Dynamics of Maize Grain Weight and Quality during Field Dehydration and Delayed Harvesting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Field Management
2.3. Sampling and Measurements
2.4. Statistical Analysis
3. Results
3.1. Dynamic Changes in Grain Moisture during the Field Dehydration Period
3.2. Changes in Kernel Weight during the Field Dehydration Period
3.3. Changes in Key Grain Qualities during the Field Dehydration Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, P.; Liu, Y.; Liu, W.; Liu, G.; Xie, R.; Wang, K.; Ming, B.; Wang, Y.; Zhao, R.; Zhang, W.; et al. How to increase maize production without extra nitrogen input. Resour. Conserv. Recycl. 2020, 160, 104913. [Google Scholar] [CrossRef]
- Hou, P.; Liu, Y.; Liu, W.; Yang, H.; Xie, R.; Wang, K.; Ming, B.; Liu, G.; Xue, J.; Wang, Y.; et al. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resour. Conserv. Recycl. 2021, 174, 105811. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Guo, X.; Liu, W.; Xie, R.; Ming, B.; Xue, J.; Wang, K.; Li, S.; Hou, P. A global analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to 25.0 Mg ha−1. Resour. Conserv. Recycl. 2023, 188, 106656. [Google Scholar] [CrossRef]
- Biswajit, P.; Mritunjay, K.; Banavath, M.N.; Mukesh, K.; Santosh, K.S.; Sagar, M.; Naik, B.S.S.S.; Vishnu, D.R.; Tatiana, M. Long-Term Conservation Tillage and Precision Nutrient Management in Maize—Wheat Cropping System: Effect on Soil Properties, Crop Production, and Economics. Agronomy 2022, 12, 2766. [Google Scholar] [CrossRef]
- Ort, D.R.; Long, S.P. Limits on yields in the Corn Belt. Science 2014, 344, 484–485. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C.; Wang, K.; Xie, R.; Ming, B.; Wang, Y.; Zhang, G.; Liu, G.; Zhao, R.; Fan, P.; et al. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res. 2017, 212, 126–134. [Google Scholar] [CrossRef]
- Qu, J.; Xu, S.; Gou, X.; Zhang, H.; Cheng, Q.; Wang, X.; Ma, C.; Xue, J. Time-resolved multiomics analysis of the genetic regulation of maize kernel moisture. Crop J. 2023, 11, 247–257. [Google Scholar] [CrossRef]
- Li, S. Factors affecting the quality of maize grain mechanical harvest and the development tr end of grain harvest technology. J. Shihezi Univ. (Nat. Sci.) 2017, 3, 266–272. [Google Scholar] [CrossRef]
- Wang, K.; Li, L.; Gao, S.; Wang, Y.; Huang, Z.; Xie, R.; Ming, B.; Hou, P.; Xue, J.; Zhang, G.; et al. Analysis of main quality index of corn harvesting with combine in China. Acta Agron. Sin. 2021, 47, 2440–2449. [Google Scholar] [CrossRef]
- Cui, T.; Fan, C.; Zhang, D.; Yang, L.; Li, Y.; Zhao, H. Research progress of maize mechanized harvesting technology. Trans. Chin. Soc. Agric. Mach. 2019, 50, 1–13. [Google Scholar]
- Wang, Y.; Zhao, R.; Li, H.; Li, S. Exploration on Technology Mode of Grain Mechanical Harvest under the Condition of Low Grain Moisture and Dense Planting in Ningxia Yellow River Irrigation Area. J. Maize Sci. 2019, 27, 122–126. [Google Scholar] [CrossRef]
- Li, L.L.; Wang, K.R.; Xie, R.Z.; Ming, B.; Zhao, L.; Li, S.S.; Hou, P.; Li, S.K. Corn Kernel Weight and Moisture Content After Physiological Maturity in Field. Sci. Agric. Sin. 2017, 50, 2052–2060. [Google Scholar] [CrossRef]
- Chu, Z.; Ming, B.; Li, L.; Xue, J.; Zhang, W.; Hou, L.; Xie, R.; Hou, P.; Wang, K.; Li, S. Dynamics of maize grain drying in the high latitude region of Northeast China. J. Integr. Agric. 2022, 21, 365–374. [Google Scholar] [CrossRef]
- Parvej, M.R.; Hurburgh, C.R.; Hanna, H.M.; Licht, M.A. Dynamics of corn dry matter content and grain quality after physiological maturity. Agron. J. 2020, 112, 998–1011. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ming, B.; Xie, R.; Wang, K.; Hou, P.; Gao, S.; Chu, Z.; Zhang, W.; Huang, Z.; Li, H.; et al. The stability and variability of maize kernel moisture content at physiological maturity. Crop Sci. 2020, 61, 704–714. [Google Scholar] [CrossRef]
- Xie, R.; Lei, X.; Wang, K.; Guo, Y.; Chai, Z.; Hou, P.; Li, S. Research on corn mechanically harvesting grain quality in Huanghuaihai Plain. Crops 2014, 2, 76–79. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhao, R.; Zhang, W.; Ming, B.; Xie, R.; Wang, K.; Li, L.; Gao, S.; Li, S. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia. Crops 2018, 4, 149–153. [Google Scholar] [CrossRef]
- Li, H.Y.; Xue, J.; Wang, Y.H.; Wang, K.R.; Zhao, R.L.; Ming, B.; Zhang, Z.T.; Zhang, W.J.; Li, S.K. Study on Optimal Time and Construct a Prediction Model of Mechanical Grain Harvest of Maize in Ningxia. Sci. Agric. Sin. 2022, 55, 2324–2337. [Google Scholar] [CrossRef]
- Nielsen, R.L.; Brown, G.; Wuethrich, K.; Halter, A. Kernel Dry Weight Loss during Post-Maturity Drydown Intervals in Corn; Purdue Univ: West Lafayette, IN, USA, 1996; Available online: https://www.agry.purdue.edu/ext/corn/research/rpt94-01.htm (accessed on 2 February 2023).
- ISA. Don’t Let Bushels “Disappear”. Iowa Soybean Assoc. Retrieved from Dont-Let-Bushels-Disappear. 2015. Available online: http://www.iasoybeans.com/stories/2015/10/23/ (accessed on 23 October 2015).
- Elmore, R.W.; Roeth, F.W. Corn kernel weight and grain yield stability during post-maturity dry down. J. Prod. Agric. 1999, 12, 300–305. [Google Scholar] [CrossRef]
- Thomison, P.R.; Mullen, R.W.; Lipps, P.E.; Doerge, T.; Geyer, A.B. Corn Response to Harvest Date as Affected by Plant Population and Hybrid. Agron. J. 2011, 103, 1765–1772. [Google Scholar] [CrossRef]
- Daynard, T.B.; Duncan, W.G. The black layer and grain maturity in corn. Crop Sci. 1969, 9, 473–476. [Google Scholar] [CrossRef]
- Martinez-Feria, R.A.; Licht, M.A.; Ordonez, R.A.; Hatfield, J.L.; Coulter, J.A.; Archontoulis, S.V. Evaluating maize and soybean grain dry-down in the field with predictive algorithms and genotype-by-environment analysis. Sci. Rep. 2019, 9, 7167. [Google Scholar] [CrossRef] [Green Version]
- Risius, H.; Prochnow, A.; Ammon, C.; Mellmann, J.; Hoffmann, T. Appropriateness of on-combine moisture measurement for the management of harvesting and postharvest operations and capacity planning in grain harvest. Biosyst. Eng. 2017, 156, 120–135. [Google Scholar] [CrossRef]
- Jayas, D.S.; White, N.D.G. Storage and drying of grain in Canada: Low cost approaches. Food Control 2003, 14, 255–261. [Google Scholar] [CrossRef]
- Ordonez, R.V. Demand for Safer Food in Developing Countries. Chapter 3: Traders’ Demand for Maize Quality and Safety in Informal Markets. Ph.D. Thesis, Department of Agricultural and Resource Economics, University of Maryland, College Park, MD, USA, 2016. [Google Scholar]
- Alejandro Plastina, A. Estimated Crop Production Costs in Iowa (A1–20). Ag Decision Maker—Iowa State University Extension. Updated January. 2017. Available online: https://www.extension.iastate.edu/agdm/crops/html/a1-20.html (accessed on 25 January 2019).
- Tubbs, T.; Woloshuk, C.; Ileleji, K.E. A simple low-cost method of determining whether it is safe to store maize. AIMS Agric. Food 2017, 2, 43–55. [Google Scholar] [CrossRef]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. D 2004, 80, 1106–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, G.J.; Filion, P.; Tremblay, M.; Berard, M.; Durand, J.; Goulet, J.; Montpetit, J.M. Evolution of kernels moisture content and physiological maturity determination of corn (Zea mays L.). Can. J. Plant Sci. 2008, 88, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Qu, L.; Wu, Y.; Zhang, J.; Wang, T. Current progress and prospect of crop quality research. SCIENTIA SINICA Vitae 2021, 51, 1405–1414. [Google Scholar] [CrossRef]
- Wang, K.; Xie, R.; Xue, J.; Sun, L.; Li, S. Comparison and analysis of maize grain commodity quality and mechanical harvest quality between China and the United States. Int. J. Agric. Biol. Eng. 2022, 15, 55–61. [Google Scholar] [CrossRef]
- Goodarzi Boroojeni, F.; Svihus, B.; Graf von Reichenbach, H.; Zentek, J. The effects of hydrothermal processing on feed hygiene, nutrient availability, intestinal microbiota and morphology in poultry—A review. Anim. Feed Sci. Technol. 2016, 220, 187–215. [Google Scholar] [CrossRef]
- Malumba, P.; Janas, S.; Roiseux, O.; Sinnaeve, G.; Masimango, T.; Sindic, M.; Deroanne, C.; Béra, F. Comparative study of the effect of drying temperatures and heat-moisture treatment on the physicochemical and functional properties of corn starch. Carbohydr. Polym. 2010, 79, 633–641. [Google Scholar] [CrossRef]
- Odjo, S.; Malumba, P.; Dossou, J.; Janas, S.; Béra, F. Influence of drying and hydrothermal treatment of corn on the denaturation of salt-soluble proteins and color parameters. J. Food Eng. 2012, 109, 561–570. [Google Scholar] [CrossRef]
- Cook, J.P.; McMullen, M.D.; Holland, J.B.; Tian, F.; Bradbury, P.; Ross-Ibarra, J.; Buckler, E.S.; Flint-Garcia, S.A. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol. 2012, 158, 824–834. [Google Scholar] [CrossRef] [Green Version]
- Stone, P.J.; Nicolas, M.E. The effect of duration of heat stress during grain filling on two wheat varieties differing in heat tolerance: Grain growth and fractional protein accumulation. Funct. Plant Biol. 1998, 25, 13–20. [Google Scholar] [CrossRef]
- Liu, S.; Cui, S.; Ying, F.; Nasar, J.; Wang, Y.; Gao, Q. Simultaneous improvement of protein concentration and amino acid balance in maize grains by coordination application of nitrogen and sulfur. J. Cereal Sci. 2021, 99, 103189. [Google Scholar] [CrossRef]
- Liu, J.; Liang, B.; Liu, S.; Zhang, G.; Yuan, M. Effects of Long-term Fertilization on Grain Quality of Summer Maize. Adv. J. Food Sci. Technol. 2016, 11, 33–39. [Google Scholar] [CrossRef]
- Chen, G.-P.; Gao, J.-L.; Zhao, M.; Dong, S.-T.; Li, S.-K.; Yang, Q.-F.; Liu, Y.-H.; Wang, L.-C.; Xue, J.-Q.; Liu, J.-G.; et al. Distribution, Yield Structure, and Key Cultural Techniques of Maize Super-high Yield Plots in Recent Years. Acta Agron. Sin. 2013, 38, 80–85. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, B.; Wang, Y.; Zhao, J.; Zhang, W.; Sun, F.; Xie, T. Yield Structure and Growth Characteristics of High Yield Maize Population in Ningxia. J. Maize Sci. 2014, 22, 60–66. [Google Scholar] [CrossRef]
- Gao, S.; Ming, B.; Li, L.-L.; Xie, R.-Z.; Wang, K.-R.; Li, S.-K. Maize grain moisture content correction: From nonstandard to standard system. Biosyst. Eng. 2021, 204, 212–222. [Google Scholar] [CrossRef]
- Cross, H.Z.; Zuber, M.S. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J. 1972, 64, 351–355. [Google Scholar] [CrossRef]
- Daynard, T.B. Relationships among black layer formation, kernel moisture percentage, and heat unit accumulation in maize. Agron. J. 1972, 64, 716–719. [Google Scholar] [CrossRef]
- Russelle, M.P.; Wilhelm, W.W.; Olson, R.A.; Power, J.F. Growth analysis based on degree days. Crop Sci. 1984, 24, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.F.; Hou, L.Y.; Xue, J.; Wang, K.R.; Xie, R.Z.; Hou, P.; Ming, B.; Li, S.K. The variability of maize kernel drying: Sowing date, harvest scenario and year. J. Agric. Sci. 2021, 159, 535–543. [Google Scholar] [CrossRef]
- Mayer, L.I.; Rattalino Edreira, J.I.; Maddonni, G.A. Oil Yield Components of Maize Crops Exposed to Heat Stress during Early and Late Grain-Filling Stages. Crop Sci. 2014, 54, 2236–2250. [Google Scholar] [CrossRef]
- Nolte, B.H.; Byg, D.M.; Gill, W.E. Timely Field Operations for Corn and Soybeans in Ohio; Bull. 605. Ohio Coopertation Extension Service. 2009 Annual Report; Ohio Department of Agriculture: Reynoldsburg, OH, USA, 2009. Available online: http://www.agri.ohio.gov/divs/Admin/Docs/AnnReports/ODA_Comm_AnnRpt_2009.pdf (accessed on 9 September 2022).
- Hunter, J.L.; TeKrony, D.M.; Miles, D.F.; Egli, D.B. Corn seed maturity indicators and their relationship to uptake of carbon14 assimilate. Crop Sci. 1991, 31, 1309–1313. [Google Scholar] [CrossRef]
- Paszkiewicz, S.R.; Cerwick, S.F.; Cavalier, A.J.; Reese, K.D.; Jones, G.G.; Zinselmeier, C.; Wall, S.J. Post-Black Layer Changes in Maize Grain Dry Mass. Agronomy Abstracts; American Society of Agronomy: Madison Wisconsin, WI, USA, 1996; 110p. [Google Scholar]
- Baum, M.E.; Archontoulis, S.V.; Licht, M.A. Planting Date, Hybrid Maturity, and Weather Effects on Maize Yield and Crop Stage. Agron. J. 2019, 111, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.R.; Li, S.K. Progresses in Research on Grain Broken Rate by Mechanical Grain Harvesting. Sci. Agric. Sin. 2017, 50, 2018–2026. [Google Scholar] [CrossRef]
- Xie, R.-Z.; Ming, B.; Gao, S.; Wang, K.-R.; Hou, P.; Li, S.-K. Current state and suggestions for mechanical harvesting of corn in China. J. Integr. Agric. 2022, 21, 892–897. [Google Scholar] [CrossRef]
- Martínez, R.D.; Cirilo, A.G.; Cerrudo, A.; Andrade, F.H.; Reinoso, L.; Valentinuz, O.R.; Balbi, C.N.; Izquierdo, N.G. Changes of starch composition by postflowering environmental conditions in kernels of maize hybrids with different endosperm hardness. Eur. J. Agron. 2017, 86, 71–77. [Google Scholar] [CrossRef]
- Cloninger, F.D.; Horrocks, R.D.; Zuber, M.S. Effects of harvest date, plant density, and hybrid on corn grain quality. Agron. J. 1975, 67, 693–695. [Google Scholar] [CrossRef]
- Farrer, D.; Weisz, R.; Heiniger, R.; Murphy, J.P.; Pate, M.H. Delayed harvest effect on soft red winter wheat in the southeastern USA. Agron. J. 2006, 98, 588–595. [Google Scholar] [CrossRef]
- Chai, Z.W.; Wang, K.R.; Guo, Y.Q.; Xie, R.Z.; Li, L.L.; Ming, B.; Hou, P.; Liu, C.W.; Chu, Z.D.; Zhang, W.X.; et al. Current Status of Maize Mechanical Grain Harvesting and Its Relationship with Grain Moisture Content. Sci. Agric. Sin. 2017, 50, 2036–2043. [Google Scholar] [CrossRef]
- Minyo, R.; Geyer, A.; Thomison, P.; Bishop, B.; Lohnes, D.G. Ohio Corn Performance Trials; Department of Horticulture and Crop Science Series 215; Ohio State University: Columbus, OH, USA, 2008. [Google Scholar]
- Xue, J.; Li, L.-L.; Xie, R.-Z.; Wang, K.-R.; Hou, P.; Ming, B.; Zhang, W.-X.; Zhang, G.-Q.; Gao, S.; Bai, S.-J.; et al. Effect of Lodging on Maize Grain Losing and Harvest Efficiency in Mechanical Grain Harvest. Acta Agron. Sin. 2018, 44, 1774–1781. [Google Scholar] [CrossRef]
- Allen, R.R.; Musick, J.T.; Hollingsworth, L.D. Topping corn and delaying harvest for field drying. Trans. ASAE 1982, 25, 1529–1532. [Google Scholar] [CrossRef]
pH | Organic Matter (g kg−1) | Total N (g kg−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) |
---|---|---|---|---|---|
7.87 | 15.11 | 0.84 | 54.84 | 21.81 | 99.57 |
Year | Hybrid Characters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Hybrid | Hybrid Type | Sowing Date | Emergence Date | Silking Date | PMa Date | Growth Period (d) | SKb-PM (d) | SK-PM (°C) | Standing Straw after PM (dc) | |
2019 | KWS9384 | EMV | 17 April | 1 May | 3 July | 31 August | 122 | 59 | 1491 | 64 |
XY335 | MLMV | 17 April | 1 May | 11 July | 22 September | 144 | 72 | 1731 | 39 | |
2020 | KWS9384 | EMV | 21 April | 2 May | 2 July | 2 September | 123 | 62 | 1538 | 58 |
DK159 | MLMV | 21 April | 2 May | 10 July | 23 September | 144 | 75 | 1729 | 37 | |
XY335 | MLMV | 21 April | 2 May | 10 July | 23 September | 144 | 75 | 1729 | 37 | |
YY439 | MLMV | 21 April | 2 May | 10 July | 25 September | 146 | 77 | 1764 | 37 | |
2021 | KWS9384 | EMV | 19 April | 3 May | 30 June | 29 August | 118 | 60 | 1444 | 56 |
DK159 | MLMV | 19 April | 3 May | 8 July | 21 September | 141 | 75 | 1676 | 35 | |
XY335 | MLMV | 19 April | 3 May | 8 July | 21 September | 141 | 75 | 1676 | 35 | |
YY439 | MLMV | 19 April | 3 May | 8 July | 24 September | 144 | 78 | 1729 | 32 | |
2022 | KWS9384 | EMV | 22 April | 2 May | 1 July | 1 September | 122 | 61 | 1496 | 34 |
DK159 | MLMV | 22 April | 2 May | 10 July | 21 September | 142 | 73 | 1666 | 15 | |
XY335 | MLMV | 22 April | 2 May | 10 July | 21 September | 142 | 73 | 1666 | 15 | |
YY439 | MLMV | 22 April | 2 May | 10 July | 23 September | 144 | 75 | 1694 | 13 |
MC% | MC Standard | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Hybrid | Model Coefficient | MC of PM % | 25% | 20% | 16% | |||||
b | c | R2 | SK-25% AT °C | Date | SK-20% AT °C | Date | SK-16% AT °C | Date | ||
KWS9384 | 1025.3 | 2.35 | 0.9485 ** | 29.9 | 1539.9 | 3 September | 1747.5 | 13 September | 1967.6 | 26 September |
DK159 | 1139.1 | 2.32 | 0.8747 ** | 27.2 | 1720.9 | 24 September | 1956.5 | 10 October | 2206.8 | — — |
XY335 | 1093.6 | 2.23 | 0.8950 ** | 24.7 | 1677.1 | 21 September | 1915.7 | 6 October | 2170.2 | 7 November |
YY439 | 1106.3 | 2.03 | 0.8962 ** | 27.2 | 1771.2 | 26 September | 2050.4 | 20 October | 2352.1 | — — |
Nutritional Component Yield | Hybrid | Model Coefficient | Join Point | ||||
---|---|---|---|---|---|---|---|
Intercept | Linear Slope | R2 | Days Since Start of Year | Yield (Mg ha−1) | MC% | ||
Protein | KWS9384 | −1.8 | 0.01 | 0.5885 ** | 263 | 1.3 | 17.5 |
XY335 | −2.6 | 0.02 | 0.8322 ** | 267 | 1.5 | 23.6 | |
Oil | KWS9384 | −1.3 | 0.01 | 0.5983 ** | 249 | 0.5 | 23.2 |
XY335 | −0.7 | 0.00 | 0.4748 ** | 260 | 0.6 | 26.4 | |
Starch | KWS9384 | −19.2 | 0.11 | 0.7461 ** | 256 | 10.0 | 19.9 |
XY335 | −30.6 | 0.16 | 0.9116 ** | 261 | 12.1 | 26.0 | |
Fiber | KWS9384 | −3.3 | 0.02 | 0.5896 ** | 237 | 0.5 | 30.3 |
XY335 | −1.4 | 0.01 | 0.7416 ** | 259 | 0.5 | 27.0 | |
Free fatty acids | KWS9384 | −48.9 | 0.23 | 0.5400 ** | 254 | 9.5 | 20.8 |
XY335 | −14.8 | 0.09 | 0.2123 | 261 | 9.1 | 26.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Wang, Y.; Yu, X.; Liu, W.; Ma, D.; Li, H.; Ming, B.; Zhang, W.; Cai, Q.; Gao, J.; et al. Dynamics of Maize Grain Weight and Quality during Field Dehydration and Delayed Harvesting. Agriculture 2023, 13, 1357. https://doi.org/10.3390/agriculture13071357
Zhao R, Wang Y, Yu X, Liu W, Ma D, Li H, Ming B, Zhang W, Cai Q, Gao J, et al. Dynamics of Maize Grain Weight and Quality during Field Dehydration and Delayed Harvesting. Agriculture. 2023; 13(7):1357. https://doi.org/10.3390/agriculture13071357
Chicago/Turabian StyleZhao, Rulang, Yonghong Wang, Xiaofang Yu, Wanmao Liu, Daling Ma, Hongyan Li, Bo Ming, Wenjie Zhang, Qiming Cai, Julin Gao, and et al. 2023. "Dynamics of Maize Grain Weight and Quality during Field Dehydration and Delayed Harvesting" Agriculture 13, no. 7: 1357. https://doi.org/10.3390/agriculture13071357
APA StyleZhao, R., Wang, Y., Yu, X., Liu, W., Ma, D., Li, H., Ming, B., Zhang, W., Cai, Q., Gao, J., & Li, S. (2023). Dynamics of Maize Grain Weight and Quality during Field Dehydration and Delayed Harvesting. Agriculture, 13(7), 1357. https://doi.org/10.3390/agriculture13071357