Cavitation Reactor for Pretreatment of Liquid Agricultural Waste
Abstract
:1. Introduction
- the intensification of the AD process;
- increase in biogas output;
- increasing the content of methane in the resulting gas;
- the economy of the substrate;
- decrease in viscosity;
- reduction in the energy consumption of agitators and pumps.
2. Object and Method of the Research
2.1. Jet-Driven Helmholtz Oscillator
2.2. Experimental Setup
2.3. Goal and Scope
2.4. Assumptions and Limitations of the Study
- To determine the optimal design of the JDHO, which provides the maximum amplitude of pressure pulsations, the parameters d2, DC, and LC were varied.
- During the operation of the JDHO, two cavitation mechanisms operate, namely: hydrodynamic and acoustic.
- The hydrodynamic mechanism is based on the fact that a local pressure drop occurs in the fluid flow when flowing through the nozzle. If the pressure in this area becomes lower than the pressure of saturated vapors or dissolved gases, then microbubbles are formed. Then, with an increase in local pressure and the collapse of microbubbles, cavitation occurs. This hydrodynamic mechanism also works during the development of vortex structures in the resonant chamber, since when the flow swirls, a region of low pressure is created in the center of the vortex.
- The acoustic mechanism is caused by the fact that pressure fluctuations created by the oscillator propagate in the environment and create elastic waves. During the passage of an elastic wave (in the half-cycle of the lower half-wave), a reduced pressure is created, which is lower than the pressure of the saturated vapors of a liquid or dissolved gases. This creates conditions for the formation of cavitation bubbles, which, when the pressure rises (in the half-cycle of the upper half-wave), collapse and create a cavitation effect.
- The shape of the cavitation bubbles, their size, and many other factors influence the collapse pressure. However, these issues are beyond the scope of this work and will be the subjects of future research.
- The JDHO is fundamentally new and has never before been used for pretreatment in AD technology.
3. Results of Experimental Studies
- (1)
- The flow in the jet contains a low-frequency ordered axisymmetric variable component (and periodic volume flow fluctuations). When this component enters the outlet and the jet encounters various resistances in the outlet plane of the oscillator, periodic pressure pulses arise inside the chamber.
- (2)
- These pulses are selectively amplified by the Helmholtz resonance mechanism and a pulsating pressure field is installed in the chamber.
- (3)
- The pulsating pressure field causes flow rate pulsations at the chamber inlet, which leads to an effective amplification of the jet oscillations at the frequency of the ordered component.
- (4)
- The viscous jet displacement layer (the expansion of the jet from its exit from the inlet nozzle to the start of collision with the outlet nozzle) responds to the amplification of jet oscillations in the range of its own acoustic frequencies and amplifies them. As a result, the ordered motion inside the jet is enhanced, vortex rings appear, and the circuit closes.
4. Discussion and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Su, X.; Shao, X.; Geng, Y.; Tian, S.; Huang, Y. Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system. Renew. Energy 2022, 197, 59–68. [Google Scholar] [CrossRef]
- Tiwari, P.; Wang, T.; Indlekofer, J.; Haddad, I.E.; Biollaz, S.; Prevot, A.S.H.; Lamkaddam, H. Online detection of trace volatile organic sulfur compounds in a complex biogas mixture with proton-transfer-reaction mass spectrometry. Renew. Energy 2022, 196, 1197–1203. [Google Scholar] [CrossRef]
- Palvinskiy, V.V.; Vasilev, F.A.; Evteev, V.K. Methods of Pretreating Raw Materials Containing Organic Compounds before Anaerobic Digestion. Eng. Technol. Syst. 2022, 32, 10–27. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Chaudhary, D.K.; Dahal, R.H.; Trinh, N.H.; Kim, J.; Chang, S.W.; Hong, Y.; La, D.D.; Nguyen, C.X.; Ngo, H.H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.Ş.; Unalan, S.; et al. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Poddar, B.J.; Nakhate, S.P.; Gupta, R.K.; Chavan, A.R.; Singh, A.K.; Khardenavis, A.A.; Purohit, H.J. A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. Int. J. Environ. Sci. Technol. 2022, 19, 3429–3456. [Google Scholar] [CrossRef]
- Fei, X.; Chen, T.; Jia, W.; Shan, Q.; Hei, D.; Ling, Y.; Feng, J.; Feng, H. Enhancement effect of ionizing radiation pretreatment on biogas production from anaerobic fermentation of food waste. Radiat. Phys. Chem. 2020, 168, 108534. [Google Scholar] [CrossRef]
- Chmielewski, A.G.; Sudlitz, M.; Han, B.; Pillai, S.D. Electron beam technology for biogas and biofertilizer generation at municipal resource recovery facilities. Nukleonika 2021, 66, 213–219. [Google Scholar] [CrossRef]
- Kovačić, Đ.; Rupčić, S.; Kralik, D.; Jovičić, D.; Spajić, R.; Tišma, M. Pulsed electric field: An emerging pretreatment technology in a biogas production. Waste Manag. 2021, 120, 467–483. [Google Scholar] [CrossRef]
- Bardi, M.J.; Mahmood, A.; Lippert, T.; Bandelin, J.; Koch, K. Stimulating effect of hydrostatic pressure on ultrasonic sewage sludge treatment for COD solubilization and methane production. Bioresour. Technol. 2022, 348, 126785. [Google Scholar] [CrossRef]
- Nabi, M.; Gao, D.; Liang, J.; Cai, Y.; Zhang, P. Combining high pressure homogenization with free nitrous acid pretreatment to improve anaerobic digestion of sewage sludge. J. Environ. Manag. 2022, 318, 115635. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, M.; Dębowski, M.; Kisielewska, M.; Nowicka, A.; Rokicka, M.; Szwarc, K. Cavitation-based pretreatment strategies to enhance biogas production in a small-scale agricultural biogas plant. Energy Sustain. Dev. 2019, 49, 21–26. [Google Scholar] [CrossRef]
- Chubur, V.; Danylov, D.; Chernysh, Y.; Plyatsuk, L.; Shtepa, V.; Haneklaus, N.; Roubik, H. Methods for Intensifying Biogas Production from Waste: A Scientometric Review of Cavitation and Electrolysis Treatments. Fermentation 2022, 8, 570. [Google Scholar] [CrossRef]
- Neis, U. The use of power ultrasound for wastewater and biomass treatment. In Power Ultrasonics: Applications of High-Intensity Ultrasound; Gallego-Juarez, J.A., Graff, K.F., Eds.; Woodhead Publishers: Sawston, UK, 2014; pp. 974–996. [Google Scholar] [CrossRef]
- Gogate, P.R.; Bhosale, G.S. Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chem. Eng. Process. Process Intensif. 2013, 71, 59–69. [Google Scholar] [CrossRef]
- Buller, L.S.; Sganzerla, W.G.; Lima, M.N.; Muenchow, K.E.; Timko, M.T.; Forster-Carneiro, T. Ultrasonic pretreatment of brewers’ spent grains for anaerobic digestion: Biogas production for a sustainable industrial development. J. Clean. Prod. 2022, 355, 131802. [Google Scholar] [CrossRef]
- Nagarajan, S.; Ranade, V.V. Valorizing Waste Biomass via Hydrodynamic Cavitation and Anaerobic Digestion. Ind. Eng. Chem. Res. 2021, 60, 16577–16598. [Google Scholar] [CrossRef]
- Patil, P.N.; Gogate, P.R. Csoka, Levente Agota Dregelyi-Kiss, Miklos Horvath. Intensification of biogas production using pretreatment based on hydrodynamic cavitation. Ultrason. Sonochem. 2016, 30, 79–86. [Google Scholar] [CrossRef]
- Garuti, M.; Langone, M.; Fabbri, C.; Piccinini, S. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant. Bioresour. Technol. 2018, 247, 599–609. [Google Scholar] [CrossRef]
- Zubrowska-Sudol, M.; Dzido, A.; Garlicka, A.; Krawczyk, P.; Stępień, M.; Umiejewska, K.; Walczak, J.; Wołowicz, M.; Sytek-Szmeichel, K. Innovative Hydrodynamic Disintegrator Adjusted to Agricultural Substrates Pre-treatment Aimed at Methane Production Intensification─CFD Modelling and Batch Tests. Energies 2020, 13, 4256. [Google Scholar] [CrossRef]
- Garlicka, A.; Zubrowska-Sudol, M.; Umiejewska, K.; Roubinek, O.; Palige, J.; Chmielewski, A. Effects of Thickened Excess Sludge Pre-Treatment Using Hydrodynamic Cavitation for Anaerobic Digestion. Energies 2020, 13, 2483. [Google Scholar] [CrossRef]
- Nagarajan, S.; Ranade, V.V. Pretreatment of Lignocellulosic Biomass Using Vortex-Based Devices for Cavitation: Influence on Biomethane Potential. Ind. Eng. Chem. Res. 2019, 58, 15975–15988. [Google Scholar] [CrossRef]
- Nagarajan, S.; Ranade, V.V. Pre-treatment of distillery spent wash (vinasse) with vortex based cavitation and its influence on biogas generation. Bioresour. Technol. Rep. 2020, 11, 100480. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Kovalev, D.A.; Grigoriev, V.S. Energy Efficiency of Pretreatment of Digester Synthetic Substrate in a Vortex Layer Apparatus. Eng. Technol. Syst. 2020, 30, 92–110. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, A.A.; Kovalev, D.A.; Panchenko, V.A.; Zhuravleva, E.A.; Laikova, A.A.; Shekhurdina, S.V.; Vivekanand, V.; Litti, Y.V. Approbation of an innovative method of pretreatment of dark fermentation feedstocks. Int. J. Hydrogen Energy 2022, 47, 33272–33281. [Google Scholar] [CrossRef]
- Langone, M.; Soldano, M.; Fabbri, C.; Pirozzi, F.; Andreottola, G. Anaerobic Digestion of Cattle Manure Influenced by Swirling Jet Induced Hydrodynamic Cavitation. Appl. Biochem. Biotechnol. 2018, 184, 1200–1218. [Google Scholar] [CrossRef]
- Nakashima, K.; Ebi, Y.; Shibasaki-Kitakawa, N.; Soyama, H.; Yonemoto, T. Hydrodynamic Cavitation Reactor for Efficient Pretreatment of Lignocellulosic Biomass. Ind. Eng. Chem. Res. 2016, 55, 1866–1871. [Google Scholar] [CrossRef]
- Saxena, S.; Saharan, V.K.; George, S. Modeling & simulation studies on batch anaerobic digestion of hydrodynamically cavitated tannery waste effluent for higher biogas yield. Ultrason. Sonochem. 2019, 58, 104692. [Google Scholar] [CrossRef]
- Lee, I.; Han, J.-I. The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production. Ultrason. Sonochem. 2013, 20, 1450–1455. [Google Scholar] [CrossRef]
- Jung, K.-W.; Hwang, M.-J.; Yun, Y.-M.; Cha, M.-J.; Ahn, K.-H. Development of a novel electric field-assisted modified hydrodynamic cavitation system for disintegration of waste activated sludge. Ultrason. Sonochem. 2014, 21, 1635–1640. [Google Scholar] [CrossRef]
- Mancuso, G.; Langone, M.; Andreottola, G.; Bruni, L. Effects of hydrodynamic cavitation, low-level thermal and low-level alkaline pre-treatments on sludge solubilisation. Ultrason. Sonochem. 2019, 59, 104750. [Google Scholar] [CrossRef]
- Ge, M.; Petkovšek, M.; Zhang, G.; Jacobs, D.; Coutier-Delgosha, O. Cavitation dynamics and thermodynamic effects at elevated temperatures in a small Venturi channel. Int. J. Heat Mass Transf. 2021, 170, 120970. [Google Scholar] [CrossRef]
- Ge, M.; Manikkam, P.; Ghossein, J.; Subramanian, K.R.; Coutier-Delgosha, O.; Zhang, G. Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects. Energy 2022, 254, 124426. [Google Scholar] [CrossRef]
- Lanfranchi, A.; Tassinato, G.; Valentino, F.; Martinez, G.; Jones, E.; Gioia, C.; Bertin, L.; Cavinato, C. Hydrodynamic cavitation pre-treatment of urban waste: Integration with acidogenic fermentation, PHAs synthesis and anaerobic digestion processes. Chemosphere 2022, 301, 134624. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Sun, C.; Zhang, G.; Coutier-Delgosha, O.; Fan, D. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification. Ultrason. Sonochem. 2022, 86, 106035. [Google Scholar] [CrossRef]
- Ge, M.; Zhang, G.; Petkovšek, M.; Long, K.; Coutier-Delgosha, O. Intensity and regimes changing of hydrodynamic cavitation considering temperature effects. J. Clean. Prod. 2022, 338, 130470. [Google Scholar] [CrossRef]
- Terán Hilares, R.; de Almeida, G.F.; Ahmed, M.A.; Antunes, F.A.F.; da Silva, S.S.; Han, J.-I.; dos Santos, J.C. Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: A parametric study. Bioresour. Technol. 2017, 235, 301–308. [Google Scholar] [CrossRef]
- Marta, K.; Paulina, R.; Magda, D.; Anna, N.; Aleksandra, K.; Marcin, D.; Kazimierowicz, J.; Marcin, Z. Evaluation of Ultrasound Pretreatment for Enhanced Anaerobic Digestion of Sida hermaphrodita. Bioenerg. Res. 2020, 13, 824–832. [Google Scholar] [CrossRef] [Green Version]
- Ziyan, L.; Kaiwen, Z.; Yingzheng, L.; Xin, W. Jet sweeping angle control by fluidic oscillators with master-slave designs. Chin. J. Aeronaut. 2021, 34, 145–162. [Google Scholar] [CrossRef]
- Joulaei, A.; Nili-Ahmadabadi, M.; Kim, K.C. Parametric study of a fluidic oscillator for heat transfer enhancement of a hot plate impinged by a sweeping jet. Appl. Therm. Eng. 2022, 205, 118051. [Google Scholar] [CrossRef]
- Morel, T. Experimental study of a jet-driven Helmholtz oscillator. J. Fluids Eng. Trans. ASME 1979, 101, 383–390. [Google Scholar] [CrossRef]
- Wu, Q.; Wei, W.; Deng, B.; Jiang, P.; Li, D.; Zhang, M.; Fang, Z. Dynamic characteristics of the cavitation clouds of submerged Helmholtz self-sustained oscillation jets from high-speed photography. J. Mech. Sci. Technol. 2019, 33, 621–630. [Google Scholar] [CrossRef]
- Fang, Z.L.; Wu, Q.; Jiang, P.; Wei, W. Numerical investigation on flow field characteristics of Helmholtz oscillator. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 062047. [Google Scholar] [CrossRef]
- Liu, W.; Kang, Y.; Zhang, M.; Wang, X.; Li, D. Self-sustained oscillation and cavitation characteristics of a jet in a Helmholtz resonator. Int. J. Heat Fluid Flow 2017, 68, 158–172. [Google Scholar] [CrossRef]
- Hiremath, L.; Nipun, S.; Sruti, O.; Kala, N.G.; Aishwarya, B.M. Sonochemistry: Applications in Biotechnology. In Sonochemical Reactions; Karakuş, S., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Ghasemi, M.; Sivaloganathan, S. Effect of inertial acoustic cavitation on antibiotic efficacy in biofilms. Appl. Math. Mech. 2021, 42, 1397–1422. [Google Scholar] [CrossRef]
- Stebeleva, O.P.; Minakov, A.V. Application of Cavitation in Oil Processing: An Overview of Mechanisms and Results of Treatment. ACS Omega 2021, 6, 31411–31420. [Google Scholar] [CrossRef]
- Gensheng, L.; Zhonghou, S.; Changshan, Z.; Debin, Z.; Hongbing, C. Investigation and application of self-resonating cavitating water jet in petroleum engineering. Pet. Sci. Technol. 2005, 23, 1–15. [Google Scholar] [CrossRef]
- Marfin, E.A.; Gataullin, R.N.; Abdrashitov, A.A. Acoustic stimulation of oil production by a downhole emitter based on a jet-driven Helmholtz oscillator. J. Pet. Sci. Eng. 2022, 215, 110705. [Google Scholar] [CrossRef]
- Wu, Z.; Tagliapietra, S.; Giraudo, A.; Martina, K.; Cravotto, G. Harnessing cavitational effects for green process intensification. Ultrason. Sonochem. 2019, 52, 530–546. [Google Scholar] [CrossRef]
- Strieder, M.M.; Silva, E.K.; Meireles, M.A.A. Advances and innovations associated with the use of acoustic energy in food processing: An updated review. Innov. Food Sci. Emerg. Technol. 2021, 74, 102863. [Google Scholar] [CrossRef]
- Dyussenov, K.M.; Dyussenova, J.; Nedugov, I. The Using of Controlled Cavitation Processes in Some Engineering and Agricultural Applications. Univers. J. Eng. Sci. 2013, 1, 89–94. [Google Scholar] [CrossRef]
- Smirnov, I.; Mikhailova, N. An Analysis of Acoustic Cavitation Thresholds of Water Based on the Incubation Time Criterion Approach. Fluids 2021, 6, 134. [Google Scholar] [CrossRef]
- Sanmartın, P.C. Numerical Study of Fluidic Oscillators with Compressible Flow. Escola Tecnica Superior d’Enginyeries Industrial i Aeron Autica de Terrassa (ETSEIAT) Treball de fi de Grau Grau en Enginyeria en Tecnologies Aeroespacials. 2017. Available online: https://upcommons.upc.edu/bitstream/handle/2117/100392/REPORT_295.pdf (accessed on 23 December 2022).
- Bergadà, J.M.; Baghaei, M.; Prakash, B.; Mellibovsky, F. Fluidic Oscillators, Feedback Channel Effect under Compressible Flow Conditions. Sensors 2021, 21, 5768. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Madyira, D.M.; Ahmed, N.A.; Ogunkunle, O. Experimental evaluation of the influence of combined particle size pretreatment and Fe3O4 additive on fuel yields of Arachis Hypogea shells. Waste Manag. Res. 2023, 41, 467–476. [Google Scholar] [CrossRef]
- Gavaises, M.; Villa, F.; Koukouvinis, P.; Marengo, M.; Franc, J.-P. Visualisation and les simulation of cavitation cloud formation and collapse in an axisymmetric geometry. Int. J. Multiph. Flow 2015, 68, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Zheng, Y.; Zhu, J. Developments in Hydrodynamic Cavitation Reactors: Cavitation Mechanism, Reactor Design, and Applications. Engineering 2022, 19, 180–198. [Google Scholar] [CrossRef]
- Armaha, E.K.; Chettya, M.; Deenadayalu, N. Effect of Particle Size on Biogas Generation from Sugarcane Bagasse and Corn Silage. Chem. Eng. Trans. 2019, 76, 1472–1476. [Google Scholar] [CrossRef]
- Luo, L.; Qu, Y.; Gong, W.; Qin, L.; Li, W.; Sun, Y. Effect of Particle Size on the Aerobic and Anaerobic Digestion Characteristics of Whole Rice Straw. Energies 2021, 14, 3960. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Madyira, D.M.; Ahmed, N.A.; Jekayinfa, S.O.; Ogunkunle, O. Modelling the effects of particle size pretreatment method on biogas yield of groundnut shells. Waste Manag. Res. 2022, 40, 1176–1188. [Google Scholar] [CrossRef]
- Heller, R.; Roth, P.; Hülsemann, B.; Böttinger, S.; Lemmer, A.; Oechsner, H. Effects of Pretreatment with a Ball Mill on Methane Yield of Horse Manure. Waste Biomass Valorization 2023. [Google Scholar] [CrossRef]
- Karaeva, J.V.; Khalitova, G.R.; Kovalev, D.A.; Trakhunova, I.A. Study of the process of hydraulic mixing in anaerobic digester of biogas plant. Chem. Process Eng. 2015, 36, 101–112. [Google Scholar] [CrossRef]
- Karaeva, J.V.; Timofeeva, S.S.; Islamova, S.I.; Gerasimov, A.V. Pyrolysis kinetics of new bioenergy feedstock from anaerobic digestate of agro-waste by thermogravimetric analysis. J. Environ. Chem. Eng. 2022, 10, 3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdrashitov, A.; Gavrilov, A.; Marfin, E.; Panchenko, V.; Kovalev, A.; Bolshev, V.; Karaeva, J. Cavitation Reactor for Pretreatment of Liquid Agricultural Waste. Agriculture 2023, 13, 1218. https://doi.org/10.3390/agriculture13061218
Abdrashitov A, Gavrilov A, Marfin E, Panchenko V, Kovalev A, Bolshev V, Karaeva J. Cavitation Reactor for Pretreatment of Liquid Agricultural Waste. Agriculture. 2023; 13(6):1218. https://doi.org/10.3390/agriculture13061218
Chicago/Turabian StyleAbdrashitov, Alexey, Alexander Gavrilov, Evgeny Marfin, Vladimir Panchenko, Andrey Kovalev, Vadim Bolshev, and Julia Karaeva. 2023. "Cavitation Reactor for Pretreatment of Liquid Agricultural Waste" Agriculture 13, no. 6: 1218. https://doi.org/10.3390/agriculture13061218
APA StyleAbdrashitov, A., Gavrilov, A., Marfin, E., Panchenko, V., Kovalev, A., Bolshev, V., & Karaeva, J. (2023). Cavitation Reactor for Pretreatment of Liquid Agricultural Waste. Agriculture, 13(6), 1218. https://doi.org/10.3390/agriculture13061218