Bioremediation of Battery Scrap Waste Contaminated Soils Using Coco Grass (Cyperus rotundus L.): A Prediction Modeling Study for Cadmium and Lead Phytoextraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design and Operation
2.3. Analytical and Instrumental Methods
2.4. Data Analysis
2.5. Software and Statistics
3. Results and Discussion
3.1. Impact of Battery Waste on Soil Properties and Cd-Pb Bioavailability
3.2. Cd and Pb Removal by Coco Grass (C. rotundus)
3.3. Cd and Pb Bioaccumulation Efficiency of Coco Grass (C. rotundus)
3.4. Effect of Battery Waste on Growth, Biochemical, and Enzyme Response of C. rotundus
3.5. Predictive Models for Cd and Pb Uptake by C. rotundus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt-Rohr, K. How Batteries Store and Release Energy: Explaining Basic Electrochemistry. J. Chem. Educ. 2018, 95, 1801–1810. [Google Scholar] [CrossRef]
- Cho, J.; Jeong, S.; Kim, Y. Commercial and Research Battery Technologies for Electrical Energy Storage Applications. Prog. Energy Combust. Sci. 2015, 48, 84–101. [Google Scholar] [CrossRef]
- Grand View Research. Battery Market Size, Share & Trends Analysis Report By Product (Lead Acid, Li-Ion, Nickle Metal Hydride, Ni-Cd); Grand View Research: San Francisco, CA, USA, 2020. [Google Scholar]
- Kala, S.; Mishra, A. Battery Recycling Opportunity and Challenges in India. Mater. Today Proc. 2021, 46, 1543–1556. [Google Scholar] [CrossRef]
- Dasila, H.; Joshi, D.; Verma, S.; Maithani, D.; Rawat, S.K.; Kumar, A.; Suyal, N.; Kumar, N.; Suyal, D.C. Hazardous Waste: Impact and Disposal Strategies. In Advanced Microbial Techniques in Agriculture, Environment, and Health Management; Elsevier: Amsterdam, The Netherlands, 2023; pp. 153–166. ISBN 9780323916431. [Google Scholar]
- Rarotra, S.; Sahu, S.; Kumar, P.; Kim, K.; Tsang, Y.F.; Kumar, V.; Kumar, P.; Srinivasan, M.; Veksha, A.; Lisak, G. Progress and Challenges on Battery Waste Management: A Critical Review. ChemistrySelect 2020, 5, 6182–6193. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J. Spent Rechargeable Lithium Batteries in E-Waste: Composition and Its Implications. Front. Environ. Sci. Eng. 2014, 8, 792–796. [Google Scholar] [CrossRef]
- Sivaramanan, S. E-Waste Management, Disposal and Its Impacts on the Environment. Univers. J. Environ. Res. Technol. 2013, 3, 531–537. [Google Scholar]
- Tutic, A.; Novakovic, S.; Lutovac, M.; Biocanin, R.; Ketin, S.; Omerovic, N. The Heavy Metals in Agrosystems and Impact on Health and Quality of Life. Open Access Maced. J. Med. Sci. 2015, 3, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy Metals and Living Systems: An Overview. Indian J. Pharmacol. 2011, 43, 246. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, G.F.; Fowler, B.A. Risk Assessment for Human Metal Exposures; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128042274. [Google Scholar]
- Abdel-Rahman, G. Heavy Metals, Definition, Sources of Food Contamination, Incidence, Impacts and Remediation: A Literature Review with Recent Updates. Egypt. J. Chem. 2021, 65, 419–437. [Google Scholar] [CrossRef]
- Collin, S.; Baskar, A.; Geevarghese, D.M.; Ali, M.N.V.S.; Bahubali, P.; Choudhary, R.; Lvov, V.; Tovar, G.I.; Senatov, F.; Koppala, S.; et al. Bioaccumulation of Lead (Pb) and Its Effects in Plants: A Review. J. Hazard. Mater. Lett. 2022, 3, 100064. [Google Scholar] [CrossRef]
- Asare, M.O.; Száková, J.; Tlustoš, P. The Fate of Secondary Metabolites in Plants Growing on Cd-, As-, and Pb-Contaminated Soils—A Comprehensive Review. Environ. Sci. Pollut. Res. 2022, 30, 11378–11398. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Rahman, M.A.; Islam, M.R.; Hashem, M.A.; Rahman, M.M. Lead and Other Elements-Based Pollution in Soil, Crops and Water near a Lead-Acid Battery Recycling Factory in Bangladesh. Chemosphere 2022, 290, 133288. [Google Scholar] [CrossRef] [PubMed]
- Tauqeer, H.M.; Basharat, Z.; Adnan Ramzani, P.M.; Farhad, M.; Lewińska, K.; Turan, V.; Karczewska, A.; Khan, S.A.; Faran, G.; Iqbal, M. Aspergillus Niger-Mediated Release of Phosphates from Fish Bone Char Reduces Pb Phytoavailability in Pb-Acid Batteries Polluted Soil, and Accumulation in Fenugreek. Environ. Pollut. 2022, 313, 120064. [Google Scholar] [CrossRef] [PubMed]
- Saxena, G.; Purchase, D.; Mulla, S.I.; Saratale, G.D.; Bharagava, R.N. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-Environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. Rev. Environ. Contam. Toxicol. 2019, 249, 71–131. [Google Scholar]
- Henschel, J.; Mense, M.; Harte, P.; Diehl, M.; Buchmann, J.; Kux, F.; Schlatt, L.; Karst, U.; Hensel, A.; Winter, M.; et al. Phytoremediation of Soil Contaminated with Lithium Ion Battery Active Materials—A Proof-of-Concept Study. Recycling 2020, 5, 26. [Google Scholar] [CrossRef]
- Justin, M.Z.; Pajk, N.; Zupanc, V.; Zupančič, M. Phytoremediation of Landfill Leachate and Compost Wastewater by Irrigation of Populus and Salix: Biomass and Growth Response. Waste Manag. 2010, 30, 1032–1042. [Google Scholar] [CrossRef]
- Chehregani, A.; Noori, M.; Yazdi, H.L. Phytoremediation of Heavy-Metal-Polluted Soils: Screening for New Accumulator Plants in Angouran Mine (Iran) and Evaluation of Removal Ability. Ecotoxicol. Environ. Saf. 2009, 72, 1349–1353. [Google Scholar] [CrossRef]
- Siyar, R.; Doulati Ardejani, F.; Norouzi, P.; Maghsoudy, S.; Yavarzadeh, M.; Taherdangkoo, R.; Butscher, C. Phytoremediation Potential of Native Hyperaccumulator Plants Growing on Heavy Metal-Contaminated Soil of Khatunabad Copper Smelter and Refinery, Iran. Water 2022, 14, 3597. [Google Scholar] [CrossRef]
- Manoj, S.R.; Karthik, C.; Kadirvelu, K.; Arulselvi, P.I.; Shanmugasundaram, T.; Bruno, B.; Rajkumar, M. Understanding the Molecular Mechanisms for the Enhanced Phytoremediation of Heavy Metals through Plant Growth Promoting Rhizobacteria: A Review. J. Environ. Manag. 2020, 254, 109779. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Wang, X.; Xu, J.; Li, T.; Zhu, J.; Yang, R.; Wang, J.; Chang, M.; Wang, L. Biochelator Assisted Phytoremediation for Cadmium (Cd) Pollution in Paddy Field. Sustainability 2021, 13, 12170. [Google Scholar] [CrossRef]
- Kumar, S.; Dube, K.K.; Rai, J.P.N. Mathematical Model for Phytoremediation of Pulp and Paper Industry Wastewater; CSIR: New Delhi, India, 2005; pp. 717–721. [Google Scholar]
- Priyadarshini, J.; Elangovan, M.; Mahdal, M.; Jayasudha, M. Machine-Learning-Assisted Prediction of Maximum Metal Recovery from Spent Zinc–Manganese Batteries. Processes 2022, 10, 1034. [Google Scholar] [CrossRef]
- Peerzada, A.M. Biology, Agricultural Impact, and Management of Cyperus rotundus L.: The World’s Most Tenacious Weed. Acta Physiol. Plant 2017, 39, 270. [Google Scholar] [CrossRef]
- Baloch, A.H. The Biology of Balochistani Weed: Cyperus rotundus Linnaeus. A Review. Pure Appl. Biol. 2015, 4, 171–180. [Google Scholar] [CrossRef]
- Stoller, E.W.; Sweet, R.D. Biology and Life Cycle of Purple and Yellow Nutsedges (Cyperus rotundus and C. Esculentus). Weed Technol. 1987, 1, 66–73. [Google Scholar] [CrossRef]
- Peerzada, A.M.; Ali, H.H.; Naeem, M.; Latif, M.; Bukhari, A.H.; Tanveer, A. Cyperus rotundus L.: Traditional Uses, Phytochemistry, and Pharmacological Activities. J. Ethnopharmacol. 2015, 174, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.K.; Das, D. Ethnopharmacological Study of Cyperus rotundus a Herb Used By Tribal Community As a Traditional Medicine for Treating Various Diseases. Innov. J. Ayruvedic Sci. 2016, 4, 4–6. [Google Scholar]
- Basumatary, B.; Saikia, R.; Bordoloi, S. Phytoremediation of Crude Oil Contaminated Soil Using Nut Grass, Cyperus rotundus. J. Environ. Biol. 2012, 33, 891–896. [Google Scholar]
- Nwaichi, E.O.; Chukwuere, C.O.; Abosi, P.J.; Onukwuru, G.I. Phytoremediation Of Crude Oil Impacted Soil Using Purple Nutsedge. J. Appl. Sci. Environ. Manag. 2021, 25, 475–479. [Google Scholar] [CrossRef]
- Kriti; Basant, N.; Singh, J.; Kumari, B.; Sinam, G.; Gautam, A.; Singh, G.; Swapnil; Mishra, K.; Mallick, S. Nickel and Cadmium Phytoextraction Efficiencies of Vetiver and Lemongrass Grown on Ni–Cd Battery Waste Contaminated Soil: A Comparative Study of Linear and Nonlinear Models. J. Environ. Manag. 2021, 295, 113144. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bharti, M.; Kamboj, N.; Kamboj, V.; Bisht, A.; Kumar, A. Dynamics of Soil Cationic Micronutrients in Different Land Use Systems in Lower Shiwalik Region of Uttarakhand, India. In Environmental Pollution and Natural Resource Management; Springer Proceedings in Earth and Environmental Sciences Series; Springer: Cham, Switzerland, 2022; pp. 185–199. [Google Scholar]
- Fathabad, A.E.; Shariatifar, N.; Moazzen, M.; Nazmara, S.; Fakhri, Y.; Alimohammadi, M.; Azari, A.; Mousavi Khaneghah, A. Determination of Heavy Metal Content of Processed Fruit Products from Tehran’s Market Using ICP-OES: A Risk Assessment Study. Food Chem. Toxicol. 2018, 115, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, A.; Farhan, M.; Sharif, F.; Hayyat, M.U.; Shahzad, L.; Ghafoor, G.Z. Effect of Industrial Wastewater on Wheat Germination, Growth, Yield, Nutrients and Bioaccumulation of Lead. Sci. Rep. 2020, 10, 11361. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.I.; Abdullah SR, S.; Idris, M.; Hasan, H.A.; Halmi MI, E.; Al Sbani, N.H.; Jehawi, O.H. Simultaneous Bioaccumulation and Translocation of Iron and Aluminium from Mining Wastewater by Scirpus Grossus. Desalination Water Treat. 2019, 163, 133–142. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Alamri, S.A.M.; Sewelam, N.A.; Galal, T.M.; Brima, E.I. Prediction Models for Evaluating Heavy Metal Uptake by Pisum Sativum L. in Soil Amended with Sewage Sludge. J. Environ. Sci. Health Part A 2020, 55, 151–160. [Google Scholar] [CrossRef]
- Galal, T.M.; Eid, E.M.; Dakhil, M.A.; Hassan, L.M. Bioaccumulation and Rhizofiltration Potential of Pistia stratiotes L. for Mitigating Water Pollution in the Egyptian Wetlands. Int. J. Phytoremediat. 2018, 20, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Nandi, S.; Dutta, S. Application of RSM and ANN for Optimization and Modeling of Biosorption of Chromium(VI) Using Cyanobacterial Biomass. Appl. Water Sci. 2018, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- AL-Huqail, A.A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Širić, I.; Goala, M.; Choi, K.S.; Taher, M.A.; El-Kholy, A.S.; Eid, E.M. Sustainable Use of Sewage Sludge for Marigold (Tagetes erecta L.) Cultivation: Experimental and Predictive Modeling Studies on Heavy Metal Accumulation. Horticulturae 2023, 9, 447. [Google Scholar] [CrossRef]
- Kyzioł, J. Effect of Physical Properties and Cation Exchange Capacity on Sorption of Heavy Metals onto Peats. Pol. J. Environ. Stud. 2002, 11, 713–718. [Google Scholar]
- World Health Organization. WHO Permissible Limits of Heavy Metals in Soil and Plants; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Chowdhury, K.I.A.; Nurunnahar, S.; Kabir, M.L.; Islam, M.T.; Baker, M.; Islam, M.S.; Rahman, M.; Hasan, M.A.; Sikder, A.; Kwong, L.H.; et al. Child Lead Exposure near Abandoned Lead Acid Battery Recycling Sites in a Residential Community in Bangladesh: Risk Factors and the Impact of Soil Remediation on Blood Lead Levels. Environ. Res. 2021, 194, 110689. [Google Scholar] [CrossRef]
- Ogundiran, M.B.; Osibanjo, O. Mobility and Speciation of Heavy Metals in Soils Impacted by Hazardous Waste. Chem. Speciat. Bioavailab. 2009, 21, 59–69. [Google Scholar] [CrossRef]
- Orjiakor, P.; Atuanya, E. Effects of Automobile Battery Wastes on Physicochemical Properties of Soil in Benin City, Edo State. Glob. J. Pure Appl. Sci. 2015, 21, 129. [Google Scholar] [CrossRef] [Green Version]
- Ariyachandra, S.P.; Alwis, I.S.; Wimalasiri, E.M. Phytoremediation Potential of Heavy Metals by Cyperus rotundus. Rev. Agric. Sci. 2023, 11, 20–35. [Google Scholar] [CrossRef]
- Garba, S.T.; Gudusu, M.; Inuwa, L.B. Accumulation Ability of the Native Grass Species, Cyperus rotundus for the Heavy Metals; Zinc (Zn), Cadmium (Cd), Nickel (Ni) and Lead (Pb). Int. Res. J. Pure Appl. Chem. 2018, 17, 1–15. [Google Scholar] [CrossRef]
- Bordoloi, S.; Basumatary, B. A Study on Degradation of Heavy Metals in Crude Oil-Contaminated Soil Using Cyperus rotundus. In Phytoremediation; Springer International Publishing: Cham, Switzerland, 2016; pp. 53–60. ISBN 9783319418117. [Google Scholar]
- Jahan-Nejati, S.; Jowkar-Tangkarami, M.; Taei-Semiromi, J. Cyperus rotundus: A Safe Forage or Hyper Phytostabilizer Species in Copper Contaminated Soils. Int. J. Phytoremediat. 2021, 23, 1212–1221. [Google Scholar] [CrossRef]
- Tripathy, A.P.; Dixit, P.K.; Panigrahi, A.K. Impact of Effluent of Pulp & Paper Industry on the Flora of River Basin at Jaykaypur, Odisha, India and Its Ecological Implications. Environ. Res. 2022, 204, 111769. [Google Scholar] [CrossRef] [PubMed]
- DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int. J. Mol. Sci. 2019, 20, 3412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandare, R.V.; Watharkar, A.D.; Pawar, P.K.; Jagtap, A.A.; Desai, N.S. Hydrophytic Plants Canna Indica, Epipremnum Aureum, Cyperus Alternifolius and Cyperus rotundus for Phytoremediation of Fluoride from Water. Environ. Technol. Innov. 2021, 21, 101234. [Google Scholar] [CrossRef]
- Halder, L.; Arce, L.D.; Yllano, O.B. Bioaccumulation and Bioconcentration of Pb in the Tissues of Eight Weed Species. J. Int. Sch. Conf. 2016, 1, 14–18. [Google Scholar]
- Khan, A.M. Accumulation, Uptake and Bioavailability of Rare Earth Elements (REEs) in Soil Grown Plants from Ex-Mining Area in Perak, Malaysia. Appl. Ecol. Environ. Res. 2017, 15, 117–133. [Google Scholar] [CrossRef]
- Shakya, K.; Chettri, M.K.; Sawidis, T. Impact of Heavy Metals (Copper, Zinc, and Lead) on the Chlorophyll Content of Some Mosses. Arch. Environ. Contam. Toxicol. 2008, 54, 412–421. [Google Scholar] [CrossRef]
- Zeeshan, M.; Ahmad, W.; Hussain, F.; Ahamd, W.; Numan, M.; Shah, M.; Ahmad, I. Phytostabalization of the Heavy Metals in the Soil with Biochar Applications, the Impact on Chlorophyll, Carotene, Soil Fertility and Tomato Crop Yield. J. Clean. Prod. 2020, 255, 120318. [Google Scholar] [CrossRef]
- Rai, R.; Agrawal, M.; Agrawal, S.B. Impact of Heavy Metals on Physiological Processes of Plants: With Special Reference to Photosynthetic System. In Plant Responses to Xenobiotics; Springer: Singapore, 2016; pp. 127–140. ISBN 9789811028601. [Google Scholar]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Dudonné, S.; Vitrac, X.; Coutiére, P.; Woillez, M.; Mérillon, J.M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Jena, A.B.; Samal, R.R.; Bhol, N.K.; Duttaroy, A.K. Cellular Red-Ox System in Health and Disease: The Latest Update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef]
- Adejumo, S.A.; Tiwari, S.; Thul, S.; Sarangi, B.K. Evaluation of Lead and Chromium Tolerance and Accumulation Level in Gomphrena Celosoides: A Novel Metal Accumulator from Lead Acid Battery Waste Contaminated Site in Nigeria. Int. J. Phytoremediat. 2019, 21, 1341–1355. [Google Scholar] [CrossRef]
- Zhao, B.; Zhu, W.; Hao, S.; Hua, M.; Liao, Q.; Jing, Y.; Liu, L.; Gu, X. Prediction Heavy Metals Accumulation Risk in Rice Using Machine Learning and Mapping Pollution Risk. J. Hazard. Mater. 2023, 448, 130879. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Singh, J.; Kumar, P. Electrokinetic Assisted Anaerobic Digestion of Spent Mushroom Substrate Supplemented with Sugar Mill Wastewater for Enhanced Biogas Production. Renew. Energy 2021, 179, 418–426. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, H.-M.; Yao, B.-M.; Chen, S.-C.; Sun, G.-X.; Zhu, Y.-G. Bioavailable Arsenic and Amorphous Iron Oxides Provide Reliable Predictions for Arsenic Transfer in Soil-Wheat System. J. Hazard. Mater. 2020, 383, 121160. [Google Scholar] [CrossRef]
- Chiou, W.-Y.; Hsu, F.-C. Copper Toxicity and Prediction Models of Copper Content in Leafy Vegetables. Sustainability 2019, 11, 6215. [Google Scholar] [CrossRef] [Green Version]
- Ijadi Bajestani, M.; Mousavi, S.M.; Shojaosadati, S.A. Bioleaching of Heavy Metals from Spent Household Batteries Using Acidithiobacillus Ferrooxidans: Statistical Evaluation and Optimization. Sep. Purif. Technol. 2014, 132, 309–316. [Google Scholar] [CrossRef]
Properties | Experimental Treatments | ||||
---|---|---|---|---|---|
Control | T1: 1% BSW | T2: 2% BSW | T3: 3% BSW | T4: 4% BSW | |
pH | 7.23 ± 0.04 a | 7.55 ± 0.03 b | 7.63 ± 0.07 b | 7.91 ± 0.05 c | 8.35 ± 0.10 d |
CEC (cmol·kg−1) | 8.18 ± 0.09 a | 8.60 ± 0.12 b | 8.79 ± 0.06 b | 8.91 ± 0.09 bc | 9.04 ± 0.03 c |
Organic matter (%) | 2.27 ± 0.03 a | 2.19 ± 0.02 b | 2.11 ± 0.04 c | 2.05 ± 0.03 c | 1.86 ± 0.06 d |
Redox potential (mV) | 318.84 ± 4.10 a | 291.50 ± 9.81 b | 210.73 ± 6.30 c | 163.15 ± 10.21 d | 89.37 ± 7.58 e |
Clay (%) | 19.20 ± 1.80 | - | - | - | - |
Silt (%) | 42.10 ± 2.90 | - | - | - | - |
Sand (%) | 38.60 ± 1.40 | - | - | - | - |
Total Cd (mg·kg−1) * | 0.04 ± 0.01 a | 40.48 ± 0.52 b | 75.20 ± 2.06 c | 117.36 ± 7.10 d | 152.02 ± 4.75 e |
Total Pb (mg·kg−1) * | 0.06 ± 0.01 a | 110.06 ± 6.84 b | 217.91 ± 10.38 c | 340.40 ± 15.24 | 470.15 ± 12.62 e |
Bioavailable Cd (mg·kg−1) | 0.00 ± 0.00 a | 11.26 ± 0.30 b | 24.50 ± 1.05 c | 38.17 ± 2.18 d | 49.40 ± 3.85 d |
Bioavailable Pb (mg·kg−1) | 0.01 ± 0.00 a | 32.50 ± 0.85 b | 84.21 ± 5.30 c | 107.82 ± 9.46 d | 152.24 ± 14.67 e |
Heavy Metal | Variable | Experimental Treatments | ||||
---|---|---|---|---|---|---|
Control | T1: 1% BSW | T2: 2% BSW | T3: 3% BSW | T4: 4% BSW | ||
Cd | Initial concentration (mg·kg−1) | 0.04 ± 0.01 a | 40.48 ± 0.52 a | 75.20 ± 2.06 a | 117.36 ± 7.10 a | 152.02 ± 4.75 a |
Final concentration (mg·kg−1) | 0.01 ± 0.00 b | 25.98 ± 1.75 b | 42.08 ± 3.63 b | 80.40 ± 4.60 b | 112.30 ± 6.14 b | |
Removal efficiency (%) | 75 | 35 | 44 | 31 | 26 | |
Removal rate (mg·kg−1day−1) | 0.001 | 0.242 | 0.552 | 0.616 | 0.662 | |
Pb | Initial concentration (mg·kg−1) | 0.06 ± 0.01 a | 110.06 ± 6.84 a | 217.91 ± 10.38 a | 340.40 ± 15.24 a | 470.15 ± 12.62 a |
Final concentration (mg·kg−1) | 0.01 ± 0.00 b | 56.26 ± 2.70 b | 130.50 ± 7.41 b | 240.00 ± 10.65 b | 365.09 ± 18.34 b | |
Removal efficiency (%) | 83 | 48 | 40 | 29 | 22 | |
Removal rate (mg·kg−1day−1) | 0.001 | 0.897 | 1.457 | 1.673 | 1.751 |
Heavy Metals | Experimental Treatments | Concentration (mg·kg−1 dwt.) | Bioaccumulation Factor (Soil → Plant) | Translocation Factor (Root → Shoot) | ||||
---|---|---|---|---|---|---|---|---|
Shoot | Root | Whole Plant | Shoot | Root | Whole Plant | |||
Cd | Control | 0.01 ± 0.00 a | 0.03 ± 0.01 a | 0.02 ± 0.01 a | 0.25 | 0.75 | 0.50 | 0.33 |
T1: 1% BSW | 4.90 ± 0.13 b | 12.50 ± 0.28 b | 9.67 ± 0.19 b | 0.12 | 0.31 | 0.24 | 0.39 | |
T2: 2% BSW | 13.04 ± 0.50 c | 30.10 ± 1.07 c | 22.08 ± 0.65 c | 0.17 | 0.40 | 0.29 | 0.43 | |
T3: 3% BSW | 17.62 ± 1.17 d | 37.90 ± 2.24 d | 24.64 ± 1.72 cd | 0.15 | 0.32 | 0.21 | 0.46 | |
T4: 4% BSW | 21.30 ± 0.92 e | 38.81 ± 1.59 d | 27.43 ± 1.24 d | 0.14 | 0.26 | 0.18 | 0.55 | |
Pb | Control | 0.01 ± 0.01 a | 0.04 ± 0.01 a | 0.03 ± 0.01 a | 0.17 | 0.67 | 0.50 | 0.25 |
T1: 1% BSW | 7.13 ± 0.20 b | 30.85 ± 1.34 b | 21.62 ± 0.90 b | 0.06 | 0.28 | 0.20 | 0.23 | |
T2: 2% BSW | 16.04 ± 0.61 c | 87.40 ± 7.95 c | 55.17 ± 4.34 c | 0.07 | 0.40 | 0.25 | 0.18 | |
T3: 3% BSW | 19.32 ± 0.49 d | 103.27 ± 4.01 d | 69.01 ± 9.42 cd | 0.06 | 0.30 | 0.20 | 0.19 | |
T4: 4% BSW | 22.65 ± 1.80 de | 109.06 ± 6.27 d | 76.10 ± 6.05 d | 0.05 | 0.23 | 0.16 | 0.21 |
Parameters | Experimental Treatments | ||||
---|---|---|---|---|---|
Control | T1: 1% BSW | T2: 2% BSW | T3: 3% BSW | T4: 4% BSW | |
Plant height (cm) | 34.27 ± 2.50 c | 32.30 ± 1.74 c | 27.93 ± 1.25 b | 24.68 ± 2.40 ab | 21.01 ± 1.18 a |
Fresh weight (g·plant−1) | 6.35 ± 0.04 e | 5.84 ± 0.09 d | 4.16 ± 0.13 c | 3.95 ± 0.05 b | 3.60 ± 0.10 a |
Dry weight (g·plant−1) | 1.80 ± 0.04 de | 1.71 ± 0.07 d | 1.40 ± 0.06 c | 1.16 ± 0.12 ab | 1.09 ± 0.05 a |
Root length (g) | 8.56 ± 0.12 de | 8.20 ± 0.15 d | 7.58 ± 0.09 c | 7.10 ± 0.22 b | 6.74 ± 0.08 a |
Relative growth rate (g·day−1) | 0.14 | 0.13 | 0.09 | 0.09 | 0.08 |
Chlorophyll content (mg·g−1 fwt.) | 2.42 ± 0.04 e | 2.31 ± 0.02 d | 2.05 ± 0.03 c | 1.92 ± 0.06 b | 1.80 ± 0.04 a |
Carotenoids (mg·g−1 fwt.) | 3.78 ± 0.05 e | 3.60 ± 0.09 d | 3.11 ± 0.10 bc | 2.80 ± 0.13 b | 2.56 ± 0.07 a |
Tuber carbohydrates (%) | 24.98 ± 1.18 cd | 22.10 ± 1.70 bc | 19.66 ± 0.91 b | 16.05 ± 1.58 a | 15.93 ± 2.20 a |
Superoxide dismutase (U·mg−1 P) | 2.60 ± 0.08 a | 3.51 ± 0.14 b | 5.73 ± 0.32 c | 6.04 ± 0.21 cd | 8.25 ± 0.74 e |
Catalase (µmol·min−1mg−1 P) | 1.70 ± 0.09 a | 2.25 ± 0.13 b | 3.19 ± 0.06 c | 4.01 ± 0.02 d | 4.10 ± 0.04 e |
Ascorbate peroxidase (mM·mg−1 P) | 3.04 ± 0.02 a | 5.20 ± 0.10 b | 7.58 ± 0.07 c | 11.82 ± 0.40 d | 12.09 ± 1.15 d |
Model Type | Heavy Metals | Plant Parts | Model Equation | R2 | ME | RMSE |
---|---|---|---|---|---|---|
MLR | Cd | Shoot | 40.82 − 8.72 × pH + 1.88 × CEC + 2.89 × OM + 0.20 × HMSo | 0.99 | 0.99 | 0.67 |
Root | 93.48 − 36.00 × pH + 16.51 × CEC + 14.05 × OM + 0.46 × HMSo | 0.99 | 0.99 | 1.34 | ||
Whole Plant | 20.14 − 22.24 × pH + 18.35 × CEC−4.06 × OM + 0.22 × HMSo | 0.98 | 0.98 | 1.43 | ||
Pb | Shoot | 4.39 − 14.61 × pH + 10.70 × CEC + 6.20 × OM + 0.06 × HMSo | 0.98 | 0.98 | 1.07 | |
Root | 296.99 − 129.12 × pH + 55.68 × CEC + 80.29 × OM + 0.50 × HMSo | 0.98 | 0.98 | 5.72 | ||
Whole Plant | 43.87 − 63.20 × pH + 30.51 × CEC + 72.24 × OM + 0.31 × HMSo | 0.98 | 0.98 | 3.21 | ||
ANN | Cd | Shoot | - | 0.99 | 0.99 | 0.23 |
Root | - | 0.99 | 0.99 | 0.80 | ||
Whole Plant | - | 0.99 | 0.99 | 0.45 | ||
Pb | Shoot | - | 0.99 | 0.99 | 0.30 | |
Root | - | 0.99 | 0.99 | 0.34 | ||
Whole Plant | - | 0.99 | 0.99 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Huqail, A.A.; Taher, M.A.; Širić, I.; Goala, M.; Adelodun, B.; Choi, K.S.; Kumar, P.; Kumar, V.; Kumar, P.; Eid, E.M. Bioremediation of Battery Scrap Waste Contaminated Soils Using Coco Grass (Cyperus rotundus L.): A Prediction Modeling Study for Cadmium and Lead Phytoextraction. Agriculture 2023, 13, 1411. https://doi.org/10.3390/agriculture13071411
AL-Huqail AA, Taher MA, Širić I, Goala M, Adelodun B, Choi KS, Kumar P, Kumar V, Kumar P, Eid EM. Bioremediation of Battery Scrap Waste Contaminated Soils Using Coco Grass (Cyperus rotundus L.): A Prediction Modeling Study for Cadmium and Lead Phytoextraction. Agriculture. 2023; 13(7):1411. https://doi.org/10.3390/agriculture13071411
Chicago/Turabian StyleAL-Huqail, Arwa A., Mostafa A. Taher, Ivan Širić, Madhumita Goala, Bashir Adelodun, Kyung Sook Choi, Piyush Kumar, Vinod Kumar, Pankaj Kumar, and Ebrahem M. Eid. 2023. "Bioremediation of Battery Scrap Waste Contaminated Soils Using Coco Grass (Cyperus rotundus L.): A Prediction Modeling Study for Cadmium and Lead Phytoextraction" Agriculture 13, no. 7: 1411. https://doi.org/10.3390/agriculture13071411
APA StyleAL-Huqail, A. A., Taher, M. A., Širić, I., Goala, M., Adelodun, B., Choi, K. S., Kumar, P., Kumar, V., Kumar, P., & Eid, E. M. (2023). Bioremediation of Battery Scrap Waste Contaminated Soils Using Coco Grass (Cyperus rotundus L.): A Prediction Modeling Study for Cadmium and Lead Phytoextraction. Agriculture, 13(7), 1411. https://doi.org/10.3390/agriculture13071411