Effects of Future Climate Change on Spring Maize Yield and Water Use Efficiency under Film Mulching with Different Materials in the LOESS Plateau Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Field Management
2.3. Soil Sampling and Yield
2.4. WUE
2.5. DNDC Model
2.6. Model Testing
2.7. Climate Models and Future Meteorological Scenarios
3. Results
3.1. Applicability of Evaluation of the Model
3.1.1. Soil Temperature and Soil Moisture
3.1.2. Verification of Spring Maize Yield and WUE
3.2. Future Climate Change in the Experimental Area
3.3. Effects of Future Climate Change on Spring Maize Yield and WUE
3.3.1. Spring Maize Yield
3.3.2. WUE of Spring Maize
4. Discussion
4.1. Evaluation of Model Fitting Results under Different Mulching Methods
4.2. Changes in Maize Yield and WUE under Future Climate Change Conditions
4.2.1. Maize Yield
4.2.2. WUE
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, A.; Bian, R.; Hussain, Q.; Li, L.; Pan, G.; Zheng, J.; Zhang, X.; Zheng, J. Change in net global warming potential of a rice–wheat cropping system with biochar soil amendment in a rice paddy from China. Agric. Ecosyst. Environ. 2013, 173, 37–45. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Han, Q.; Ren, X.; Jia, Z. Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China. Agric. Water Manag. 2020, 241, 106382. [Google Scholar] [CrossRef]
- Li, R.; Chai, S.; Chai, Y.; Li, Y.; Lan, X.; Ma, J.; Cheng, H.; Chang, L. Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China. Agric. Water Manag. 2021, 254, 106965. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.M.; Turner, N.C.; Li, X.-G.; Niu, J.-Y.; Yang, C.; Liu, L.; Chai, Q. Chapter Seven-Ridge-Furrow Mulching Systems—An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. In Advances in Agronomy, Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 429–476. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Castan, S.; Henkel, C.; Hüffer, T.; Hofmann, T. Microplastics and nanoplastics barely enhance contaminant mobility in agricultural soils. Commun. Earth Environ. 2021, 2, 193. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, F.; Wang, B.; Li, Z.; Zhang, P.; Jia, Z. Impacts of mulching measures on crop production and soil organic carbon storage in a rainfed farmland area under future climate. Field Crops Res. 2021, 273, 108303. [Google Scholar] [CrossRef]
- Sander, M. Biodegradation of Polymeric Mulch Films in Agricultural Soils: Concepts, Knowledge Gaps, and Future Research Directions. Environ. Sci. Technol. 2019, 53, 2304–2315. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Reganold, J.P.; Flury, M. Impacts of biodegradable plastic mulches on soil health. Agric. Ecosyst. Environ. 2019, 273, 36–49. [Google Scholar] [CrossRef]
- Huang, F.; Liu, Z.; Li, Z.; Wang, B.; Zhang, P.; Jia, Z. Is biodegradable film an alternative to polyethylene plastic film for improving maize productivity in rainfed agricultural areas?—Evidence from field experiments. Agric. Water Manag. 2022, 272, 107868. [Google Scholar] [CrossRef]
- Huang, F.; Wang, B.; Li, Z.; Liu, Z.; Wu, P.; Wang, J.; Ye, X.; Zhang, P.; Jia, Z. Continuous years of biodegradable film mulching enhances the soil environment and maize yield sustainability in the dryland of northwest China. Field Crops Res. 2022, 288, 108698. [Google Scholar] [CrossRef]
- Liu, L.; Zou, G.; Zuo, Q.; Li, S.; Bao, Z.; Jin, T.; Liu, D.; Du, L. It is still too early to promote biodegradable mulch film on a large scale: A bibliometric analysis. Environ. Technol. Innov. 2022, 27, 102487. [Google Scholar] [CrossRef]
- Gu, X.; Cai, H.; Fang, H.; Li, Y.; Chen, P.; Li, Y. Effects of degradable film mulching on crop yield and water use efficiency in China: A meta-analysis. Soil Tillage Res. 2020, 202, 104676. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Crocker, G.J.; Grace, P.R.; Klír, J.; Körchens, M.; Poulton, P.R. Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma. Eval. Comp. Soil Org. Matter Model. 1997, 81, 45–60. [Google Scholar] [CrossRef]
- Han, J.; Jia, Z.; Wu, W.; Li, C.; Han, Q.; Zhang, J. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Res. 2014, 155, 202–212. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, J.; Hou, M.; Li, S. Spatial–temporal variations of carbon storage of the global forest ecosystem under future climate change. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 603–624. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Zhang, A.; Chen, J.; Cheng, G.; Sun, B.; Pi, X.; Dyck, M.; Si, B.; Zhao, Y.; et al. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles. Sci. Total Environ. 2017, 579, 814–824. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Detection and Attribution of Climate Change: From Global to Regional. In Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014; pp. 867–952. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, L.; Luo, X.; Li, Y.; Liu, D.L.; Zhao, Y.; Feng, H.; Deng, J. Modeling impacts of mulching and climate change on crop production and N2O emission in the Loess Plateau of China. Agric. For. Meteorol. 2019, 268, 86–97. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, Z.; Zheng, X.; Li, C. Modeling impacts of fertilization alternatives on nitrous oxide and nitric oxide emissions from conventional vegetable fields in southeastern China. Atmos. Environ. 2013, 81, 642–650. [Google Scholar] [CrossRef]
- Abdalla, M.; Song, X.; Ju, X.; Topp, C.F.E.; Smith, P. Calibration and validation of the DNDC model to estimate nitrous oxide emissions and crop productivity for a summer maize-winter wheat double cropping system in Hebei, China. Environ. Pollut. 2020, 262, 114199. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.; Feng, H.; Li, H.; Sun, B. Assessment of climate change impacts on soil organic carbon and crop yield based on long-term fertilization applications in Loess Plateau, China. Plant Soil 2015, 390, 401–417. [Google Scholar] [CrossRef]
- Yu, Y.; Tao, H.; Jia, H.; Zhao, C. Impact of plastic mulching on nitrous oxide emissions in China’s arid agricultural region under climate change conditions. Atmos. Environ. 2017, 158, 76–84. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Li, M.; Zhang, Y.; Li, F.; Li, C. Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change? Agric. Syst. 2017, 150, 67–77. [Google Scholar] [CrossRef]
- Xu, C.; Xu, Y. The Projection of Temperature and Precipitation over China under RCP Scenarios using a CMIP5 Multi-Model Ensemble. Atmos. Ocean. Sci. Lett. 2012, 5, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, F.; Lin, X.; Liu, Z.; Zhang, H.; Zhao, J.; Li, K.; Ye, Q.; Li, Y.; Lv, S.; et al. Potential benefits of climate change for crop productivity in China. Agric. For. Meteorol. 2015, 208, 76–84. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Qi, J.; Li, F.-M. A regional evaluation of plastic film mulching for improving crop yields on the Loess Plateau of China. Agric. For. Meteorol. 2018, 248, 458–468. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nature Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Feng, P.; Wang, B.; Waters, C.; Shen, Y.; Qi, Y.; Bai, H.; Tang, J. Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain. Agric. Water Manag. 2021, 246, 106685. [Google Scholar] [CrossRef]
- Xiao, D.; Tao, F. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. Eur. J. Agron. 2014, 52, 112–122. [Google Scholar] [CrossRef]
- Gu, X.; Li, Y.; Du, Y. Continuous ridges with film mulching improve soil water content, root growth, seed yield and water use efficiency of winter oilseed rape. Ind. Crops Prod. 2016, 85, 139–148. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Q.; Fan, B.; Zheng, X.; Zhang, J.; Li, W.; Guo, L. Effects of mulching biodegradable films under drip irrigation on soil hydrothermal conditions and cotton (Gossypium hirsutum L.) yield. Agric. Water Manag. 2019, 213, 477–485. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, Y.; Du, Y. Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil Tillage Res. 2017, 171, 42–50. [Google Scholar] [CrossRef]
Bulk Density (g cm−3) | Field Water Capacity (%) | Wilting Point (%) | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) |
---|---|---|---|---|
1.36 | 27.92 | 12.20 | 14.14 | 1.31 |
Year | Treatment | Planting Date | Harvest Date | Film Mulching | Tillage Date | Fertilization Date |
---|---|---|---|---|---|---|
2015 | P | 4–28 | 8–16 | 11–29 | 11–29 | 4–28 (140 kg N ha−1, 150 kg P2O5 ha−1); 6–20 (145 kg N ha−1) |
B | 11–29 | |||||
CK | ||||||
2016 | P | 4–19 | 8–20 | 11–13 | 11–13 | 4–19 (140 kg N ha−1, 150 kg P2O5 ha−1); 6–25 (145 kg N ha−1) |
B | 11–13 | |||||
CK | ||||||
2017 | P | 4–20 | 8–11 | 10–29 | 10–29 | 4–20 (140 kg N ha−1, 150 kg P2O5 ha−1); 6–15 (145 kg N ha−1) |
B | 10–29 | |||||
CK | ||||||
2018 | P | 4–18 | 8–10 | 10–20 | 10–20 | 4–18 (140 kg N ha−1, 150 kg P2O5 ha−1); 6–12 (145 kg N ha−1) |
B | 10–20 | |||||
CK |
Model Parameters | Value | Unit |
---|---|---|
Maximum grain yield | 6000 | Kg C ha−1 |
Grain C/N ratio | 50 | |
Leaf C/N ratio | 80 | |
Stem C/N ratio | 80 | |
Root C/N ratio | 80 | |
Accumulative degree days | 2600 | Degrees |
Water requirement | 150 | Kg water Kg−1 dry matter |
Grain/stem/leaf/root fraction ratio | 0.5/0.2/0.2/0.1 | |
Optimum temperature for plant growth | 32 | °C |
Index of biological nitrogen fixation | 1 | 1.0 indicates no N-fixation |
Residue return ratio | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Li, Z.; Liu, Z.; Pang, J.; Zhang, P.; Jia, Z. Effects of Future Climate Change on Spring Maize Yield and Water Use Efficiency under Film Mulching with Different Materials in the LOESS Plateau Region of China. Agriculture 2023, 13, 1252. https://doi.org/10.3390/agriculture13061252
Wang B, Li Z, Liu Z, Pang J, Zhang P, Jia Z. Effects of Future Climate Change on Spring Maize Yield and Water Use Efficiency under Film Mulching with Different Materials in the LOESS Plateau Region of China. Agriculture. 2023; 13(6):1252. https://doi.org/10.3390/agriculture13061252
Chicago/Turabian StyleWang, Bingfan, Zhaoyang Li, Zihan Liu, Jinwen Pang, Peng Zhang, and Zhikuan Jia. 2023. "Effects of Future Climate Change on Spring Maize Yield and Water Use Efficiency under Film Mulching with Different Materials in the LOESS Plateau Region of China" Agriculture 13, no. 6: 1252. https://doi.org/10.3390/agriculture13061252
APA StyleWang, B., Li, Z., Liu, Z., Pang, J., Zhang, P., & Jia, Z. (2023). Effects of Future Climate Change on Spring Maize Yield and Water Use Efficiency under Film Mulching with Different Materials in the LOESS Plateau Region of China. Agriculture, 13(6), 1252. https://doi.org/10.3390/agriculture13061252