicitors of plant d-glycanases. J. Appl. Phycol. 1993, 5, 343–349. [Google Scholar] [CrossRef]
- Lizzi, Y.; Coulomb, C.; Polian, C.; Coulomb, P.J.; Coulomb, P.O. Seaweed and mildew: What does the future hold? Phytoma La Def. Des Veg. 1998, 5, 29–30. [Google Scholar]
- Viencz, T.; Ires Cristina, R.O.; Ricardo, A.A.; Cacilda, M.; Duarte, R.F.; Renato, V.B. Postharvest quality and brown rot incidence in plums treated with Ascophyllum nodosum extract. Semin. Ciências Agrárias 2020, 41, 753–766. [Google Scholar] [CrossRef]
- Ayliffe, M.A.; Lagudah, E.S. Molecular genetics of disease resistance in cereals. Ann. Bot. 2004, 94, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Burketová, L.; Trdá, L.; Ott, P.G.; Valentová, O. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. 2015, 33, 994–1004. [Google Scholar] [CrossRef]
- Klarzynski, O.; Descamps, V.; Please, B.; Yvin, J.C.; Kloareg, B.; Fritig, B. Sulfated fucan oligosaccharides elicit defence responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol. Plant Microbe Interact. 2003, 16, 115–122. [Google Scholar] [CrossRef]
- Kandasamy, S.; Khan, W.; Evans, F.; Critchley, A.T.; Prithiviraj, B. Tasco®: A Product of Ascophyllum nodosum Enhances Immune Response of Caenorhabditis elegans against Pseudomonas aeruginosa Infection. Mar. Drugs 2012, 10, 84–105. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar] [CrossRef]
- Wite, D.; Mattner, S.W.; Porter, I.J.; Arioli, T. The suppressive effect of a commercial extract from Durvillaea potatorum and Ascophyllum nodosum on infection of broccoli by Plasmodiophora brassicae. J. Appl. Phycol. 2015, 27, 2157–2161. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Sangha, J.S.; Gray, B.A.; Singh, R.P.; Hiltz, D.; Critchley, A.T.; Prithiviraj, B. Extracts of the marine brown macroalga, Ascophyllum nodosum, induce jasmonic acid-dependent systemic resistance in Arabidopsis thaliana against Pseudomonas. syringae pv. tomato DC3000 and Sclerotinia. sclerotiorum. Eur. J. Plant Pathol. 2011, 131, 237–248. [Google Scholar] [CrossRef]
- Radwan, M.A.; Farrag, S.A.A.; Abu-Elamayem, M.M.; Ahmed, N.S. Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Appl. Soil Ecol. 2012, 56, 58–62. [Google Scholar] [CrossRef]
- Dixon, G.R.; Walsh, U.F. Suppressing Pythium ultimum induced damping-off in cabbage seedlings by biostimulation with proprietary liquid seaweed extracts. Acta Hortic. 2002, 635, 103–106. [Google Scholar] [CrossRef]
- Nerissa, A.; Ramkissoon, A.; Ramsubhag, A.; Jayaraj, J. Ascophyllum Extract Application Causes Reduction of Disease Levels in Field Tomatoes Grown in a Tropical Environment. Crop Prot. 2016, 83, 67–75. [Google Scholar] [CrossRef]
- Ajah, H.A. In vitro and in vivo studies on the antifungal activity of probiotics and Seaweed extract (Ascophyllum. nodosum). Int. J. Innov. Sci. Eng. Technol. 2016, 3, 306–312. [Google Scholar]
- Paiva, K.D.; Martins, F.A.; Dos Santos, T.A.; Rezende, D.C.; Boas, B.M.V.; Xavier-Mis, D.M. Ascophyllum nodosum Seaweed Extract As an Alternative for Control of Post-Harvest Soft Rot in Strawberries/Extrato De Alga Marinha De Ascophyllum nodosum Como Alternativa Para Controle Da podridão Mole pós-Colheita Em Morangos. Braz. J. Dev. 2020, 6, 13531–13543. [Google Scholar] [CrossRef]
- Islam, M.T.; Gan, H.M.; Ziemann, M.; Hussain, H.I.; Arioli, T.; Cahill, D. Phaeophyceaean (brown algal) extracts activate plant defence systems in Arabidopsis thaliana challenged with Phytophthora cinnamomi. Front. Plant Sci. 2020, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and iodine content in edible tissues in pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Vacca, D.D.; Walsch, R.A. The antibacterial activity of an extract obtained from Ascophyllum nodosum. J. Am. Pharm. Assoc. 1954, 43, 24–26. [Google Scholar] [CrossRef]
- Shannon, E.; Abu-Ghannam, N. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Mar. Drugs 2016, 14, 81. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Y.; Bao, Q.; Jiang, Z.; Zhu, Y.; Ni, H.; Li, Q.; Oda, T. A low-molecular-weight ascophyllan prepared from Ascophyllum nodosum: Optimization, analysis and biological activities. Int. J. Biol. Macromol. 2020, 153, 107–117. [Google Scholar] [CrossRef]
- Ueno, M.; Nogawa, M.; Siddiqui, R.; Watashi, K.; Wakita, T.; Kato, N.; Ikeda, M.; Okimura, T.; Isaka, S.; Oda, T.; et al. Acidic polysaccharides isolated from marine algae inhibit the early step of viral infection. Int. J. Biol. Macromol. 2019, 124, 282–290. [Google Scholar] [CrossRef]
- Jimenez, J.; O’Connell, S.; Lyons, H.; Bradley, B.; Hall, M. Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum. Chem. Pap. 2010, 64, 434–442. [Google Scholar] [CrossRef]
- Frazzini, S.; Scaglia, E.; Dell’Anno, M.; Reggi, S.; Panseri, S.; Giromini, C.; Lanzoni, D.; Sgoifo Rossi, C.A.; Rossi, L. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An In Vitro Study. Antioxidants 2022, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Liang, D.; Zou, Y.; Li, P.; Ma, F. Phenolic compounds and antioxidant activity in red-fleshed apples. J. Funct. Foods 2015, 18, 1086–1094. [Google Scholar] [CrossRef]
- Allen, V.G.; Pond, K.R.; Saker, K.E.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Schmidt, R.E.; Fike, J.H.; Zhang, X.; et al. Tasco: Influence of brown seaweed on antioxidants in forages and livestock—A review. J. Animal. Sci. 2001, 79, E21–E31. [Google Scholar] [CrossRef]
- Blanc, N.; Hauchard, D.; Audibert, L.; Gall, E.A. Radical-scavenging capacity of phenol fractions in the brown seaweed Ascophyllum nodosum: An electrochemical approach. Talanta 2011, 84, 513–518. [Google Scholar] [CrossRef]
- Shibata, T.; Nagayama, K.; Tanaka, R.; Yamaguchi, K.; Nakamura, T. Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases. J. Appl. Phycol. 2003, 15, 61–66. [Google Scholar] [CrossRef]
- Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int. J. Food Sci. Techcol. 2002, 37, 703–709. [Google Scholar] [CrossRef]
- Barwell, C.J.; Blunden, G.; Manandhar, P.D. Isolation and characterization of brown algal polyphenols as inhibitors of α-amylase, lipase and trypsin. J. Appl. Phycol. 1989, 1, 319–323. [Google Scholar] [CrossRef]
- Kim, K.T.; Rioux, L.E.; Turgeon, S.L. Alpha-amylase and alpha-glucosidase inhibition are differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 2014, 98, 27–33. [Google Scholar] [CrossRef]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- Wally, O.S.; Critchley, A.T.; Hiltz, D.; Craigie, J.S.; Han, X.; Zaharia, L.I.; Abrams, S.R.; Prithiviraj, B. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. J. Plant Growth Regul. 2013, 32, 324–339. [Google Scholar] [CrossRef]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef]
- Castaings, L.; Marchive, C.; Meyer, C.; Krapp, A. Nitrogen signalling in Arabidopsis: How to obtain insights into a complex signalling network. J. Exp. Bot. 2011, 62, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Krouk, G.; Lacombe, B.; Bielach, A.; Perrine-Walker, F.; Malinska, K.; Mounier, E.; Hoyerova, K.; Tillard, P.; Leon, S.; Ljung, K.; et al. Nitrate-regulated auxin transport by NRT1. 1 defines a mechanism for nutrient sensing in plants. Dev. Cell 2010, 18, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Goni, O.; Fort, A.; Quille, P.; McKeown, P.C.; Spillane, C.; O’Connell, S. Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: Same seaweed but different. J. Agric. Food Chem. 2016, 64, 2980–2989. [Google Scholar] [CrossRef]
- Ren, H.; Gray, W.M. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol. Plant 2015, 8, 1153–1164. [Google Scholar] [CrossRef]
- Stirk, W.A.; Van Staden, J. Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. J. Appl. Phycol. 1996, 8, 503–508. [Google Scholar] [CrossRef]
- Moore, K.K. Using seaweed compost to grow bedding plants. BioCycle 2004, 45, 43–44. [Google Scholar]
- Mohanty, D.; Adhikary, S.P.; Chattopadhyay, N. Seaweed liquid fertiliser (SLF) and its role in agricultural productivity. Ecosan 2013, 3, 147–155. [Google Scholar]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci. Hortic. 2010, 125, 263–269. [Google Scholar] [CrossRef]
- Illera-Vives, M.; López-Fabal, A.; López-Mosquera, M.E.; Ribeiro, H.M. Mineralization dynamics in soil fertilized with seaweed–fish waste compost. J. Sci. Food Agric. 2015, 95, 3047–3054. [Google Scholar] [CrossRef]
- Hankins, S.D.; Hockey, H.P. The effect of a liquid seaweed extract from Ascophyllum nodosum (Fucales, Phaeophyta) on the two-spotted red spider mite Tetranychus urticae. Hydrobiologia 1990, 204, 555–559. [Google Scholar] [CrossRef]
- Wu, Y.; Jenkins, T.; Blunden, G.; Von Mende, N.; Hankins, S.D. Suppression of fecundity of the root-knot nematode, Meloidogyne. javanica, in monoxenic cultures of Arabidopsis thaliana treated with an alkaline extract of Ascophyllum nodosum. J. Appl. Phycol. 1998, 10, 91. [Google Scholar] [CrossRef]
- Martin, T.J.G.; Turner, S.J.; Fleming, C.C. Management of the potato cyst nematode (Globodera pallida) with bio-fumigants/stimulants. Commun. Agric. Appl. Biol. Sci. 2007, 72, 671–675. [Google Scholar] [PubMed]
- Loureiro, R.R.; Reis, R.P.; Critchley, A.T. In vitro cultivation of three Kappaphycus. alvarezii (Rhodophyta, Areschougiaceae) variants (green, red and brown) exposed to a commercial extract of the brown alga Ascophyllum nodosum (Fucaceae, Ochrophyta). J. Appl. Phycol. 2010, 22, 101–104. [Google Scholar] [CrossRef]
- Uppal, A.K.; El Hadrami, A.; Adam, L.R.; Tenuta, M.; Daayf, F. Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biol. Control 2008, 44, 90–100. [Google Scholar] [CrossRef]
- Goicoechea, N.; Aguirreolea, J.; Garcıa-Mina, J.M. Alleviation of verticillium wilt in pepper (Capsicum. annuum L.) by using the organic amendment COA H of natural origin. Sci. Hortic. 2004, 101, 23–37. [Google Scholar] [CrossRef]
- Ali, M.K.M.; Yasir, S.M.; Critchley, A.T.; Hurtado, A.Q. Impacts of Ascophyllum marine plant extract powder (AMPEP) on the growth, incidence of the endophyte Neosiphonia apiculata and associated carrageenan quality of three commercial cultivars of Kappaphycus. J. Appl. Phycol. 2018, 30, 1185–1195. [Google Scholar] [CrossRef]
- Cook, J.; Zhang, J.; Norrie, J.; Blal, B.; Cheng, Z. Seaweed extract (Stella Maris R.) activates innate immune responses in Arabidopsis thaliana and protects host against bacterial pathogens. Mar. Drugs 2018, 16, 221. [Google Scholar] [CrossRef]
- Somai-Jemmali, L.; Siah, A.; Randoux, B.; Magnin-Robert, M.; Halama, P.; Hamada, W.; Reignault, P. Brown alga Ascophyllum nodosum extract-based product, Dalgin Active®, triggers defence mechanisms and confers protection in both bread and durum wheat against Zymoseptoria tritici. J. Appl. Phycol. 2020, 32, 3387–3399. [Google Scholar] [CrossRef]
- Patel, J.S.; Selvaraj, V.; Gunupuru, L.R.; Rathor, P.K.; Prithiviraj, B. Combined application of Ascophyllum nodosum extract and chitosan synergistically activates host-defence of peas against powdery mildew. BMC Plant Biol. 2020, 20, 113. [Google Scholar] [CrossRef]
- Tkaczyk, M.; Szmidla, H.; Sikora, K. The use of biostimulants containing Ascophyllum nodosum (L.) Le Jolis algal extract in the cultivation and protection of English oak Quercus robur L. seedlings in forest nurseries. Sylwan 2022, 166, 244–252. [Google Scholar]
- Rashad, Y.M.; El-Sharkawy, H.H.A.; Elazab, N.T. Ascophyllum nodosum Extract and Mycorrhizal Colonization Synergistically Trigger Immune Responses in Pea Plants against Rhizoctonia Root Rot, and Enhance Plant Growth and Productivity. J. Fungi 2022, 8, 268. [Google Scholar] [CrossRef] [PubMed]
Components | Quantity (%) | Reference |
---|---|---|
Water | 70–85 | [46,47] |
Ash | 15–25 | |
Alginic acid | 15–30 | |
Laminarian | 0–10 | |
Mannitol | 5–10 | |
Fucoidan | 4–10 | |
Protein | 5–10 | |
Fat | 2–7 | |
Tannins | 2–10 | |
Potassium | 2–3 | |
Sodium | 3–4 | |
Magnesium | 0.5–0.9 | |
Iodine | 0.01–0.1 | |
Other carbohydrates | 0–10 | |
Choline | 0.09–0.32 | [48,49] |
Betaine | 0.04–0.12 | |
Butyric acid | - | [50] |
Phenolics | - | [51,52] |
Vanadium | - | [53] |
Fucosterol | 50 | [50] |
Glycolipids | 32.6 | [54] |
Phospholipids | 4.7 | |
Mannitol | 8–10 | [55] |
Myristic, palmitic acid, stearic acid, oleic acid, linoleic acid, arachidonic acid, and eicosapentaenoic acid | - | [56] |
Iodine | 553 ± 186 µg/g dry weight | [57] |
Carbohydrates | 40–70 | [22] |
Proteins | 3–10 | |
Polyphenols and pigments | 4–8 | |
Phospholipids and glycolipids | 2–4 | |
Hormone and vitamins | <1 | |
Alginate | 30 | [58] |
Fucose | 10 | |
Laminarin | 7 |
Sr. No. | Seaweed Used | Name of the Product | Action | Corporation/Industries |
---|---|---|---|---|
1 | A. nodosum | Acadian® | Plant growth stimulator | Acadian Agritech, Dartmouth, NS, Canada |
2 | Actiwave® | Metabolic enhancer, biostimulant | Agro Exim, Ankeshwar, Gujarat, India | |
3 | Agri-gro ultra | Plant growth stimulator | Agri-gro Marketing Inc., Doniphan, MO, USA | |
4 | Agripower ® | --- | Hindustan Agro, Delhi, India | |
5 | Alg A Mic | Plant growth stimulator | Bio-Bizz Worldwide N.V., Groningen, The Netherlands | |
6 | Algae greenTM | Biostimulant | Oilean Glas Teo Ltd., Donegal, Ireland | |
7 | Algamare ® | Plant growth stimulator | Microquímica, Hortolândia - SP, Brazil | |
8 | Algifert | Plant growth stimulator | Algae, Kristiansund - Omagata, Norway | |
9 | Algifol | Biostimulator | Neomed Pharma GmbH, Germany | |
10 | L. digitata/A. nodosum | Algovert ® | Biostimulator | Setalg, Pleubian, France |
11 | A. nodosum | Aquamax | Biostimulator | Aqua Maxx Inc., USA |
12 | Bio-Algen® S-90 | Bioregulator | Shulze & Hermsen GmbH, Germany | |
13 | Bio genesis™ | Plant growth stimulator | Green Air Products Inc., Boring, OR, USA | |
14 | Biopost AG200 | Plant growth stimulator | Cofuna, Nousty, France | |
15 | Biovita® | Plant growth stimulator | PI Industries Ltd., Sagar, Madhya Pradesh, India | |
16 | Biozyme | Biostimulant, Bioregulator | Genesis Agro, Nashik, Maharashtra, India | |
17 | Dalgin Active® | Growth regulator | Rhino AgriVantage, Wellington, South Africa | |
18 | Espoma | Plant growth stimulator | Espoma Company, Millville, NJ, USA | |
19 | A. nodosum and amino acid | Fylloton | Biostimulant | Biolchim, Warszawa, Poland |
20 | A. nodosum | Goemar, GA14® | Plant growth stimulator | Goemar, Saint-Malo, France |
21 | Goëmar BM86® | Fertilizer, biostimulator, and bioregulator | Parc Technopolitain, Atalante, France | |
22 | GS 35 | Plant growth stimulator | Micromix Plant Health Ltd., Nottingham, UK | |
23 | Guarantee® | Plant growth stimulator | Maine Stream Organics, USA | |
24 | HighTideTM | --- | Green Air Products Inc., Boring, OR, USA | |
25 | ID-aIG™ | Calorie reducer | Bio Serae Laboratories SAS, Bram, France | |
26 | Kelpmeal | Plant growth stimulator | Acadian Sea Plants Ltd., Dartmouth, NS, Canada | |
27 | Kelpro | Plant growth stimulator | Techniprocesos biologicos S.A. de C.A., USA | |
28 | Kelpro soil | Plant growth stimulator | Productos del Pacifico, S.A. de C.A., Mexico | |
29 | A. nodosum/Possidonius australus | Liquid kelp | Biostimulator | Sea Gold, Australia |
30 | A. nodosum A. nodosum | Marmarine | Plant growth stimulator | IFTCTM, Amman, Jordan |
31 | Maxicrop | Plant growth stimulator | Maxicrop Inc., Elk Grove Village, IL, USA | |
32 | Nitrozime | Plant growth stimulator | Hydrodynamics International Inc., Lansing, MI, USA | |
33 | Nitrozyme | Biostimulator | Agri-Growth International Inc., USA | |
34 | OHM | Biostimulant | UPL AgroSolutions Canada Inc., Ontario, Canada | |
35 | Plantin | Biostimulant | Plantin SARL, Courthézon, France | |
36 | Proton® | Biostimulant | Zen Agrotech, Nagpur, Maharashtra, India | |
37 | PSI-362 | Biostimulant | Brandon Bioscience, Tralee, Ireland | |
38 | RutfarmMaxifol | Biostimulant | Agromaster, Krasnodar Krai, Russia | |
39 | Rygex | Biostimulator | Agriges S.R.L., Benevento, Italy | |
40 | SeaCrop | Biostimulant | Atlantic Laboratories Inc., Bensalem, PA, USA | |
41 | Soluble seaweed extracts | Plant growth stimulator | Technaflora Plant Products Ltd., Mission, BC, Canada | |
42 | Stella maris™ | Plant growth stimulator | Acadian Sea Plants, Dartmouth, NS, Canada | |
43 | Stimplex | Plant growth stimulator | Acadian Agritech, Dartmouth, NS, Canada | |
44 | Super Fifty® | Biofertilizer | Bio Atlantis Ltd., Kerry, Ireland | |
45 | Synergy | Plant growth stimulator | Green Air Products Inc., Boring, OR, USA | |
46 | Tasco® -Forage | Plant growth stimulator | Acadian Sea Plants Limited, Dartmouth, NS, Canada | |
47 | Thorvin | Biostimulator | Thorvin Inc., Norway | |
48 | Wuxal®-Ascofol | Biostimulator | Aglukon, Düsseldorf, Germany | |
49 | Liquid seaweed extract | WAVE™ | Biostimulant | UPL Agro Solutions Canada Inc., Ontario, Canada |
Plants | Consequences of Treatment | Product | Reference | |
---|---|---|---|---|
Scientific Name | Common Name | |||
Spinacia oleracea | Spinach | The use of foliar spray increased total fresh biomass. | Goemar, GA14® | [77] |
Solanum Lycopersicum | Tomato | Greater chlorophyll content in sprayed plants. | Maxicrop® | [78] |
Capsicum annuum | Pepper | Enhanced yield and quality. | Maxicrop® | [79] |
Citrus unshiu | Satsuma orange | Early maturation of fruit. | Goemar® | [80] |
Lilium | Lily | Foliar spray enhanced stems, leaves, and bulb weights. | AnE | [81] |
Calendula officinalis | Marigold | Soil treated with seaweed before seeds were sown improved germination, leading to enhanced root length and shoot growth, and treated seedlings flowered earlier than non-treated seedlings. | AnE | [82] |
Actinidia deliciosa | Kiwi | An AnE foliar spray after 5 and 10 days of flowering increased fruit weight and maturity. | AnE | [83] |
Vitis vinifera | Grapevine | To increase fruit yield, spray the leaves five times. | WUAL | [84] |
V. vinifera | Grapevine | Improved fruit quality and yield. | Acadian | [61] |
V. vinifera | Grapevine | Grapevine copper uptake was improved. | Maxicrop, Proton, Algipower | [85] |
V. vinifera | Grapevine | Multiple foliar sprays increased fruit setting. | AnE | [26] |
Citrullus lantus | Watermelon | The use of ANE increased yield and quality significantly. | AnE | [86] |
Vaccinium corymbosum | Blueberry | Foliar spray increased yield (15%) and berry size. | Ekologik | [87] |
Citrus sinensis | Orange | Foliar spaying at budding improved bud sprouting, and full bloom enhanced the content of gibberellin and fruit yield (8–15%). | Goemar | [21] |
Malus pumila | Apple | When applied to the soil as a liquid, it increased chlorophyll, fruit sugar content, and yield while decreasing biannual cropping. | Active | [88] |
Fragaria × ananassa | Strawberry | It increases fruit yield and quality while also acting as an iron chelator. | Active | [89] |
Malus pumila | Apple | Foliar sprays enhanced flowering and vegetative growth, yield, and quality. | Goemar | [90] |
Olea europaea | Olive | A foliar application prior to full bloom improved yield and increased oil quality. | AnE | [91] |
Solanum lycopersicum | Tomato | Drench or foliar spray with a commercial product increased chlorophyll content. | Algifert | [92] |
S. oleracea | Spinach | Seaweed improved postharvest quality and storage time. | AnE | [93] |
S. oleracea | Spinach | Improved yield and nutritional quality. | Acadian | [94] |
Brassica oleracea | Cabbage | Increased the antioxidant and phenolic content of cabbage. | Acadian | [95] |
Phaseolus vulgaris | French bean | Foliar application was minimal, but it improved betaine and chlorophyll contents. | Algifert | [92] |
Solanum tuberosum | Potato | Foliar spray significantly improved the yields of three varieties. | AnE | [96,97] |
Triticum | Wheat | Soil drenched with seaweed has increased chlorophyll content. | Algifert | [92] |
Hordeum vulgare | Barley | |||
Zea mays | Maize | |||
H. vulgare | Barley | Priming seeds with extracts enhanced the rate of seed germination, improved the availability of oxygen to the embryo, and decreased the microbial population by 86%. | AnE | [98] |
H. vulgare | Barley | The treatment increased the yield of hydroponically grown spring barley. | Maxicrop | [99] |
H. vulgare | Barley | Treatment of seaweed stimulated gibberellic acid (GA3)-independent amylase activity. | AnE | [100] |
Cynodon dactylon | Bermuda grass | Late-term soil treatment (nitrogen, iron, and seaweed extract) had no regular impacts on proline concentration (cold tolerance). | AnE | [101] |
Poa pratensis | Blue grass | Increased shelf life and transplant rooting. | Acadian | [102] |
Brassica oleracea | Cabbage | Improved secondary metabolite biosynthesis. | AlgaeGreen | [103] |
Picea abies | Spruce | Soil flooded with extracts at the 17-week stage of seedling development and improved spring root development. | AnE | [104] |
V. vinifera | Grape | Improved vegetative growth. | AnE | [105] |
Picea abies | Spruce | Drench treatment improved seedling growth. | Bio-Algeen | [106] |
Kappaphycus alvarezii | Sea moss | Acadian marine plant extract is efficient for regenerating young plants using tissue culture. | Acadian | [107] |
Brassica napus | Rapeseed | Enhance plant growth and nutrient uptake. | AZAL5 | [108] |
Petunia | - | Drench treatment improved plants’ vegetative growth parameters. | AnE | [62] |
Ageratum | - | |||
Calibrachoa × hybrida | - | The seaweed treatment enhanced the number of leaves and leaf area, plant height, dry weight, and antioxidant capacity. | AnE | [64] |
Solanum lycopersicum | Tomato | The use of seaweed increased chlorophyll content in leaves as well as plant height and fruit yield. | AnE | [73] |
Prunus dulcis | Almond | Foliar application improved growth and potassium uptake. | AnE | [109] |
Morus alba | Mulberry | Seaweed extract significantly increases both the quality and quantity of mulberry leaves. | AnE | [110] |
Pyrus | Pear | Improved fruit diameter, weight, and yield and cells per area of parenchymatous tissues in fruits. | AnE | [111] |
Mangifera indica | Mango | Enhanced area and N, P, K, Mg, Fe, Mn, and Zn content in leaves, and improved fruit weight, retention, yield, and soluble sugars. | AnE | [112] |
Solanum melongena | Eggplant | A foliar spray of Ascophyllum extract showed increased fruit yield. | AnE | [113] |
Malus domestica | Apple | Increased fruit setting, number, weight, and length without affecting maturity. | Algamare | [114] |
Capsicum annuum L. | Pepper | In comparison to the control, improved plant height, stem diameter, number of leaves and leaf area, chlorophyll content, shoot fresh and dry weight, and root fresh and dry weight. | Stimplex® | [115] |
Mangifera indica | Mango | Reduced fruit mass loss, interruption of pulp color angle deterioration, preservation of pulp rigidity and subsequent increase in fruit shelf life, and the preservation of pH and acidity, soluble solids, and sugar contents during postharvest storage. | AnE | [116] |
Arabidopsis thaliana | Enhanced plant growth via localization and alteration of auxin concentration. | AnE | [63] | |
Allium cepa | Onion | Improved vegetative growth and yield of onions. | Premium liquid seaweed | [117] |
Citrullus lanatus | Watermelon | Increases the following evaluated parameters significantly: fresh shoot weight, shoot and root length, fresh and dry root weight. | Acadian® | [118] |
Brassica oleraceae | Cabbage | Total phenolic content was higher in all seaweed-treated plants. | AlgaeGreen | [103] |
Cucumis sativus | Cucumber | Induced favorable effects on plant growth, fruit yield, and quality. | AnE | [119] |
Zea mays | Maize | Improved root system development and plant nutrition. | AnE | [120] |
Solanum melongena | Eggplant | Enhanced early crop yield, antioxidant activity, number of fruits per plant, and selected mineral contents under field conditions. | Göemar BM-86 | [121] |
Achillea millefolium | Yarrow | Application of seaweed enhances phenolic content and antioxidant activity. | AnE | [122] |
Capsicum annuum | Chili | Different biozyme treatments improved the growth, quality, and yield. | Biozyme | [123] |
V. vinifera | Grapevine | Enhanced growth, leaf nutrient content, berry quality, and yield. | AnE | [124] |
V. vinifera | Grapevine | Improves the fruit quality of cultivated wine grapes. | AnE | [125] |
Pyrus | Pear | Enhanced fruit diameter, weight, yield, and number of cells per area of parenchymatous fruit tissue. | AnE | [111] |
Brassica napus | Rapeseed | Promoted the plant’s growth. | AnE | [108] |
Cicer arietinum | Chickpea | Stimulated favorable changes in the anatomical structure of the stem and leaves. | AnE | [74] |
Fragaria ananassa | Strawberry | Increased growth response of strawberry roots. | Seasol | [126] |
S. oleracea | Spinach | Increase the yield and quality of spinach. | AnE | [127] |
Allium cepa | Onion | AnE improved seed germination and seedling growth and plays an effective role as a priming agent. | AnE | [117] |
Phaseolus valgaris | Green Bean | Increased the yield and quality of the bean. | Fylloton | [76] |
Glycine max L. | Soybean | Improved seed growth and yield without compromising nutritional quality or nutraceutical content. | Fylloton | [128] |
Prunus avium | Cherry | The use of seaweed extract improved the quality of the fruit and its bioactive compounds. | AnE | [129] |
Solanum tuberosum | Potato | Enhanced the starch content in potato tubers. | Bio-algeen S90 | [130] |
Rebutia heliosa | Cactus | Increased plant height, suckers, vegetative and root weights, plant circumference, flower number, flower time, and seed germination significantly. | AnE | [131] |
Sulcorebutia canigueralli | Cactus | Increased the height of the plants, the vegetative and radical parts, the number of flowers, the duration of flowering, and the circumference of the plants. | AnE | [131] |
Arabidopsis thaliana | Influenced the N uptake mechanism, enhanced the nitrogen use efficiency, and reduced the N application in both plants. | AnE based PSI-362 | [132] | |
Hordeum vulgare | Barley | |||
Alibertia edulis | Treated seedlings showed the highest N use efficiency, N uptake, and nitrogen use. | AnE | [133] |
Plants | Consequences of Treatment | Product | Reference | |
---|---|---|---|---|
Scientific Name | Common Name | |||
Agrostis stolonifera | Creeping bentgrass | Foliar sprays of AnE and humic acid improved antioxidant activity, promoted growth, and improved drought tolerance. | AnE | [134] |
Fragaria | Strawberry | Soil drip application alleviated high soil salinity. | Acadian | [135] |
Fragaria | Strawberry | Foliar spray increased tolerance to iron deficiency and significantly increased fruit yield. | Actiwave | [89] |
Citrus | _ | Foliar or soil flooding under water shortage conditions improved growth and stem–water potential. | Stimplex | [136] |
Lactuca sativa | Lettuce | Application of viable extract improved the early development of seedlings (shoot and root) and provided protection from water stress. | Acadian® | [137] |
Piper nigrum | Pepper | |||
Solanum lycopersicum | Tomato | |||
Petunia | Petunia | |||
Viola tricolor | Pansy | |||
Agrostis stolonifera | Creeping bentgrass | Frequent foliar applications are efficient for improving heat stress tolerance and turfgrass performance. | AnE | [138,139] |
Citrus sinensis | Sweet orange | Enhanced drought stress tolerance and maintained the growth of seedlings under drought conditions. | Stimplex | [140] |
Pinus | Pine | Drenching the roots with extract improved spring root growth and drought stress tolerance. | ANE | [141] |
A. thaliana | The lipophilic component of AnE improved freezing tolerance by defending membrane integrity and regulating the expression of freezing stress-responsive genes. | Acadian | [50,142] | |
Arabidopsis thaliana | - | Increased tolerance to freezing stress. | AnE | [63,143] |
Lactuca sativa | Lettuce | Improved plant growth and tolerance to abiotic and biotic stresses. | Super Fifty | [144] |
Brassica napus | Oilseed rape | |||
S. oleracea | Spinach | Enhanced growth, quality, and nutritional value of spinach grown under drought conditions. | AnE | [145] |
Ulva lactuca | Sea lettuce | AMPEP decreased ionic liquid-stimulated oxidative stress in Ulva lactuca. | Acadian Marine Plant Extract Powder | [146] |
Spiraea nipponica | Spirea | Improved drought resistance by producing phytochemicals and antioxidants. | Stimplex | [147] |
Pittosporum eugenioides | Lemonwood | |||
Kappaphycus alvarezii | Elkhorn sea moss | A. nodosum was tested on seaweeds and was found to improve growth and inhibit epibiosis in seaweed cultivation. | Acadian marine plant extract powder (AMPEP) | [148] |
Kappaphycus alvarezii | Elkhorn sea moss | Increase tolerance to cold stress. | Acadian marine plant extract powder | [149] |
Medicago sativa | Alfalfa | A positive effect on alleviating salt stress. | AnE | [150] |
A. thaliana | Acclimatize plants to drought stress by enhancing photosynthesis and water use efficacy and controlling stress-responsive gene expression. | Algae | [151] | |
Solanum lycopersicum | Tomato | Increased tolerance to drought stress. | AnE | [152] |
Glycine max | Soybean | Increased tolerance to drought stress. | AnE | [153] |
Solanum lycopersicum | Tomato | Plants showed improved accumulation of antioxidants, minerals, and necessary amino acids in fruits and increased water relations in stress treatment and fruit quality traits under salt stress. | Rygex, Super Fifty | [70] |
Solanum lycopersicum | Tomato | AnE application stimulated the antioxidant system in Fe-deficient plants, increasing SOD and CAT activities. | AnE | [154] |
Glycine max | Soybean | Treatment of plants with Acadian seaweed extract provided effective modification and plant survival under drought conditions. | Acadian | [155] |
Paspalum vaginatum | Seashore paspalum | Greater plant growth under prolonged irrigation and salt stress conditions is regulated by osmotic adjustment and the antioxidant defense system. | Stella MarisTM | [15] |
Persea americana | Avocado | Application of seaweed diminished the effect of salt stress in the early stages. | AnE | [156] |
Phaseolus vulgaris | Green bean | Improved tolerance to drought stress by affecting proline metabolism. | AnE | [157] |
P. vulgaris | Green bean | Reduced water stress. | Biostimulant | [158] |
Lactuca sativa | Lettuce | ANE application altered the negative effects of potassium deficiency during the growth and storage of processed products. | AnE | [159] |
Glycine max | Soybean | Enhanced salinity stress. | AnE | [153] |
V. vinifera | Grapevine | Enhanced water stress tolerance in grapes. | AnE | [160] |
Solanum lycopersicum | Tomato | Improved heat stress tolerance at the reproductive stage. | AnE | [161] |
Corylus | Hazelnut | Protect trees from heat and drought stress during the summer. | AnE | [162] |
Solanum lycopersicum | Tomato | Alleviated water stress by lowering the ABA and MDA contents. | ERANTHIS®® | [163] |
Solanum lycopersicum | Tomato | Application of the extract modulated amino acid and potassium levels and improved osmotic imbalance and nitrate uptake under saline conditions. | Superfifty | [164] |
Citrullus lanatus | Watermelon | Reduced the negative effects of drought stress. | AnE | [165] |
Plants | Consequences of Treatment | Disease | Product | Reference | |
---|---|---|---|---|---|
Scientific Name | Common Name | ||||
Fragaria × ananassa | Strawberry | Diminished the population of two-spotted red spider mites Tetranychus urticae on plants treated with product. | Two-spotted red spider mite | Maxicrop | [220] |
Arabidopsis | Reduced the number of females of Meloidogyne javanica. | Root-knot | Maxicrop | [221] | |
Daucus carota | Carrot | Foliar sprays that control Alternaria radicina and Botrytis cinerea infections, induced the manifestation of defense-related proteins or genes. | Black rot; Botrytis blight | AnE | [16] |
Solanum tuberosum | Potato | Soil treatment for potato cyst nematodes (PCN), control, and nematicide was better than seaweed extract. | - | Algifol | [222] |
Kappaphycus alvarezii | Elkhorn sea moss | Polysiphonia subtilissima reduced the growth of the epiphyte. | Ice–ice; goose bumps | [223] | |
Cucumis sativus | Cucumber | Reduction in Phytophthora melonis that caused damping-off disease. | Damping-off | AnE | [18] |
Solanum tuberosum | Potato | Foliar-spray-controlled soil-borne Verticillium wilt via Verticillium spp. | Verticillium wilt | AnE | [224] |
Agrostis stolonifera | Creeping bentgrass | Foliar disease (Sclerotinia homeocarpa) is notably decreased by seaweed with humic acid treatment at concentrations of 16 mg/m2 and 38 mg/m2, respectively. | Dollar spot | AnE | [102] |
A. thaliana | AnE-application-induced resistance against Pseudomonas syringae and Sclerotinia sclerotiorum pathogens. | Bacterial speck; stem rot | AnE | [187] | |
Cucumis sativus | Cucumber | Plants treated with seaweed products developed a significant decline in the occurrence of disease from fungal pathogens, viz., Alternaria cucumerinum, Botrytis coinerea, Didymella applanata, and Fusarium oxysporum. | Alternaria blight. Botrytis blight, Fusarium root; stem rot; Gummy stem blight | Stimplex™ | [17] |
Capsicum annuum | Pepper | Incorporation caused a delayed and reduced incidence of Verticillium wilt. | Verticillium wilt | AnE | [225] |
Brassica oleracea var. italic | Broccoli | Seaweed extract significantly suppressed the infection of the plant by Plasmodiophora brassicae. | Clubroot | AnE | [186] |
S. lycopersicum | Tomato | Produced the expression of defense-related genes or proteins against the Phytophthora capsici pathogen. | Damping-off | Dalgin | [19] |
Kappaphycus alvarezii | Elkhorn sea moss | A. nodosum, tested on seaweeds, showed promising results in growth improvement and epibiosis prevention during the cultivation of seaweed. | -- | Acadian marine plant extract powder (AMPEP) | [148] |
S. lycopersicum | Tomato | Reduced number of root galls produced by the root nematode Meloidogyne incognita. | Root gall | Algaefol | [188] |
S. lycopersicum | Tomato | In plants, reduced incidences of diseases caused by Alternaria solani and X. campestris pv vesicatoria through ethylene upregulation or the JA pathway. | Alternaria blight; bacterial leaf spot | AnE | [73] |
K. alvarezii | Elkhorn sea moss | Decreased the biotic stress produced by endophyte Neosiphonia apiculate. | Ice–ice | AMPEP | [226] |
A. thaliana | Constrained the growth of bacterial pathogens such as Pseudomonas syringae and Xanthomonas campestris by stimulating the expression of WRKY30, PR-1, and CYP71A12 genes. | Cankers; Black rot | Stella Maris™ | [227] | |
Triticum aestivum | Wheat | Triggers defense mechanisms and confers protection against Zymoseptoria tritici | Septoria tritici blotch | Dalgin active | [228] |
Pisum sativum | Pea | ANE and chitosan-induced transcripts of the JA- and SA-dependent plant defense genes and a decrease in powdery mildew infection caused by Erisyphe pisi. | Powdery mildew | AnE and chitosan | [229] |
Prunus salicina | Plum | Diminished the disease caused by M. fructicola, M. laxa, and M. frutigena in the plum fruits up to 50%. | The brown rot | AnE | [180] |
Quercus robur | Oak | Infection by Erysiphe alphitoides diminished in plants treated with AnE. | powdery mildew | AnE | [230] |
Pisum sativum | Pea | AnE at 3% has a promising and improved biocontrol activity against Rhizoctonia solani. | Rhizoctonia root rot | AnE | [231] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, S.; Sehrawat, K.D.; Phogat, D.; Sehrawat, A.R.; Chaudhary, R.; Sushkova, S.N.; Voloshina, M.S.; Rajput, V.D.; Shmaraeva, A.N.; Marc, R.A.; et al. Ascophyllum nodosum (L.) Le Jolis, a Pivotal Biostimulant toward Sustainable Agriculture: A Comprehensive Review. Agriculture 2023, 13, 1179. https://doi.org/10.3390/agriculture13061179
Kumari S, Sehrawat KD, Phogat D, Sehrawat AR, Chaudhary R, Sushkova SN, Voloshina MS, Rajput VD, Shmaraeva AN, Marc RA, et al. Ascophyllum nodosum (L.) Le Jolis, a Pivotal Biostimulant toward Sustainable Agriculture: A Comprehensive Review. Agriculture. 2023; 13(6):1179. https://doi.org/10.3390/agriculture13061179
Chicago/Turabian StyleKumari, Sangeeta, Krishan D. Sehrawat, Deepak Phogat, Anita R. Sehrawat, Ravish Chaudhary, Svetlana N. Sushkova, Marina S. Voloshina, Vishnu D. Rajput, Antonina N. Shmaraeva, Romina Alina Marc, and et al. 2023. "Ascophyllum nodosum (L.) Le Jolis, a Pivotal Biostimulant toward Sustainable Agriculture: A Comprehensive Review" Agriculture 13, no. 6: 1179. https://doi.org/10.3390/agriculture13061179
APA StyleKumari, S., Sehrawat, K. D., Phogat, D., Sehrawat, A. R., Chaudhary, R., Sushkova, S. N., Voloshina, M. S., Rajput, V. D., Shmaraeva, A. N., Marc, R. A., & Shende, S. S. (2023). Ascophyllum nodosum (L.) Le Jolis, a Pivotal Biostimulant toward Sustainable Agriculture: A Comprehensive Review. Agriculture, 13(6), 1179. https://doi.org/10.3390/agriculture13061179