Dynamics of Biomass and Carbon Stocks during Reforestation on Abandoned Agricultural Lands in Southern Ural Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Successional Stages of Reforestation on Fallow Lands
2.3. Partitioning of Aboveground Biomass and Estimation of Production
2.4. Estimation of the Biomass of Herbaceous Plants and Litter Flux
2.5. Estimation Root Biomass
2.6. Soil Characteristic, Sampling, and Laboratory Analysis
2.7. Analysis of the Carbon Content of the Samples
3. Results
4. Discussion
4.1. Percentage of Carbon in Plant Substance and Soil
4.2. Phytomass and Carbon Stocks in Plant Matter and Soil
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Geist, H.J. (Eds.) Land-Use and Land-Cover Change: Local Processes and Global Impacts; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Sitzia, T.; Semenzato, P.; Trentanovi, G. Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: A global overview. For. Ecol. Manag. 2010, 259, 1354–1362. [Google Scholar] [CrossRef]
- Dubinin, M.; Potapov, P.; Lushchekina, A.; Radeloff, V.C. Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sens. Environ. 2010, 114, 1638–1648. [Google Scholar] [CrossRef]
- Garcia-Ruiz, J.M.; Lopez-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta–Martinez, T.; Begueria, S. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Bernues, A.; Rodriguez-Ortega, T.; Ripoll-Bosch, R.; Alfnes, F. Socio-cultural and economic valuation of ecosystem services provided by Mediterranean mountain agroecosystems. PLoS ONE 2014, 9, e102479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasanta, T.; Nadal-Romero, E.; Arnaez, J. Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environ. Sci. Policy 2015, 52, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Nadal-Romero, E.; Cammeraat, E.; Perez-Cardiel, E.; Lasanta, T. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas. Agric. Ecosyst. Environ. 2016, 228, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- Kurbanov, E.A.; Vorobyev, O.N.; Gubaev, A.V.; Lezhnin, S.A.; Nezamaev, S.A.; Aleksandrova, T.L. Assessment of overgrowth of forest vegetation in the reserve lands of the Mari El Republic by satellite images. Vestnik Povolzhskogo Gosudarstvennogo Tekhnologicheskogo Universiteta. Seriya Les. Ekologiya. Prirodopol’zovanie 2010, 2, 14–20. (In Russian) [Google Scholar]
- Glantz, M. (Ed.) Creeping Environmental Problems and Sustainable Development in the Aral Sea Basin; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef] [Green Version]
- Löw, F.; Fliemann, E.; Abdullaev, I.; Conrad, C.; Lamers, J. Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Appl. Geogr. 2015, 62, 377–390. [Google Scholar] [CrossRef]
- Regions of Russia. Socio-Economic Indicators, Statisticheskij Sbornik; Rosstat: Moscow, Russia, 2010; 996p. Available online: https://rosstat.gov.ru/folder/210/document/13204 (accessed on 25 April 2023). (In Russian)
- Uzun, V.Y. “White spots” and unused farmland: What the 2016 agricultural census showed. Ekonomicheskoe razvitie Rossii 2017, 24, 36–43. Available online: https://www.ranepa.ru/images/docs/monitoring/2017_21-59_December.pdf (accessed on 25 April 2023).
- Lerman, Z.; Csaki, C.; Feder, G. Agriculture in Transition: Land Policies and Evolving Farm Structures in Post-Soviet Countries; Lexington Books: Lanham, MD, USA, 2004; 166p. [Google Scholar]
- Lyuri, D.I.; Goryachkin, S.V.; Karavaeva, N.A.; Denisenko, E.A.; Nefedova, T.G. Dynamics of Agricultural Land in Russia in the XX Century and Post-Agrogenic Restoration of Vegetation and Soils; Geos Publisher: Moscow, Russia, 2010; 416p. (In Russian) [Google Scholar]
- Zhizhin, S.M.; Magasumova, A.G. Overgrowing of agricultural lands with tree and shrub vegetation in the zone of coniferous-broad-leaved forests of the Republic of Udmurtia. Mezhdunarodnyy Nauchno-Issledovatel’skiy Zhurnal 2021, 104, 149–153. (In Russian) [Google Scholar]
- Potapov, P.V.; Turubanova, S.A.; Tyukavina, A.; Krylov, A.M.; McCarty, J.L.; Radeloff, V.C.; Hansen, M.C. Eastern Europe’s Forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ. 2015, 159, 28–43. [Google Scholar] [CrossRef]
- Shirokikh, P.S.; Martynenko, V.B.; Zverev, A.A.; Bikbaev, I.G.; Ibragimov, I.I.; Bikbaeva, G.G.; Baisheva, E.Z. Vegetation of abandoned agricultural lands of the Bashkirian Pre-Urals. Vestn. Tom. Gos. Un-Ta. Biologiya 2017, 37, 66–104. (In Russian) [Google Scholar]
- Suleymanov, R.; Yaparov, I.; Saifullin, I.; Vildanov, I.; Shirokikh, P.; Suleymanov, A.; Komissarov, M.; Liebelt, P.; Nigmatullin, A.; Khamidullin, R. The current state of abandoned lands in the northern forest-steppe zone at the Republic of Bashkortostan (Southern Ural, Russia). Span. J. Soil Sci. 2020, 10, 29–44. [Google Scholar] [CrossRef]
- Tuktamyshev, I.R.; Fedorova, Y.I.; Fedorov, N.I.; Shirokih, P.S. Regularities of modern use of abandoned agricultural lands in broad-leaved-forest and forest-steppe zones of the Republic of Bashkortostan. Ecobiotech 2022, 5, 155–160. (In Russian) [Google Scholar]
- Smith, J.O.; Smith, P.; Wattenbach, M.; Gottschalk, P.I.A.; Romanenkov, V.A.; Shevtsova, L.K.; Lisovoi, N.V. Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990–2007. Global Chang. Biol. 2007, 13, 342–356. [Google Scholar] [CrossRef]
- Vuichard, N.; Ciais, P.; Wolf, A. Soil carbon sequestration or biofuel production: New land-use opportunities for mitigating climate over abandoned soviet farmlands. Environ. Sci. Technol. 2009, 43, 8678–8683. [Google Scholar] [CrossRef]
- Ryzhova, I.M.; Erokhova, A.A.; Podvezennaya, M.A. Changes in carbon stocks in postagrogenic ecosystems as a result of natural reforestation in the Kostroma region. Lesovedenie 2015, 4, 307–317. (In Russian) [Google Scholar]
- Cannell, M.G.R.; Dewar, R.C. The carbon sink provided by plantation forests and their products in Britain. For. Int. J. For. Res. 1995, 68, 35–48. [Google Scholar] [CrossRef]
- Grigal, D.F.; Berguson, W.E. Soil carbon changes associated with short-rotation systems. Biomass Bioenergy 1998, 14, 371–377. [Google Scholar] [CrossRef]
- Laganiere, J.; Angers, D.A.; Pare, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Dimitriou, I.; Mola-Yudego, B.; Aronsson, P.; Eriksson, J. Changes in organic carbon and trace elements in the soil of willow short-rotation coppice plantations. Bioenergy Res. 2012, 5, 563–572. [Google Scholar] [CrossRef]
- Don, A.; Osborne, B.; Hastings, A.; Skiba, U.; Carter, M.S.; Drewer, J.; Zenone, T. Land-use change to bioenergy production in E urope: Implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 2012, 4, 372–391. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Niu, S.; Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol. 2012, 195, 172–181. [Google Scholar] [CrossRef]
- Rytter, R.M.; Rytter, L.; Hogbom, L. Carbon sequestration in willow (Salix s) plantations on former arable land estimated by repeated field sampling and C budget calculation. Biomass Bioenergy 2015, 83, 483–492. [Google Scholar] [CrossRef]
- Georgiadis, P.; Vesterdal, L.; Stupak, I.; Raulund-Rasmussen, K. Accumulation of soil organic carbon after cropland conversion to short-rotation willow and poplar. GCB Bioenergy 2017, 9, 1390–1401. [Google Scholar] [CrossRef] [Green Version]
- Barcena, T.G.; Kiaer, L.P.; Vesterdal, L.; Stefansdottir, H.M.; Gundersen, P.; Sigurdsson, B.D. Soil carbon stock change following afforestation in Northern Europe: A meta-analysis. Glob. Chang. Biol. 2014, 20, 2393–2405. [Google Scholar] [CrossRef]
- Dimitriou, I.; Mola-Yudego, B. Poplar and willow plantations on agricultural land in Sweden: Area, yield, groundwater quality and soil organic carbon. For. Ecol. Manag. 2017, 383, 99–107. [Google Scholar] [CrossRef]
- Thornley, J.H.M.; Cannell, M.G.R. Managing forests for wood yield and carbon storage: A theoretical study. Tree Physiol. 2000, 20, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Akselsson, C.; Berg, B.; Meentemeyer, V.; Westling, O. Carbon sequestration rates in organic layers of boreal and temperate forest soils—Sweden as a case study. Glob. Ecol. Biogeogr. 2004, 14, 77–84. [Google Scholar] [CrossRef]
- Vogel, J.G.; Gower, S.T. Carbon and nitrogen dynamics of boreal jack pine stands with and without a green alder understory. Ecosystems 1998, 1, 386–400. [Google Scholar] [CrossRef]
- Skolud, P. Zalesianie Gruntow Rolnych i Opuszczonych Terenow Rolniczych: Poradnik Wlasciciela; Centrum Informacyjne Lasow Panstwowych: Warszawa, Poland, 2008. [Google Scholar]
- Renou-Wilson, F.; Pollanen, M.; Byrne, K.; Wilson, D.; Farrell, E.P. The potential of birch afforestation as an after-use option for industrial cutaway peatlands. Suo 2010, 61, 59–76. [Google Scholar]
- Hynynen, J.; Niemisto, P.; Vihera-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Uri, V.; Varik, M.; Aosaar, J.; Kanal, A.; Kukumägi, M.; Lohmus, K. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012, 267, 117–126. [Google Scholar] [CrossRef]
- Shirokikh, P.S.; Fedorov, N.I.; Tuktamyshev, I.R.; Bikbaev, I.G.; Martynenko, V.B. Patterns of reforestation successions on abandoned agricultural lands of the Bashkir Cis-Urals. Russ. J. Ecol. 2023, 54, 188–196. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports № 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Danchenko, A.M. Ecology of Seed Propagation of Birch; Nauka: Novosibirsk, Russia, 1993; 184p. (In Russian) [Google Scholar]
- Viherä-Aarnio, A.; Velling, P. Seed transfers of silver birch (Betula pendula) from the Baltic to Finland—Effect on growth and stem quality. Silva Fenn. 2008, 42, 735–751. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.R.; Zhong, A.L.; Simard, S.W.; Kimmins, J.P. Aboveground biomass and nutrient accumulation in an age sequence of paper birch (Betula papyrifera) in the Interior Cedar Hemlock zone, British Columbia. For. Ecol. Manag. 1996, 83, 27–38. [Google Scholar] [CrossRef]
- Mälkonen, E.; Saarsalmi, A. Hieskoivikon biomassatuotos ja ravinteiden menetys kokopuun korjuussa. In Folia Forestalia; Metsäntutkimuslaitos: Helsinki, Finland, 1982; p. 17. [Google Scholar]
- Böhm, W. Methods of Studyng Root Systems; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Addo-Danso, S.D.; Prescott, C.E.; Smith, A.R. Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review. For. Ecol. Manag. 2016, 359, 332–351. [Google Scholar] [CrossRef]
- Freschet, G.T.; Pages, L.; Iversen, C.M.; Comas, L.H.; Rewald, B.; Roumet, C.; McCormack, M.L. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol. 2021, 232, 973–1122. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.R.; Al-Kaisi, M.M. The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. Catena 2015, 125, 33–37. [Google Scholar] [CrossRef]
- Qin, Z.; Dunn, J.B.; Kwon, H.; Mueller, S.; Wander, M.M. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence. GCB Bioenergy 2016, 8, 66–80. [Google Scholar] [CrossRef] [Green Version]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- State Standard of the USSR 26213-91. Soils. Methods for Determination of Organic Matter. 1993. Available online: http://docs.cntd.ru/document/1200023481 (accessed on 21 September 2022).
- Walldey, A.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 47, 29–38. [Google Scholar] [CrossRef]
- Vadyunina, A.F.; Korchagina, Z.A. Methods of Studying the Physical Properties of Soils; Agropromizdat: Moscow, Russia, 1986; 416p. (In Russian) [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis, 2nd ed.; Klute, A., Ed.; Part 1: Physical and Mineralogical Methods. Agron. Monograph; American Society of Agronomy: Madison, WI, USA, 1986; Volume 9, pp. 363–382. [Google Scholar]
- Pristova, T.A. The carbon content of plants of middle Taiga deciduous phytocenoses of the Komi Republic. Principy Ekologii 2022, 3, 43–49. [Google Scholar]
- Gower, S.T.; Krankina, O.; Olson, R.J.; Apps, M.; Linder, S.; Wang, C. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol. Appl. 2001, 11, 1395–1411. [Google Scholar] [CrossRef]
- Melvin, A.M.; Michelle, C.M.; Johnstone, J.F.; McGuire, A.D.; Genet, H.; Schuur, E.A.G. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest. Ecosystems 2015, 18, 1472–1488. [Google Scholar] [CrossRef]
- Methodological Guidelines for Quantitative Determination of Greenhouse Gas Absorption; Ministry of Natural Resources and Environment of the Russian Federation: Moscow, Russia, 2017; Order dated 30 June 2017, 20. (In Russian)
- Uri, V.; Vares, A.; Tullus, H.; Kanal, A. Above-ground biomass production and nutrient accumulation in young stands of silver birch on abandoned agricultural land. Biomass Bioenergy 2007, 31, 195–204. [Google Scholar] [CrossRef]
- Uri, V.; Lohmus, K.; Ostonen, I.; Tullus, H.; Lastik, R.; Vildo, M. Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendula Roth.) stand growing on abandoned agricultural land. Eur. J. For. Res. 2007, 126, 495–506. [Google Scholar] [CrossRef]
- Kund, M.; Vares, A.; Sims, A.; Tullus, H.; Uri, V. Early growth and development of silver birch (Betula pendula Roth.) plantations on abandoned agricultural land. Eur. J. For. Res. 2010, 129, 679–688. [Google Scholar] [CrossRef]
- Varik, M.; Kukumagi, M.; Aosaar, J.; Becker, H.; Ostonen, I.; Lohmus, K.; Uri, V. Carbon budgets in fertile silver birch (Betula pendula Roth) chronosequence stands. Ecol. Eng. 2015, 77, 284–296. [Google Scholar] [CrossRef]
- Pacaldo, R.S.; Volk, T.A.; Briggs, R.D. Greenhouse gas potentials of shrub willow biomass crops based on below-and aboveground biomass inventory along a 19-year chronosequence. BioEnergy Res. 2013, 6, 252–262. [Google Scholar] [CrossRef]
- Law, B.E.; Thornton, P.E.; Irvine, J.; Anthoni, P.M.; Van Tuyl, S. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Glob. Chang. Biol. 2001, 7, 755–777. [Google Scholar] [CrossRef]
- Wiseman, P.E.; Seiler, J.R. Soil CO2 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the Virginia Piedmont. For. Ecol. Manag. 2004, 192, 297–311. [Google Scholar] [CrossRef]
- Kukumägi, M.; Uri, V.; Kull, O. Mullahingamise sesoonne dunaamika kuusikute aegreas/Seasonal dynamics of soil respiration in a chronosequence of the Norway spruce stands. For. Stud. 2011, 54, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Boil. 2004, 10, 2052–2077. [Google Scholar] [CrossRef] [Green Version]
- Peltoniemi, M.; Makipaa, R.; Liski, J.; Tamminen, P. Changes in soil carbon with stand age–an evaluation of a modelling method with empirical data. Glob. Chang. Biol. 2004, 10, 2078–2091. [Google Scholar] [CrossRef]
- Paul, K.I.; Khanna, P.K.; Polglase, P.J.; Nyakuengama, J.G. Change in soil carbon following afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Peichl, M.; Arain, M.A. Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric. For. Meteorol. 2006, 140, 51–63. [Google Scholar] [CrossRef]
- Johansson, T. Biomass equations for determining fractions of common and grey alders growing on abandoned farmland and some practical implications. Biomass Bioenergy 1999, 18, 147–159. [Google Scholar] [CrossRef]
- Zasada, M.; Bijak, S.; Bronisz, K.; Bronisz, A.; Gaweda, T. Biomass dynamics in young silver birch stands on post-agricultural lands in central Poland. Drewno Prace Naukowe Doniesienia Komunikaty 2014, 57, 29–39. (In Russian) [Google Scholar] [CrossRef]
- Jagodzinski, A.M.; Zasada, M.; Bronisz, K.; Bronisz, A.; Bijak, S. Biomass conversion and expansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. For. Ecol. Manag. 2017, 384, 208–220. [Google Scholar] [CrossRef]
- Martinik, A.; Knott, R.; Krejza, J.; Cerny, J. Biomass production of Betula pendula stands regenerated in the region of allochthonous Picea abies dieback. Silva Fenn. 2018, 52, 9985. [Google Scholar] [CrossRef] [Green Version]
- Karhu, K.; Wall, A.; Vanhala, P.; Liski, J.; Esala, M.; Regina, K. Effects of afforestation and deforestation on boreal soil carbon stocks—Comparison of measured C stocks with Yasso07 model results. Geoderma 2011, 164, 33–45. [Google Scholar] [CrossRef]
- Novak, J.; Dusek, D.; Kacalek, D.; Slodisak, M. Nutrient content in silver birch biomass on nutrient-poor, gleyic sites. Zpravy Lesnickeho Vyzkumu 2017, 62, 135–141. (In Russian) [Google Scholar]
- Liski, J.; Perruchoud, D.; Karjalainen, T. Increasing carbon stocks in the forest soils of western Europe. For. Ecol. Manag. 2002, 169, 159–175. [Google Scholar] [CrossRef]
- Karjalainen, T. Model Computations on sequestration of carbon in managed forests and wood products under changing climatic conditions in Finland. J. Env. Manag. 1996, 47, 311–328. [Google Scholar] [CrossRef]
- Chmura, D.J.; Anderson, P.D.; Howe, G.T.; Harrington, C.A.; Halofsky, J.E.; Peterson, D.L.; Clair, J.B.S. Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management. For. Ecol. Manag. 2011, 261, 1121–1142. [Google Scholar] [CrossRef]
- Ford, K.R.; Harrington, C.A.; Bansal, S.; Gould, P.J.; St. Clair, J.B. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Glob. Chang. Biol. 2016, 22, 3712–3723. [Google Scholar] [CrossRef]
- Williams, L.J.; Paquette, A.; Cavender-Bares, J.; Messier, C.; Reich, P.B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 2017, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Venalainen, A.K.; Wang, L.; Pirinen, P.; Gao, Y.; Jin, S.; Hu, Y. Spatio-temporal divergence in the responses of Finland’s boreal forests to climate variables. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102186. [Google Scholar] [CrossRef]
- Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation [Electronic Resource]. 2008. Available online: http://climate2008.igce.ru/v2008/htm/index00.htm (accessed on 12 May 2023). (In Russian).
- Olchev, A.V.; Rozinkina, I.A.; Kuzmina, E.V.; Nikitin, M.A.; Rivin, G.S. Assessment of the impact of forest cover changes in the central region of East European on summer weather conditions. Fundamental’naya i Prikladnaya Klimatologiya 2017, 4, 83–105. (In Russian) [Google Scholar]
Stage of Overgrowth | I | II | III | IV | V |
---|---|---|---|---|---|
Height of trees, m | 0.5–1.5 | 2–3 | 5–8 | 9–14 | 15–18 |
Age of trees, years | 3–8 | 9–14 | 15-20 | 20–25 | 25–30 |
Diameter of trunks, cm | – | 1–3 | 6–8 | 10–14 | 16–20 |
Variant 1 (tree layer PC, %) | 1–5 | 10–20 | 30–50 | 50–60 | 50–60 |
Variant 2 (tree layer PC, %) | 7–10 | 30–50 | 60–80 | 75–90 | 75–90 |
Stage (S) and Variant (V) of Overgrowth | Carbon Content, % | |||||||
---|---|---|---|---|---|---|---|---|
Trunk Wood | Branches of Trees | Leaves of Trees | Above-Ground Part of Herbs | Mortmass | Roots of Trees and Herbs | Grey Forest Soil (0–30 cm) | Dark Grey Forest Soil (0–30 cm) | |
S I V 1 | 49.36 ± 0.22 | 51.55 ± 0.28 | 50.07 ± 0.16 | 42.41 ± 0.27 | 40.24 ± 0.73 | 36.81 ± 0.59 | 2.5 ± 0.09 | 5.32 ± 0.15 |
S I V 2 | 49.08 ± 0.10 | 51.87 ± 0.54 | 49.92 ± 0.02 | 42.42 ± 0.21 | 43.42 ± 0.34 | 34.59 ± 1.00 | 2.21 ± 0.08 | - |
S II V 1 | 48.39 ± 0.17 | 49.14 ± 0.12 | 49.15 ± 0.69 | 43.26 ± 0.20 | 43.4 ± 0.28 | 36.52 ± 0.59 | 2.22 ± 0.05 | 5.73 ± 0.35 |
S II V 2 | 48.70 ± 0.12 | 50.03 ± 0.34 | 48.87 ± 0.69 | 42.91 ± 0.15 | 43.32 ± 0.70 | 38.35 ± 0.78 | 3.01 ± 0.20 | 4.75 ± 0.20 |
S III V 1 | 48.10 ± 0.07 | 49.67 ± 0.27 | 48.87 ± 1.05 | 42.55 ± 0.15 | 45.43 ± 0.65 | 39.52 ± 0.67 | 3.57 ± 0.24 | 6.02 ± 0.19 |
S III V 2 | 48.04 | 48.83 ± 0.16 | 48.90 ± 0.20 | 39.19 ± 1.08 | 47.91 ± 0.54 | 39.88 ± 0.68 | - | 5.12 ± 0.18 |
S IV V 1 | 47.98 ± 0.06 | 49.06 ± 0.11 | 48.45 ± 0.53 | 41.88 ± 0.46 | 46.93 ± 0.43 | 42.09 ± 1.19 | 3.76 ± 0.35 | 6.22 ± 0.29 |
S IV V 2 | 47.90 ± 0.20 | 48.73 ± 0.23 | 48.48 ± 0.60 | 40.68 ± 0.65 | 47.25 ± 0.50 | 44.23 ± 0.85 | - | 4.61 ± 0.21 |
S V V 2 | 48.10 ± 0.12 | 48.82 ± 0.10 | 49.63 ± 0.56 | 42.7 ± 0.26 | 46.49 ± 0.47 | 44.82 ± 0.39 | 4.43 ± 0.20 | 5.89 ± 0.17 |
Reforestation Stage | Soil | Variant | Biomass, kg/ha | ||||||
---|---|---|---|---|---|---|---|---|---|
Leaves of Trees | Branches of Trees | Trunk Wood | Tree Layer | Above-Ground Biomass of Herb Layer | Mortmass | Underground Biomass | |||
I | Grey forest soil | 1 | 5.1 ± 1.2 | 2.3 ± 0.8 | 4.9 ± 1.2 | 12.2 ± 3.2 | 3498.5 ± 228.9 | 367.2 ± 49.4 | 2213.0 ± 223.2 |
2 | 37.9 | 19.7 | 51.6 | 109.2 | 3235.6 ± 218.2 | 264.3 ± 52.7 | 2510.4 ± 50.4 | ||
Dark grey forest soil | 1 | 17.5 ± 10.6 | 9.7 ± 6.0 | 22.6 ± 14.1 | 49.7 ± 30.6 | 3428.0 ± 143.3 | 752.3 ± 53.7 | 2669.5 ± 3.2 | |
Average at stage I | 14.7 ± 6.0 | 7.7 ± 3.3 | 18.5 ± 8.3 | 40.9 ± 17.6 | 3403.2 ± 134.3 | 447.8 ± 48.7 | 2428.4 ± 121.0 | ||
II | Grey forest soil | 1 | 139.3 ± 66.1 | 180.7 ± 91.6 | 294.5 ± 124.2 | 614.5 ± 280.2 | 3326,4 ± 186.2 | 900.7 ± 78.1 | 2452.4 ± 237.8 |
2 | 553.2 ± 233.4 | 770.6 ± 332.1 | 2252.6 ± 1272.2 | 3576.4 ± 1837.7 | 2843.8 ± 359.2 | 1334.6 ± 288.7 | 2452.4 ± 529.8 | ||
Dark grey forest soil | 1 | 194.6 | 349.8 | 383.2 | 927.6 | 2995.5 ± 611.3 | 1261.4 ± 380.8 | 2063.0 ± 0.1 | |
2 | 396.3 ± 84.2 | 500.0 ± 99.5 | 1528.2 ± 323.1 | 2424.5 ± 152.3 | 1732.4 ± 115.6 | 2744.9 ± 458.3 | 3500.6 ± 503.8 | ||
Average at stage II | 304.7 ± 78.9 | 411.4 ± 107.8 | 1065.1 ± 373.7 | 1781.2 ± 537.0 | 2718.6 ± 157.0 | 1576.8 ± 192.2 | 2727.9 ± 264.6 | ||
III | Grey forest soil | 1 | 2281.5 ± 1140.5 | 6207.5 ± 2717.3 | 18,526.2 ± 8753.5 | 27,015.2 ± 12,611.2 | 1036.3 ± 210.4 | 4246.0 ± 462.9 | 4878.9 ± 1245.3 |
Dark grey forest soil | 1 | 842.2 | 2870.7 | 7506.2 | 11,219.1 | 3150.2 ± 599.2 | 3175.0 ± 503.9 | 6177.6 ± 0.1 | |
2 | 2602.3 | 6668.4 | 31,030.7 | 40,301.4 | 127.2 ± 34.0 | 6704.8 ± 626.3 | 5946.8 ± 0.1 | ||
Average at stage III | 2001.9 ± 664.5 | 5488.5 ± 1557.5 | 18,897.3 ± 6040.2 | 26,387.7 ± 8141.9 | 1095.4 ± 265.4 | 5015.3 ± 435.2 | 5565.8 ± 559.0 | ||
IV | Grey forest soil | 1 | 2632.1 ± 424.2 | 8408.8 ± 1565.5 | 34,854.1 ± 8328.2 | 45,895.1 ± 9428.6 | 762.9 ± 165.6 | 4297.4 ± 978.7 | 3248.9 ± 553.3 |
Dark grey forest soil | 1 | 1763.3 | 11,943.8 | 70,384.0 | 84,091.2 | 222.0 ± 103.6 | 9607.7 ± 1047.2 | 2444.4 ± 0.1 | |
2 | 2485.6 ± 484.9 | 5573.0 ± 690.2 | 62,281.5 ± 3662.0 | 70,340.0 ± 4818.0 | 141.4 ± 44.8 | 7039.5 ± 424.9 | 4202.6 ± 257.8 | ||
Average at stage IV | 2445.2 ± 296.6 | 7698.5 ± 1101.4 | 51,684.4 ± 6823.2 | 61,828.0 ± 7119.4 | 419.3 ± 90.4 | 6231.2 ± 576.0 | 3542.7 ± 353.5 | ||
V | Grey forest soil | 2 | 3346.3 ± 266.8 | 6990.0 ± 201.1 | 104,752.8 ± 6064.8 | 115,089.1 ± 6342.6 | 200.1 ± 37.5 | 9734.0 ± 843.0 | 3746.9 ± 168.5 |
Dark grey forest soil | 2 | 6752.0 ± 1035.3 | 12,907.8 ± 1780.5 | 166,034.3 ± 12870.4 | 185,694.2 ± 15367.9 | 335.6 ± 45.7 | 12,126.7 ± 948.8 | 4674.9 ± 153.9 | |
Average at stage V | 5292.5 ± 876.8 | 10,371.6 ± 1505.9 | 139,770.8 ± 13,864.7 | 155,434.9 ± 16,090.7 | 284.8 ± 33.5 | 11,229.5 ± 696.5 | 4326.9 ± 196.2 |
Reforestation Stage | Soil | Variant | Carbon Stocks, kg/ha | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Leaves of Trees | Branches of Trees | Trunk Wood | Tree Layer | Aboveground Biomass of Herb Layer | Mortmass | Underground Biomass | Soil (0–30 cm), t/ha | |||
I | Grey forest soil | 1 | 2.5 ± 0.5 | 1.2 ± 0.3 | 2.4 ± 0.4 | 6.1 ± 1.2 | 1492.2 ± 98.8 | 149.7 ± 20.3 | 810.1 ± 47.1 | 97.6 ± 3.5 |
2 | 18.9 | 10.2 | 25.3 | 54.5 | 1373.1 ± 93.2 | 114.8 ± 22.7 | 868.4 ± 25.2 | 86.3 ± 3.3 | ||
Dark grey forest soil | 1 | 8.8 ± 5.3 | 4.9 ± 3.0 | 11.1 ± 6.9 | 24.8 ± 15.2 | 1443.0 ± 62.3 | 296.6 ± 23.4 | 1000.4 ± 16.3 | 207.4 ± 5.9 | |
Average at stage I | 7.3 ± 3.0 | 3.9 ± 1.7 | 9.1 ± 4.1 | 20.4 ± 8.8 | 1444.1 ± 58.0 | 181.7 ± 19.7 | 881.1 ± 26.3 | 126.7 ± 8.7 | ||
II | Grey forest soil | 1 | 67.2 ± 31.9 | 88.6 ± 45.0 | 143.4 ± 60.6 | 299.2 ± 136.5 | 1441.5 ± 80.9 | 391.7 ± 33.0 | 889.7 ± 41.7 | 86.5 ± 2.1 |
2 | 268.0 ± 109.2 | 374.7 ± 160.5 | 1101.3 ± 622.5 | 1744.1 ± 892.2 | 1201.7 ± 146.8 | 590.8 ± 130.4 | 915.7 ± 94.3 | 117.3 ± 7.7 | ||
Dark grey forest soil | 1 | 98.0 | 173.9 | 184.7 | 456.5 | 1285.8 ± 260.1 | 535.3 ± 158.7 | 766.5 ± 11.0 | 223.4 ± 13.5 | |
2 | 196.0 ± 42.4 | 249.3 ± 49.5 | 742.8 ± 156.7 | 1188.1 ± 69.3 | 747.8 ± 49.0 | 1210.7 ± 205.4 | 1387.7 ± 113.5 | 185.3 ± 8.0 | ||
Average at stage II | 149.1 ± 38.0 | 202.6 ± 52.5 | 518.9 ± 182.6 | 870.6 ± 261.4 | 1169.9 ± 67.0 | 691.6 ± 85.6 | 1032.0 ± 53.9 | 136.0 ± 7.3 | ||
III | Grey forest soil | 1 | 1147.5 ± 586.2 | 3100.0 ± 1345.4 | 8896.5 ± 4181.4 | 13,144.0 ± 6113.1 | 441.0 ± 90.3 | 1745.5 ± 285.3 | 1912.6 ± 211.1 | 139.3 ± 9.4 |
Dark grey forest soil | 1 | 419.6 | 1411.0 | 3619.5 | 5450.1 | 1344.7 ± 257.2 | 1407.6 ± 281.2 | 2441.6 ± 60.5 | 237.9 ± 7.4 | |
2 | 1269.6 | 3254.7 | 14,907.1 | 19,431.4 | 47.4 ± 11.6 | 3195.0 ± 279.7 | 2371.5 ± 40.5 | 199.7 ± 6.8 | ||
Average at stage III | 996.1 ± 338.0 | 2716.4 ± 771.7 | 9080.0 ± 2891.6 | 12,792.4 ± 3934.7 | 464.3 ± 113.8 | 2257.7 ± 229.7 | 2202.0 ± 99.0 | 182.0 ± 8.0 | ||
IV | Grey forest soil | 1 | 1307.3 ± 229.3 | 4135.1 ± 768.7 | 16751.7 ± 4007.8 | 22194.1 ± 4556.4 | 323.5 ± 70.3 | 2049.4 ± 475.5 | 1277.0 ± 72.5 | 146.7 ± 13.6 |
Dark grey forest soil | 1 | 837.5 | 5857.2 | 33,629.5 | 40,324.1 | 87.3 ± 40.5 | 4500.9 ± 561.9 | 1142.8 ± 31.9 | 242.5 ± 11.2 | |
2 | 1228.5 ± 253.5 | 2733.0 ± 355.2 | 29,819.8 ± 1689.0 | 33,781.2 ± 2291.9 | 57.5 ± 18.4 | 3009.2 ± 269.8 | 1858.8 ± 61.5 | 179.8 ± 8.0 | ||
Average at stage IV | 1206.4 ± 157.8 | 3780.2 ± 542.8 | 24,763.4 ± 3251.7 | 29,750.0 ± 3398.6 | 175.8 ± 38.4 | 2811.0 ± 283.9 | 1507.2 ± 66.2 | 174.6 ± 7.9 | ||
V | Grey forest soil | 2 | 1707.9 ± 132.9 | 3395.0 ± 88.0 | 50,185.5 ± 2934.4 | 55,288.4 ± 3064.4 | 84.3 ± 15.9 | 4379.2 ± 502.0 | 1666.8 ± 34.0 | 173.0 ± 7.8 |
Dark grey forest soil | 2 | 3298.9 ± 441.9 | 6340.9 ± 875.2 | 79,882.5 ± 6192.2 | 89,522.3 ± 7371.1 | 143.5 ± 19.2 | 5519.1 ± 455.9 | 2104.1 ± 41.7 | 229.9 ± 6.4 | |
Average at stage V | 2617.0 ± 394.4 | 5078.4 ± 745.1 | 67,155.2 ± 6704.9 | 74,850.6 ± 7776.1 | 121.3 ± 14.2 | 5091.6 ± 352.5 | 1940.1 ± 44.3 | 201.4 ± 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorov, N.; Shirokikh, P.; Zhigunova, S.; Baisheva, E.; Tuktamyshev, I.; Bikbaev, I.; Komissarov, M.; Zaitsev, G.; Giniyatullin, R.; Gabbasova, I.; et al. Dynamics of Biomass and Carbon Stocks during Reforestation on Abandoned Agricultural Lands in Southern Ural Region. Agriculture 2023, 13, 1427. https://doi.org/10.3390/agriculture13071427
Fedorov N, Shirokikh P, Zhigunova S, Baisheva E, Tuktamyshev I, Bikbaev I, Komissarov M, Zaitsev G, Giniyatullin R, Gabbasova I, et al. Dynamics of Biomass and Carbon Stocks during Reforestation on Abandoned Agricultural Lands in Southern Ural Region. Agriculture. 2023; 13(7):1427. https://doi.org/10.3390/agriculture13071427
Chicago/Turabian StyleFedorov, Nikolay, Pavel Shirokikh, Svetlana Zhigunova, Elvira Baisheva, Ilshat Tuktamyshev, Ilnur Bikbaev, Mikhail Komissarov, Gleb Zaitsev, Raphak Giniyatullin, Ilyusya Gabbasova, and et al. 2023. "Dynamics of Biomass and Carbon Stocks during Reforestation on Abandoned Agricultural Lands in Southern Ural Region" Agriculture 13, no. 7: 1427. https://doi.org/10.3390/agriculture13071427
APA StyleFedorov, N., Shirokikh, P., Zhigunova, S., Baisheva, E., Tuktamyshev, I., Bikbaev, I., Komissarov, M., Zaitsev, G., Giniyatullin, R., Gabbasova, I., Urazgildin, R., Kulagin, A., Suleymanov, R., Gabbasova, D., Muldashev, A., & Maksyutov, S. (2023). Dynamics of Biomass and Carbon Stocks during Reforestation on Abandoned Agricultural Lands in Southern Ural Region. Agriculture, 13(7), 1427. https://doi.org/10.3390/agriculture13071427