Creating Ex Situ Protected Bioreservoirs as a Powerful Strategy for the Reproductive Biotechnology-Mediated Rescue of Threatened Polish Livestock Breeds
Abstract
:1. The Biological Background for In Situ and Ex Situ Conservation of Genetic Resources in Farm Animals, with Emphasis on Selected Polish Livestock Breeds
1.1. Genetic, Agricultural and Zootechnical Foundations of Sustainability in Preserving the Biodiversity in Livestock Species and Breeds
- (1)
- Highly intensified bottleneck effects resulting from tremendously impaired genetic drift;
- (2)
- Rapid genetic erosion resulting in a significant reduction in intra-population and inter-individual genotypic variance;
- (3)
1.2. Biological and Genetic Assumptions of In Situ Conservation in Livestock Species and Breeds
1.3. Biotechnological Assumptions of Ex Situ Conservation in Livestock Species and Breeds
1.4. A Range of Worldwide to Country-Specific Fundamentals and Challenges of Protecting the Biological Diversity in Livestock Breeds, with a Particular Emphasis on Poland
2. The Implementation of Modern Reproductive Biotechnology Strategies Based on Somatic Cell Cloning to Ex Situ Conservation of Genetic Resources in Selected Polish Livestock Breeds
2.1. Biological Justification for Applicability of Somatic or Stem Cell Banking to Cloning-Mediated Reproductive Biotechnology of Farm Animals
2.2. The Efforts of the NRIAP Focused on Collecting the Ex Situ Protected Somatic Cell- and Stem Cell-Based Bioresources for the Purposes of Cloning-Mediated ARTs in Selected Livestock Species and Breeds
2.3. The Factors Determining the Outcome of Cloning-Mediated Reproductive Biotechnology and Their Usefulness for a Broad Spectrum of Research Disciplines
3. The Implementation of Modern Reproductive Biotechnology Strategies Based on Cryogenic Protection, Lyophilization and In Vitro Embryo Production in the Ex Situ Conservation of Genetic Resources in Selected Polish Livestock Breeds
3.1. Justification for the Ex Situ Conservation of Germplasm-Based Bioresources
3.2. Biological and Biotechnological Determinants of Cryogenically Protecting the Spermatozoa
3.3. Biological and Biotechnological Determinants of Lyophilizogenically Protecting the Spermatozoa
3.4. The State of the Art and a Wide Range of Biotechnological and Physicochemical Factors Affecting Cryoconservation of Oocytes and Embryos
3.5. The Applicability of Ex Situ Conservation Methods to Modern ARTs—The Importance of NRIAP Bioreservoirs of Embryos and Semen for Sustainable Maintenance of Biodiversity in Selected Livestock Species and Breeds in Poland
4. Conclusions, Future Targets and Prospective Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Perry, S.M.; Mitchell, M.A. Reptile assisted reproductive technologies: Can ART help conserve 300 million years of evolution by preserving extant reptile biodiversity? Reprod. Fertil. Dev. 2022, 34, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Bolton, R.L.; Mooney, A.; Pettit, M.T.; Bolton, A.E.; Morgan, L.; Drake, G.J.; Appeltant, R.; Walker, S.L.; Gillis, J.D.; Hvilsom, C. Resurrecting biodiversity: Advanced assisted reproductive technologies and biobanking. Reprod. Fertil. 2022, 3, R121–R146. [Google Scholar] [CrossRef]
- Caroli, A.M.; Pizzi, F. Livestock biodiversity: From genes to animal products through safeguard actions. Theor. Biol. Forum. 2012, 105, 71–82. [Google Scholar] [PubMed]
- Leroy, G.; Gicquel, E.; Boettcher, P.; Besbes, B.; Furre, S.; Fernandez, J.; Danchin-Burge, C.; Alnahhas, N.; Baumung, R. Coancestry rate’s estimate of effective population size for genetic variability monitoring. Conservation Genet. Resour. 2020, 12, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Comizzoli, P.; Holt, W.V. Breakthroughs and new horizons in reproductive biology of rare and endangered animal species. Biol. Reprod. 2019, 101, 514–525. [Google Scholar] [CrossRef] [Green Version]
- Wood, K.A.; Stilman, R.A.; Hilton, G.M. Conservation in a changing world needs predictive models. Anim. Conserv. 2018, 21, 87–88. [Google Scholar] [CrossRef] [Green Version]
- Jacques, A.; Leroy, G.; Rognon, X.; Verrier, E.; Tixier-Boichard, M.; Restoux, G. Reintroducing genetic diversity in populations from cryopreserved material: The case of Abondance, a French local dairy cattle breed. Genet. Sel. Evol. 2023, 55, 28. [Google Scholar] [CrossRef]
- Mara, L.; Casu, S.; Carta, A.; Dattena, M. Cryobanking of farm animal gametes and embryos as a means of conserving livestock genetics. Anim. Reprod. Sci. 2013, 138, 25–38. [Google Scholar] [CrossRef]
- Ryder, O.A.; Onuma, M. Viable Cell Culture Banking for Biodiversity Characterization and Conservation. Annu. Rev. Anim. Biosci. 2018, 6, 83–98. [Google Scholar] [CrossRef]
- Polak, G.; Krupiński, J.; Martyniuk, E.; Calik, J.; Kawęcka, A.; Krawczyk, J.; Majewska, A.; Sikora, J.; Sosin-Bzducha, E.; Szyndler-Nędza, M.; et al. The risk status of Polish local breeds under conservation programmes - new approach. Ann. Anim. Sci. 2021, 21, 125–140. [Google Scholar] [CrossRef]
- Long, J.A. Reproductive biotechnology and gene mapping: Tools for conserving rare breeds of livestock. Reprod. Domest. Anim. 2008, 43 (Suppl. 2), 83–88. [Google Scholar] [CrossRef]
- Kikuchi, K.; Kaneko, H.; Nakai, M.; Somfai, T.; Kashiwazaki, N.; Nagai, T. Contribution of in vitro systems to preservation and utilization of porcine genetic resources. Theriogenology 2016, 86, 170–175. [Google Scholar] [CrossRef]
- Son, Y.B.; Jeong, Y.I.; Jeong, Y.W.; Yu, X.; Cai, L.; Choi, E.J.; Hossein, M.S.; Tinson, A.; Singh, K.K.; Rajesh, S.; et al. Vitrification of camel skin tissue for use as a resource for somatic cell nuclear transfer in Camelus dromedarius. In Vitro Cell. Dev. Biol. Anim. 2021, 57, 487–492. [Google Scholar] [CrossRef]
- Dua, S.; Sharma, P.; Saini, M.; Rawat, N.; Rajendran, R.; Bansal, S.; Wakil, A.M.; Beniwal, M.; Parashar, A.; Bajwa, K.K.; et al. Cryobanking of primary somatic cells of elite farm animals - A pilot study in domesticated water buffalo (Bubalus bubalis). Cryobiology 2021, 98, 139–145. [Google Scholar] [CrossRef]
- Soglia, D.; Sartore, S.; Lasagna, E.; Castellini, C.; Cendron, F.; Perini, F.; Cassandro, M.; Marzoni, M.; Iaffaldano, N.; Buccioni, A.; et al. Genetic Diversity of 17 Autochthonous Italian Chicken Breeds and Their Extinction Risk Status. Front. Genet. 2021, 14, 715656. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Guan, W.; Ma, Y.; Zhang, H.H.; Tang, X. Establishment and biological characteristics of Luxi cattle fibroblast bank. Tissue Cell 2008, 40, 417–424. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, C.; Zhao, Y.; Li, L.; Liu, S.; Zhu, Z.; Guan, W. The biological characteristics of sheep umbilical cord mesenchymal stem cells. Can. J. Vet. Res. 2018, 82, 216–224. [Google Scholar]
- Elyasi Gorji, Z.; Farzaneh, P.; Nasimian, A.; Ganjibakhsh, M.; Izadpanah, M.; Farghadan, M.; Vakhshiteh, F.; Rahmati, H.; Shahzadeh Fazeli, S.A.; Khaledi, H.; et al. Cryopreservation of Iranian Markhoz goat fibroblast cells as an endangered national genetic resource. Mol. Biol. Rep. 2021, 48, 6241–6248. [Google Scholar] [CrossRef]
- Bai, C.; Wang, D.; Li, C.; Jin, D.; Li, C.; Guan, W.; Ma, Y. Establishment and biological characteristics of a Jingning chicken embryonic fibroblast bank. Eur. J. Histochem. 2011, 55, e4. [Google Scholar] [CrossRef] [Green Version]
- León-Quinto, T.; Simón, M.A.; Cadenas, R.; Martínez, A.; Serna, A. Different cryopreservation requirements in foetal versus adult skin cells from an endangered mammal, the Iberian lynx (Lynx pardinus). Cryobiology 2014, 68, 227–233. [Google Scholar] [CrossRef]
- Silyukova, Y.L.; Stanishevskaya, O.I.; Dementieva, N.V. The current state of the problem of in vitro gene pool preservation in poultry. Vavilovskii Zhurnal Genet. Selektsii 2020, 24, 176–184. [Google Scholar] [PubMed] [Green Version]
- Comizzoli, P.; Holt, W.V. Recent advances and prospects in germplasm preservation of rare and endangered species. Adv. Exp. Med. Biol. 2014, 753, 331–356. [Google Scholar] [PubMed]
- Huijsmans, T.E.R.G.; Hassan, H.A.; Smits, K.; Van Soom, A. Postmortem Collection of Gametes for the Conservation of Endangered Mammals: A Review of the Current State-of-the-Art. Animals 2023, 13, 1360. [Google Scholar] [CrossRef]
- Thiermann, I.; Bittmann, T. Should I stay or should I go? The impact of nature reserves on the survival and growth of dairy farms. J. Environ. Manage. 2023, 328, 116993. [Google Scholar] [CrossRef] [PubMed]
- Comizzoli, P. Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian J. Androl. 2015, 17, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Eynard, S.E.; Windig, J.J.; Hulsegge, I.; Hiemstra, S.J.; Calus, M.P.L. The impact of using old germplasm on genetic merit and diversity-A cattle breed case study. J. Anim. Breed Genet. 2018, 135, 311–322. [Google Scholar] [CrossRef]
- De Oliveira Silva, R.; Cortes Gardyn, O.; Hiemstra, S.J.; Marques, J.G.O.; Tixier-Boichard, M.; Moran, D. Ex situ and in situ data for endangered livestock breeds in Spain. Data Brief 2021, 35, 106805. [Google Scholar] [CrossRef]
- Lauvie, A.; Audiot, A.; Couix, N.; Casabianca, F.; Brives, H.; Verrier, E. Diversity of rare breed management programs: Between conservation and development. Livest. Sci. 2011, 140, 161–170. [Google Scholar] [CrossRef]
- Rege, J.E.O.; Gibson, J.P. Animal genetic resources and economic development: Issues in relation to economic valuation. Ecol. Econ. 2003, 45, 319–330. [Google Scholar] [CrossRef]
- Blackburn, H.D. The National Animal Germplasm Program: Challenges and opportunities for poultry genetic resources. Poult. Sci. 2006, 85, 210–215. [Google Scholar] [CrossRef]
- Woelders, H.; Windig, J.; Hiemstra, S.J. How developments in cryobiology, reproductive technologies and conservation genomics could shape gene banking strategies for (farm) animals. Reprod. Domest. Anim. 2012, 47, 264–273. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Zong, Y.; Mehaisen, G.M.K.; Chen, J. Poultry genetic heritage cryopreservation and reconstruction: Advancement and future challenges. J. Anim. Sci. Biotechnol. 2022, 13, 115. [Google Scholar] [CrossRef]
- Comizzoli, P.; Wildt, D.E. Mammalian fertility preservation through cryobiology: Value of classical comparative studies and the need for new preservation options. Reprod. Fertil. Dev. 2013, 26, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Keskintepe, L.; Eroglu, A. Preservation of Mammalian Sperm by Freeze-Drying. Methods Mol. Biol. 2021, 2180, 721–730. [Google Scholar]
- Men, H.; Walters, E.M.; Nagashima, H.; Prather, R.S. Emerging applications of sperm, embryo and somatic cell cryopreservation in maintenance, relocation and rederivation of swine genetics. Theriogenology 2012, 78, 1720–1729. [Google Scholar] [CrossRef] [Green Version]
- Gavin-Plagne, L.; Perold, F.; Osteil, P.; Voisin, S.; Moreira, S.C.; Combourieu, Q.; Saïdou, V.; Mure, M.; Louis, G.; Baudot, A.; et al. Insights into Species Preservation: Cryobanking of Rabbit Somatic and Pluripotent Stem Cells. Int. J. Mol. Sci. 2020, 21, 7285. [Google Scholar] [CrossRef]
- Smits, K.; Hoogewijs, M.; Woelders, H.; Daels, P.; Van Soom, A. Breeding or assisted reproduction? Relevance of the horse model applied to the conservation of endangered equids. Reprod. Domest. Anim. 2012, 47, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Enya, S.; Kawarasaki, T.; Otake, M.; Kangawa, A.; Uenishi, H.; Mikawa, S.; Nishimura, T.; Kuwahawa, Y.; Shibata, M. Preservation and Reproduction of Microminipigs by Cloning Technology. In Vivo 2016, 30, 617–622. [Google Scholar]
- Hu, T.; Taylor, L.; Sherman, A.; Keambou Tiambo, C.; Kemp, S.J.; Whitelaw, B.; Hawken, R.J.; Djikeng, A.; McGrew, M.J. A low-tech, cost-effective and efficient method for safeguarding genetic diversity by direct cryopreservation of poultry embryonic reproductive cells. eLife 2022, 25, e74036. [Google Scholar] [CrossRef]
- Borges, A.A.; Lira, G.P.O.; Nascimento, L.E.; Santos, M.V.O.; Oliveira, M.F.; Silva, A.R.; Pereira, A.F. Isolation, characterization, and cryopreservation of collared peccary skin-derived fibroblast cell lines. PeerJ 2020, 8, e9136. [Google Scholar] [CrossRef]
- Praxedes, É.A.; Silva, M.B.; Oliveira, L.R.M.; Viana, J.V.D.S.; Silva, A.R.; Oliveira, M.F.; Pereira, A.F. Establishment, characterization, and cryopreservation of cell lines derived from red-rumped agouti (Dasyprocta leporina Linnaeus, 1758) - A study in a wild rodent. Cryobiology 2021, 98, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Jeong, P.S.; Sim, B.W.; Park, S.H.; Kim, M.J.; Kang, H.G.; Nanjidsuren, T.; Lee, S.; Song, B.S.; Koo, D.B.; Kim, S.U. Chaetocin improves pig cloning efficiency by enhancing epigenetic reprogramming and autophagic activity. Int. J. Mol. Sci. 2020, 21, 4836. [Google Scholar] [CrossRef] [PubMed]
- Samiec, M.; Wiater, J.; Wartalski, K.; Skrzyszowska, M.; Trzcińska, M.; Lipiński, D.; Jura, J.; Smorąg, Z.; Słomski, R.; Duda, M. The Relative Abundances of Human Leukocyte Antigen-E, α-Galactosidase A and α-Gal Antigenic Determinants Are Biased by Trichostatin A-Dependent Epigenetic Transformation of Triple-Transgenic Pig-Derived Dermal Fibroblast Cells. Int. J. Mol. Sci. 2022, 23, 10296. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G.; Besbes, B.; Boettcher, P.; Hoffmann, I.; Pilling, D.; Baumung, R.; Scherf, B. Factors and determinants of animal genetic resources management activities across the world. Livest. Sci. 2016, 189, 70–77. [Google Scholar] [CrossRef]
- Samiec, M.; Skrzyszowska, M.; Witarski, W. Conservation of valuable genetic resources and restitution of endangered livestock breeds and species—Potential targets of somatic cell cloning of mammals in livestock breeding practice (Article in Polish). Przegl. Hod. 2020, 2, 1–4. [Google Scholar]
- Glanzner, W.G.; Rissi, V.B.; De Macedo, M.P.; Mujica, L.K.S.; Gutierrez, K.; Bridi, A.; De Souza, J.R.M.; Gonçalves, P.B.D.; Bordignon, V. Histone 3 lysine 4, 9, and 27 demethylases expression profile in fertilized and cloned bovine and porcine embryos. Biol. Reprod. 2018, 98, 742–751. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; Zhang, J.; Su, J.; An, Q.; Liu, X.; Zhang, M.; Wang, Y.; Liu, J.; Zhang, Y. H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency. FASEB J. 2019, 33, 4638–4652. [Google Scholar] [CrossRef]
- Xu, L.; Mesalam, A.; Lee, K.L.; Song, S.H.; Khan, I.; Chowdhury, M.M.R.; Lv, W.; Kong, I.K. Improves the in vitro developmental competence and reprogramming efficiency of cloned bovine embryos by additional complimentary cytoplasm. Cell. Reprogram. 2019, 21, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Liu, F.J.; Zhuang, Y.F.; Wang, X.A.; Zhai, X.W.; Li, H.X.; Hong, Z.Y.; Chen, J.J.; Zhong, L.C.; Zhang, W.C. Blastocysts cloned from the Putian Black pig ear tissues frozen without cryoprotectant at -80 and -196 degrees Celsius for 3 yrs. Theriogenology 2012, 78, 1166–1170. [Google Scholar] [CrossRef]
- Qu, J.; Wang, X.; Jiang, Y.; Lv, X.; Song, X.; He, H.; Huan, Y. Optimizing 5-aza-2’-deoxycytidine treatment to enhance the development of porcine cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming. Res. Vet. Sci. 2020, 132, 229–236. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Somfai, T.; Salamone, D.; Thu Huong, V.T.; Le Thi Nguyen, H.; Huu, Q.X.; Hoang, A.T.; Phan, H.T.; Thi Pham, Y.K.; Pham, L.D. Optimization of donor cell cycle synchrony, maturation media and embryo culture system for somatic cell nuclear transfer in the critically endangered Vietnamese Ỉ pig. Theriogenology 2021, 166, 21–28. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.; Lee, G.S.; Lee, S.T.; Lee, E. Comparative study of the developmental competence of cloned pig embryos derived from spermatogonial stem cells and fetal fibroblasts. Reprod. Domest. Anim. 2019, 54, 1258–1264. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Han, Z.; Fang, J.; Chen, H.; Guo, Z. Transcriptome analyses reveal effects of vitamin C-treated donor cells on cloned bovine embryo development. Int. J. Mol. Sci. 2019, 20, 2628. [Google Scholar] [CrossRef] [Green Version]
- Gorczyca, G.; Wartalski, K.; Wiater, J.; Samiec, M.; Tabarowski, Z.; Duda, M. Anabolic Steroids-Driven Regulation of Porcine Ovarian Putative Stem Cells Favors the Onset of Their Neoplastic Transformation. Int. J. Mol. Sci. 2021, 22, 11800. [Google Scholar] [CrossRef]
- Wiater, J.; Samiec, M.; Wartalski, K.; Smorąg, Z.; Jura, J.; Słomski, R.; Skrzyszowska, M.; Romek, M. Characterization of Mono- and Bi-Transgenic Pig-Derived Epidermal Keratinocytes Expressing Human FUT2 and GLA Genes – In Vitro Studies. Int. J. Mol. Sci. 2021, 22, 9683. [Google Scholar] [CrossRef]
- Chi, D.; Zeng, Y.; Xu, M.; Si, L.; Qu, X.; Liu, H.; Li, J. LC3-dependent autophagy in pig 2-cell cloned embryos could influence the degradation of maternal mRNA and the regulation of epigenetic modification. Cell. Reprogram. 2017, 19, 354–362. [Google Scholar] [CrossRef]
- Sampaio, R.V.; Sangalli, J.R.; De Bem, T.H.C.; Ambrizi, D.R.; Del Collado, M.; Bridi, A.; De Ávila, A.C.F.C.M.; Macabelli, C.H.; De Jesus Oliveira, L.; Da Silveira, J.C.; et al. Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming. Sci. Rep. 2020, 10, 11493. [Google Scholar] [CrossRef]
- Wang, X.; Qu, J.; Li, J.; He, H.; Liu, Z.; Huan, Y. Epigenetic reprogramming during somatic cell nuclear transfer: Recent progress and future directions. Front. Genet. 2020, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K. Functional consequences of mitochondrial mismatch in reconstituted embryos and offspring. J. Reprod. Dev. 2019, 65, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, L.C.; Cortez, J.V.; Bhat, M.H.; Sampaio, A.C.N.P.C.; Freitas, J.L.S.; Duarte, J.M.B.; Melo, L.M.; Freitas, V.J.F. In vitro development and mitochondrial gene expression in brown brocket deer (Mazama gouazoubira) embryos obtained by interspecific somatic cell nuclear transfer. Cell. Reprogram. 2020, 22, 208–216. [Google Scholar] [CrossRef]
- Samiec, M.; Skrzyszowska, M. Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals. Int. J. Mol. Sci. 2021, 22, 3099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, S.; Liu, X. Advance in the Role of Epigenetic Reprogramming in Somatic Cell Nuclear Transfer-Mediated Embryonic Development. Stem Cells Int. 2021, 2021, 6681337. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; He, X.; Chen, L.; Shi, J.; Zhou, R.; Xu, W.; Liu, D.; Wu, Z. Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell. Reprogram. 2013, 15, 459–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Uh, K.; Farrell, K. Current progress of genome editing in livestock. Theriogenology 2020, 150, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Perisse, I.V.; Fan, Z.; Singina, G.N.; White, K.L.; Polejaeva, I.A. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front. Genet. 2021, 11, 614688. [Google Scholar] [CrossRef]
- Singh, B.; Mal, G.; Verma, V.; Tiwari, R.; Khan, M.I.; Mohapatra, R.K.; Mitra, S.; Alyami, S.A.; Emran, T.B.; Dhama, K.; et al. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res. Ther. 2021, 12, 283. [Google Scholar] [CrossRef]
- Trzcińska, M.; Bryła, M.; Gajda, B.; Gogol, P. Fertility of boar semen cryopreserved in extender supplemented with butylated hydroxytoluene. Theriogenology 2015, 83, 307–313. [Google Scholar] [CrossRef]
- Trzcińska, M.; Bryła, M. Apoptotic-like changes of boar spermatozoa in freezing media supplemented with different antioxidants. Pol. J. Vet. Sci. 2015, 18, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Yeste, M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 2016, 85, 47–64. [Google Scholar] [CrossRef]
- Len, J.S.; Koh, W.S.D.; Tan, S.H. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. 2019, 39, BSR20191601. [Google Scholar] [CrossRef] [Green Version]
- Comizzoli, P.; He, X.; Lee, P.C. Long-term preservation of germ cells and gonadal tissues at ambient temperatures. Reprod. Fertil. 2022, 3, R42–R50. [Google Scholar] [CrossRef] [PubMed]
- Comizzoli, P.; Amelkina, O.; Lee, P.C. Damages and stress responses in sperm cells and other germplasms during dehydration and storage at nonfreezing temperatures for fertility preservation. Mol. Reprod. Dev. 2022, 89, 565–578. [Google Scholar] [CrossRef] [PubMed]
- Saragusty, J.; Loi, P. Exploring dry storage as an alternative biobanking strategy inspired by Nature. Theriogenology 2019, 126, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiangthientham, P.; Kallayanathum, W.; Anakkul, N.; Suwimonteerabutr, J.; Santiviparat, S.; Techakumphu, M.; Loi, P.; Tharasanit, T. Effects of freeze-drying on the quality and fertilising ability of goat sperm recovered from different parts of the epididymis. Theriogenology 2023, 195, 31–39. [Google Scholar] [CrossRef]
- Olaciregui, M.; Luño, V.; Martí, J.I.; Aramayona, J.; Gil, L. Freeze-dried stallion spermatozoa: Evaluation of two chelating agents and comparative analysis of three sperm DNA damage assays. Andrologia 2016, 48, 900–906. [Google Scholar] [CrossRef]
- Mercati, F.; Domingo, P.; Pasquariello, R.; Dall’Aglio, C.; Di Michele, A.; Forti, K.; Cocci, P.; Boiti, C.; Gil, L.; Zerani, M.; et al. Effect of chelating and antioxidant agents on morphology and DNA methylation in freeze-drying rabbit (Oryctolagus cuniculus) spermatozoa. Reprod. Domest. Anim. 2020, 55, 29–37. [Google Scholar] [CrossRef]
- Olaciregui, M.; Luño, V.; González, N.; Domingo, P.; de Blas, I.; Gil, L. Chelating agents in combination with rosmarinic acid for boar sperm freeze-drying. Reprod. Biol. 2017, 17, 193–198. [Google Scholar] [CrossRef]
- Domingo, P.; Olaciregui, M.; González, N.; De Blas, I.; Gil, L. Long-term preservation of freeze-dried rabbit sperm by adding rosmarinic acid and different chelating agents. Cryobiology 2018, 81, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Muneto, T.; Horiuchi, T. Full-term development of hamster embryos produced by injecting freeze-dried spermatozoa into oocytes. J. Mamm. Ova Res. 2011, 28, 32–39. [Google Scholar] [CrossRef]
- Kaneko, T.; Whittingham, D.G.; Yanagimachi, R. Effect of pH value of freeze-drying solution on the chromosome integrity and developmental ability of mouse spermatozoa. Biol. Reprod. 2003, 68, 136–139. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, M.; Kato, M.; Ito, J.; Hochi, S. Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote 2005, 13, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Li, M.W.; Willis, B.J.; Griffey, S.M.; Spearow, J.L.; Lloyd, K.C. Assessment of three generations of mice derived by ICSI using freeze-dried sperm. Zygote 2009, 17, 239–251. [Google Scholar] [CrossRef]
- Choi, Y.H.; Varner, D.D.; Love, C.C.; Hartman, D.L.; Hinrichs, K. Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction 2011, 142, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Hara, H.; Tagiri, M.; Hwang, I.S.; Takahashi, M.; Hirabayashi, M.; Hochi, S. Adverse effect of cake collapse on the functional integrity of freeze-dried bull spermatozoa. Cryobiology 2014, 68, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Palazzese, L.; Gosálvez, J.; Anzalone, D.A.; Loi, P.; Saragusty, J. DNA fragmentation in epididymal freeze-dried ram spermatozoa impairs embryo development. J. Reprod. Dev. 2018, 64, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Berteli, T.S.; Vireque, A.A.; Borges, E.D.; Da Luz, C.M.; Navarro, P.A. Membrane lipid changes in mouse blastocysts induced by ovarian stimulation, IVF and oocyte vitrification. Reprod. Biomed. Online 2023, 46, 887–902. [Google Scholar] [CrossRef]
- Tian, C.; Shen, L.; Gong, C.; Cao, Y.; Shi, Q.; Zhao, G. Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles. Nat. Commun. 2022, 13, 7515. [Google Scholar] [CrossRef]
- Hochi, S. Japanese Society for Animal Reproduction: Award for outstanding research 2002. Cryopreservation of follicular oocytes and preimplantation embryos in cattle and horses. J. Reprod. Dev. 2003, 49, 13–21. [Google Scholar] [CrossRef]
- Paramio, M.T.; Izquierdo, D. Current status of in vitro embryo production in sheep and goats. Reprod. Domest. Anim. 2014, 49, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M.; Asgari, V.; Ostadhosseini, S.; Hajian, M.; Ghanaei, H.R.; Nasr-Esfahani, M.H. Developmental competence of ovine oocytes after vitrification: Differential effects of vitrification steps, embryo production methods, and parental origin of pronuclei. Theriogenology 2015, 83, 366–376. [Google Scholar] [CrossRef]
- Park, M.J.; Lee, S.E.; Yoon, W.; Park, H.J.; Kim, S.H.; Oh, S.H.; Lee, D.G.; Pyeon, D.B.; Kim, E.Y.; Park, S.P. Effect of supplementation of cryoprotectant solution with hydroxypropyl cellulose for vitrification of bovine oocytes. Cryo Letters 2023, 44, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Carrascal-Triana, E.L.; Zolini, A.M.; de King, A.R.; Penitente-Filho, J.M.; Hansen, P.J.; Torres, C.A.A.; Block, J. Effect of addition of ascorbate, dithiothreitol or a caspase-3 inhibitor to cryopreservation medium on post-thaw survival of bovine embryos produced in vitro. Reprod. Domest. Anim. 2022, 57, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Bruno-Galarraga, M.M.; Lacau-Mengido, I.M.; Cueto, M.I.; Gibbons, A.E. A successful vitrification technique for goat morulae conservation. Theriogenology 2022, 182, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Plaza, A.; Cambra, J.M.; Garcia-Canovas, M.; Parrilla, I.; Gil, M.A.; Martinez, E.A.; Rodriguez-Martinez, H.; Martinez, C.A.; Cuello, C. Cryotop vitrification of large batches of pig embryos simultaneously provides excellent postwarming survival rates and minimal interference with gene expression. Theriogenology 2023, 206, 1–10. [Google Scholar] [CrossRef]
- Xingzhu, D.; Qingrui, Z.; Keren, C.; Yuxi, L.; Yunpeng, H.; Shien, Z.; Xiangwei, F. Cryopreservation of Porcine Embryos: Recent Updates and Progress. Biopreserv. Biobank. 2021, 19, 210–218. [Google Scholar] [CrossRef]
- Liu, J.; Phy, J.; Yeomans, E. Theoretic considerations regarding slow cooling and vitrification during cryopreservation. Theriogenology 2012, 78, 1641–1652. [Google Scholar] [CrossRef]
- Jia, B.; Xiang, D.; Guo, J.; Jiao, D.; Quan, G.; Hong, Q.; Fu, X.; Wei, H.; Wu, G. Successful vitrification of early-stage porcine cloned embryos. Cryobiology 2020, 97, 53–59. [Google Scholar] [CrossRef]
- Xu, X.; Hao, T.; Komba, E.; Yang, B.; Hao, H.; Du, W.; Zhu, H.; Zhang, H.; Zhao, X. Improvement of Fertilization Capacity and Developmental Ability of Vitrified Bovine Oocytes by JUNO mRNA Microinjection and Cholesterol-Loaded Methyl-β-Cyclodextrin Treatment. Int. J. Mol. Sci. 2022, 24, 590. [Google Scholar] [CrossRef]
- Angel-Velez, D.; De Coster, T.; Azari-Dolatabad, N.; Fernández-Montoro, A.; Benedetti, C.; Pavani, K.; Van Soom, A.; Bogado Pascottini, O.; Smits, K. Embryo morphokinetics derived from fresh and vitrified bovine oocytes predict blastocyst development and nuclear abnormalities. Sci. Rep. 2023, 13, 4765. [Google Scholar] [CrossRef]
- Guo, Y.; Bai, J.; Zhang, Z.; Liu, Y.; Lu, S.; Liu, C.; Ni, J.; Zhou, P.; Fu, X.; Sun, W.Q.; et al. Pregnancy of cryopreserved ovine embryos at different developmental stages. Cryo Letters 2022, 43, 269–275. [Google Scholar] [CrossRef]
- Somfai, T.; Haraguchi, S.; Dang-Nguyen, T.Q.; Kaneko, H.; Kikuchi, K. Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage. PLoS One 2023, 18, e0282959. [Google Scholar] [CrossRef]
- Marco-Jiménez, F.; Garcia-Dominguez, X.; García-Valero, L.; Vicente, J.S. A 3D-Printed Large Holding Capacity Device for Minimum Volume Cooling Vitrification of Embryos in Prolific Livestock Species. Animals 2023, 13, 791. [Google Scholar] [CrossRef]
- Samiec, M.; Romanek, J.; Lipiński, D.; Opiela, J. Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J. 2019, 90, 1127–1141. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Dang-Nguyen, T.Q.; Somfai, T.; Men, N.T.; Viet Linh, N.; Xuan Nguyen, B.; Noguchi, J.; Kaneko, H.; Kikuchi, K. Selection based on morphological features of porcine embryos produced by in vitro fertilization: Timing of early cleavages and the effect of polyspermy. Anim. Sci. J. 2020, 91, e13401. [Google Scholar] [CrossRef]
- Salamone, D.F.; Canel, N.G.; Rodríguez, M.B. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017, 154, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Fowler, K.E.; Mandawala, A.A.; Griffin, D.K.; Walling, G.A.; Harvey, S.C. The production of pig preimplantation embryos in vitro: Current progress and future prospects. Reprod. Biol. 2018, 18, 203–211. [Google Scholar] [CrossRef]
- Magata, F.; Tsuchiya, K.; Okubo, H.; Ideta, A. Application of intracytoplasmic sperm injection to the embryo production in aged cows. J. Vet. Med. Sci. 2019, 81, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Z.; Niu, Z.; Liu, Z.; Ma, J.; Qu, P.; Qiao, F.; Su, J.; Zhang, Y.; Wang, Y. The effects of glycine-glutamine dipeptide replaced L-glutamine on bovine parthenogenetic and IVF embryo development. Theriogenology 2020, 141, 82–90. [Google Scholar] [CrossRef]
- Ashibe, S.; Miyamoto, R.; Kato, Y.; Nagao, Y. Detrimental effects of oxidative stress in bovine oocytes during intracytoplasmic sperm injection (ICSI). Theriogenology 2019, 133, 71–78. [Google Scholar] [CrossRef]
- Ressaissi, Y.; Anzalone, D.A.; Palazzese, L.; Czernik, M.; Loi, P. The impaired development of sheep ICSI derived embryos is not related to centriole dysfunction. Theriogenology 2021, 159, 7–12. [Google Scholar] [CrossRef]
- Kropp, J.; Carrillo, J.A.; Namous, H.; Daniels, A.; Salih, S.M.; Song, J.; Khatib, H. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics 2017, 18, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, Y.F.; Lin, T.; Li, X.; Oqani, R.K.; Lee, J.E.; Kim, S.Y.; Jin, D.I. Dynamic changes of SETD2, a histone H3K36 methyltransferase, in porcine oocytes, IVF and SCNT embryos. PLoS One 2018, 13, e0191816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, K.; Kobayashi, E.; Nishino, K.; Imai, A.; Adachi, H.; Hoshino, Y.; Iwao, K.; Akagi, S.; Kaneda, M.; Watanabe, S. Age-related changes in DNA methylation levels at CpG sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combined bisulfite restriction analysis. J. Reprod. Dev. 2019, 65, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.S.; St. John, J.C. The effects of mitochondrial DNA supplementation at the time of fertilization on the gene expression profiles of porcine preimplantation embryos. Mol. Reprod. Dev. 2018, 85, 490–504. [Google Scholar] [CrossRef]
- Zuidema, D.; Sutovsky, P. The domestic pig as a model for the study of mitochondrial inheritance. Cell Tissue Res. 2020, 380, 263–271. [Google Scholar] [CrossRef]
- Jin, Y.X.; Zheng, Z.; Yu, X.F.; Zhang, J.B.; Namgoong, S.; Cui, X.S.; Hyun, S.H.; Kim, N.H. Autophagy and ubiquitin-mediated proteolysis may not be involved in the degradation of spermatozoon mitochondria in mouse and porcine early embryos. Zygote 2016, 24, 31–41. [Google Scholar] [CrossRef]
- Rodríguez, M.B.; Gambini, A.; Clérico, G.; Ynsaurralde-Rivolta, A.E.; Briski, O.; Largel, H.; Sansinena, M.; Salamone, D.F. Time of first polar body extrusion affects the developmental competence of equine oocytes after intracytoplasmic sperm injection. Reprod. Fertil. Dev. 2019, 31, 1805–1811. [Google Scholar] [CrossRef]
- Ramos-Ibeas, P.; Gimeno, I.; Cañón-Beltrán, K.; Gutiérrez-Adán, A.; Rizos, D.; Gómez, E. Senescence and apoptosis during in vitro embryo development in a bovine model. Front. Cell Dev. Biol. 2020, 8, 619902. [Google Scholar] [CrossRef]
- Ruiz, S.; Romero-Aguirregomezcorta, J.; Astiz, S.; Peinado, B.; Almela, L.; Poto, A. Application of reproductive biotechnology for the recovery of endangered breeds: Birth of the first calf of Murciana-Levantina bovine breed derived by OPU, in vitro production and embryo vitrification. Reprod. Domest. Anim. 2013, 48, 81–84. [Google Scholar] [CrossRef]
- Menezes, E.B.; De Oliveira, R.V.; Van Tilburg, M.F.; Barbosa, E.A.; Nascimento, N.V.; Velho, A.L.M.C.S.; Moreno, F.B.; Moreira, R.A.; Monteiro-Moreira, A.C.O.; Carvalho, G.M.C.; et al. Proteomic analysis of seminal plasma from locally-adapted "Curraleiro Pé-Duro bulls" (Bos taurus): Identifying biomarkers involved in sperm physiology in endangered animals for conservation of biodiversity. Anim. Reprod. Sci. 2017, 183, 86–101. [Google Scholar] [CrossRef]
- Thongphakdee, A.; Sukparangsi, W.; Comizzoli, P.; Chatdarong, K. Reproductive biology and biotechnologies in wild felids. Theriogenology 2020, 150, 360–373. [Google Scholar] [CrossRef]
- Hildebrandt, T.B.; Hermes, R.; Goeritz, F.; Appeltant, R.; Colleoni, S.; De Mori, B.; Diecke, S.; Drukker, M.; Galli, C.; Hayashi, K.; et al. The ART of bringing extinction to a freeze – History and future of species conservation, exemplified by rhinos. Theriogenology 2021, 169, 76–88. [Google Scholar] [CrossRef]
Species | Breed Name | The Type and Provenance of Somatic and Stem Cell Lines | Number of Somatic/ Stem Cell Lines | Number of Female Donors | Number of Male Donors | Quality Parameters | |||
---|---|---|---|---|---|---|---|---|---|
Post-Freeze/Thaw Survivability * | Attachment to the Substratum and Enzymatically Assisted Detachment * | Mitotic Lifespan and Resistance to Morphological Senescence * | Capacity to Reach a Total Confluency and Undergo Cell Multiplication * | ||||||
Cattle | Polish Red | Mitotically stable cell lines of adult dermal fibroblasts | 45 | 5 | - | ++++ | ++++ | ++++ | ++++ |
Pigs | Puławska | 71 | 10 | 1 | |||||
Złotnicka Spotted | 22 | 6 | - | ||||||
Sheep | Polish Heath | 15 | 3 | 3 | |||||
Romanowska | 32 | 3 | 3 | ||||||
Old Type of Merino | 22 | 3 | 3 | ||||||
Goats | Carpathian | 13 | 3 | 3 | |||||
Pigs | Polish Landrace | Mitotically stable cell lines of bone marrow-derived mesenchymal stem cells | 25 | 10 | - | ||||
Mitotically stable cell lines of adipose tissue-derived mesenchymal stem cells | 14 | 10 | - |
Species | Breed | The Category of Germplasm-Carrying Biological Materials | The Approach to Ex SITU Conservation | Number of Protected Samples | Number of Female Donors | Number of Male Donors |
---|---|---|---|---|---|---|
Cattle | Polish Red | Embryos | Cryopreservation | 1200 | 125 | - |
Pigs | Polish Landrace | Semen | Cryopreservation | 645 | - | 6 |
Lyophilization | 160 | 4 | ||||
Polish Large White | Cryopreservation | 720 | - | 7 | ||
Sheep | Polish Heath | Semen | Cryopreservation | 587 | - | 8 |
Romanowska | 968 | - | 5 | |||
Olkuska | 3519 | - | 8 | |||
Blackhead | 788 | - | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzcińska, M.; Samiec, M.; Duda, M. Creating Ex Situ Protected Bioreservoirs as a Powerful Strategy for the Reproductive Biotechnology-Mediated Rescue of Threatened Polish Livestock Breeds. Agriculture 2023, 13, 1426. https://doi.org/10.3390/agriculture13071426
Trzcińska M, Samiec M, Duda M. Creating Ex Situ Protected Bioreservoirs as a Powerful Strategy for the Reproductive Biotechnology-Mediated Rescue of Threatened Polish Livestock Breeds. Agriculture. 2023; 13(7):1426. https://doi.org/10.3390/agriculture13071426
Chicago/Turabian StyleTrzcińska, Monika, Marcin Samiec, and Małgorzata Duda. 2023. "Creating Ex Situ Protected Bioreservoirs as a Powerful Strategy for the Reproductive Biotechnology-Mediated Rescue of Threatened Polish Livestock Breeds" Agriculture 13, no. 7: 1426. https://doi.org/10.3390/agriculture13071426
APA StyleTrzcińska, M., Samiec, M., & Duda, M. (2023). Creating Ex Situ Protected Bioreservoirs as a Powerful Strategy for the Reproductive Biotechnology-Mediated Rescue of Threatened Polish Livestock Breeds. Agriculture, 13(7), 1426. https://doi.org/10.3390/agriculture13071426