Intrinsic and Extrinsic Factors Affecting Neutral Detergent Fiber (NDF) Digestibility of Vegetative Tissues in Corn for Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection and Chemical Analyses
2.3. In Vitro Disappearance
2.4. Statistical Analysis
3. Results
3.1. In-Vitro NDF Digestibility
3.2. Acetyl Bromide Lignin
3.3. Arabinose, Xylose, Glucose, and Uronic Acid
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oba, M.; Allen, M.S. Effects of brown midrib 3 mutation in corn silage on dry matter intake and productivity of high yielding dairy cows. J. Dairy Sci. 1999, 82, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.; Teets, C.L.; Huffard, J.B.; Aguerre, M.J. Effects of planting population, genotype, and nitrogen fertilization on dry matter yield, nutrient composition, in vitro ruminal neutral detergent fiber disappearance, and nitrogen and phosphorus removal of corn for silage. Anim. Feed Sci. Technol. 2020, 268, 114615. [Google Scholar] [CrossRef]
- Ferreira, G.; Galyon, H.; Silva-Reis, A.I.; Pereyra, A.A.; Richardson, E.S.; Teets, C.L.; Blevins, P.; Cockrum, R.R.; Aguerre, M.J. Ruminal fiber degradation kinetics within and among warm-season annual grasses as affected by the brown midrib mutation. Animals 2022, 12, 2536. [Google Scholar] [CrossRef]
- Bal, M.A.; Coors, J.G.; Shaver, R.D. Impact of the maturity of corn for use as silage in the diets of dairy cows on intake, digestion, and milk production. J. Dairy Sci. 1997, 80, 2497–2503. [Google Scholar] [CrossRef] [PubMed]
- Neylon, J.M.; Kung, L. Effects of cutting height and maturity on the nutritive value of corn silage for lactating cows. J. Dairy Sci. 2003, 86, 2163–2169. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Van Soest, P.J.; Mertens, D.R.; Deinum, B. Preharvest factors influencing quality of conserved forages. J. Anim. Sci. 1978, 47, 712–720. [Google Scholar] [CrossRef]
- Ferreira, G.; Teets, C.L.; Kingori, A.M.; Ondiek, J.O. Effect of drought stress on neutral detergent fiber degradation kinetics of corn for silage. JDS Commun. 2023, 4, 196–201. [Google Scholar] [CrossRef]
- Ferreira, G.; Martin, L.L.; Teets, C.L.; Corl, B.A.; Hines, S.L.; Shewmaker, G.E.; de Haro-Marti, M.E.; Chahine, M. Effect of drought stress on in vitro neutral detergent fiber digestibility of corn for silage. Anim. Feed Sci. Technol. 2021, 273, 114803. [Google Scholar] [CrossRef]
- Jung, H.-J.G.; Lamb, J.F.S. Prediction of cell wall polysaccharide and lignin concentrations of alfalfa stems from detergent fiber analysis. Biomass Bioenergy 2004, 27, 365–373. [Google Scholar] [CrossRef]
- Penning, B.W.; Sykes, R.W.; Babcock, N.C.; Dugard, C.K.; Held, M.A.; Klimek, J.F.; Shreve, J.T.; Fowler, M.; Ziebell, A.; Davis, M.F.; et al. Genetic determinants for enzymatic digestion of lignocellulosic biomass are independent of those for lignin abundance in a maize recombinant inbred population. Plant Physiol. 2014, 165, 1475–1487. [Google Scholar] [CrossRef] [Green Version]
- Carpita, N.C.; McCann, M.C. Maize and sorghum: Genetic resources for bioenergy grasses. Trends Plant Sci. 2008, 13, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.G.; Mertens, D.R.; Payne, A.J. Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber. J. Dairy Sci. 1997, 80, 1622–1628. [Google Scholar] [CrossRef]
- Ferreira, G.; Brown, A.N. Environmental factors affecting corn quality for silage production. In Advances in Silage Production and Utilization; InTech: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a Corn Plant Develops; Iowa State University: Ames, IA, USA, 1986. [Google Scholar]
- Ferreira, G.; Mertens, D.R. Measuring detergent fibre and insoluble protein in corn silage using crucibles or filter bags. Anim. Feed Sci. Technol. 2007, 133, 335–340. [Google Scholar] [CrossRef]
- Ferreira, G.; Mertens, D.R. Chemical and physical characteristics of corn silages and their effects on in vitro disappearance. J. Dairy Sci. 2005, 88, 4414–4425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.W.; Goering, H.K.; Waldo, D.R.; Gordon, C.H. In vitro digestion rate of forage cell wall components. J. Dairy Sci. 1971, 54, 71–76. [Google Scholar] [CrossRef]
- Ferreira, G.; Teets, C.L. Effect of planting density on yield, nutritional quality, and ruminal in vitro digestibility of corn for silage grown under on-farm conditions. Prof. Anim. Sci. 2017, 33, 420–425. [Google Scholar] [CrossRef]
- Diepersloot, E.C.; Paula, E.M.; Sultana, H.; van Santen, E.; Wallau, M.O.; Ferraretto, L.F. Effects of seeding rate and hybrid relative maturity on yield, nutrient composition, ruminal in vitro neutral detergent fiber digestibility, and predicted milk yield of dairy cows in whole-plant corn forage in subtropical conditions. Appl. Anim. Sci. 2021, 37, 106–114. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 3. Digestibility and microbial efficiency. J. Dairy Sci. 2000, 83, 1350–1358. [Google Scholar] [CrossRef]
- Ferreira, G.; Thiex, N. Symposium review: Fiber and in vitro methods, analytical variation, and contributions to feed analysis. J. Dairy Sci. 2022, 106, 4464–4469. [Google Scholar] [CrossRef]
- Fukushima, R.S.; Hatfield, R.D. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples. J. Agric. Food Chem. 2004, 52, 3713–3720. [Google Scholar] [CrossRef]
- Rancour, D.; Marita, J.; Hatfield, R. Cell wall composition throughout development for the model grass Brachypodium distachyon. Front. Plant Sci. 2012, 3, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raffrenato, E.; Fievisohn, R.; Cotanch, K.W.; Grant, R.J.; Chase, L.E.; Van Amburgh, M.E. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J. Dairy Sci. 2017, 100, 8119–8131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattler, S.E.; Funnell-Harris, D.L.; Pedersen, J.F. Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci. 2010, 178, 229–238. [Google Scholar] [CrossRef] [Green Version]
ABUNDANT | LIMITED | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | BMR | CON | BMR | p Value 2 | ||||||||||||
Tissue 1 | VT | R5 | VT | R5 | VT | R5 | VT | R5 | SEM | E | H | EH | M | EM | HM | EHM |
−−−−−−−−−−−−−−−−−−−−−−−−− IVNDFD, % NDF −−−−−−−−−−−−−−−−−−−− | ||||||||||||||||
Lower blade | 73.1 | ND 3 | 81.4 | ND | 72.9 | ND | 83.4 | ND | 3.55 | 0.76 | 0.04 | 0.72 | NA 4 | NA | NA | NA |
Upper blade | 82.3 | 73.3 | 81.9 | 76.3 | 73.3 | 58.3 | 74.4 | 63.8 | 2.61 | 0.02 | 0.01 | 0.11 | 0.01 | 0.50 | 0.33 | 0.99 |
Lower sheath | 58.1 | ND | 77.8 | ND | 58.2 | ND | 74.6 | ND | 3.51 | 0.52 | 0.02 | 0.50 | NA | NA | NA | NA |
Upper sheath | 70.6 | 59.4 | 82.3 | 70.3 | 72.2 | 54.1 | 81.3 | 66.7 | 2.85 | 0.15 | 0.01 | 0.84 | 0.01 | 0.40 | 0.80 | 0.69 |
Lower internode | 42.0 | 27.9 | 68.3 | 44.7 | 45.8 | 30.4 | 69.1 | 44.3 | 3.97 | 0.12 | 0.01 | 0.15 | 0.01 | 0.84 | 0.18 | 0.99 |
Upper internode | ND | 54.1 | ND | 65.3 | ND | 46.5 | ND | 65.0 | 4.59 | 0.44 | 0.07 | 0.47 | NA | NA | NA | NA |
ABUNDANT | LIMITED | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | BMR | CON | BMR | p Value 2 | ||||||||||||
Tissue 1 | VT | R5 | VT | R5 | VT | R5 | VT | R5 | SEM | E | H | EH | M | EM | HM | EHM |
−−−−−−−−−−−−−−−−−−−−−−−−− ABL, % PFCW−−−−−−−−−−−−−−−−−−−− | ||||||||||||||||
Lower blade | 13.8 | 21.0 | 13.2 | 18.1 | 14.4 | 18.5 | 14.1 | 18.5 | 2.03 | 0.81 | 0.23 | 0.31 | 0.04 | 0.61 | 0.79 | 0.71 |
Upper blade | 16.9 | 24.0 | 13.9 | 16.9 | 20.1 | 21.9 | 15.7 | 16.9 | 1.62 | 0.22 | 0.01 | 0.76 | 0.10 | 0.32 | 0.49 | 0.59 |
Lower sheath | 15.5 | 18.4 | 15.1 | 18.7 | 17.9 | 15.5 | 15.2 | 15.3 | 1.51 | 0.32 | 0.41 | 0.44 | 0.44 | 0.14 | 0.54 | 0.72 |
Upper sheath | 15.9 | 30.7 | 11.7 | 15.4 | 16.7 | 17.1 | 13.9 | 19.7 | 5.45 | 0.68 | 0.25 | 0.25 | 0.22 | 0.51 | 0.75 | 0.39 |
Lower internode | 22.8 | 25.3 | 20.1 | 24.0 | 24.2 | 28.3 | 17.8 | 20.0 | 3.41 | 0.84 | 0.14 | 0.33 | 0.28 | 0.99 | 0.96 | 0.76 |
Upper internode | 14.5 | 24.8 | 11.4 | 20.5 | 9.5 | 24.4 | 7.2 | 19.6 | 1.69 | 0.14 | 0.07 | 0.95 | 0.01 | 0.15 | 0.44 | 0.76 |
ABUNDANT | LIMITED | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | BMR | CON | BMR | p Value 2 | ||||||||||||
Tissue 1 | VT | R5 | VT | R5 | VT | R5 | VT | R5 | SEM | E | H | EH | M | EM | HM | EHM |
−−−−−−−−−−−−−−−−−−−−ARA, % PFCW−−−−−−−−−−−−−−−−−−−− | ||||||||||||||||
Lower blade | 5.7 | 4.1 | 5.9 | 3.8 | 5.2 | 4.0 | 5.2 | 3.3 | 0.55 | 0.40 | 0.46 | 0.88 | 0.02 | 0.63 | 0.40 | 0.98 |
Upper blade | 5.1 | 4.3 | 5.2 | 4.8 | 4.4 | 4.2 | 4.7 | 4.6 | 0.25 | 0.18 | 0.25 | 0.92 | 0.08 | 0.21 | 0.37 | 0.74 |
Lower sheath | 5.1 | 3.5 | 5.1 | 4.7 | 4.7 | 3.5 | 5.1 | 3.3 | 0.49 | 0.27 | 0.37 | 0.47 | 0.03 | 0.49 | 0.66 | 0.23 |
Upper sheath | 5.1 | 5.9 | 5.1 | 5.6 | 5.1 | 5.9 | 5.3 | 5.1 | 0.40 | 0.91 | 0.34 | 0.73 | 0.25 | 0.65 | 0.41 | 0.65 |
Lower internode | 1.9 | 1.6 | 2.7 | 2.7 | 2.4 | 2.0 | 2.5 | 2.4 | 0.16 | 0.18 | 0.01 | 0.07 | 0.46 | 0.46 | 0.20 | 0.56 |
Upper internode | 5.7 | 2.6 | 6.5 | 2.9 | 6.3 | 2.7 | 7.7 | 2.6 | 0.63 | 0.12 | 0.05 | 0.73 | 0.01 | 0.33 | 0.33 | 0.61 |
−−−−−−−−−−−−−−−−−−−−XYL, % PFCW −−−−−−−−−−−−−−−−−−−− | ||||||||||||||||
Lower blade | 24.7 | 22.5 | 30.0 | 21.9 | 23.9 | 24.0 | 28.3 | 19.4 | 2.10 | 0.57 | 0.48 | 0.43 | 0.04 | 0.83 | 0.08 | 0.64 |
Upper blade | 36.2 | 30.8 | 31.5 | 40.0 | 30.9 | 31.0 | 35.1 | 33.2 | 2.80 | 0.77 | 0.54 | 0.34 | 0.20 | 0.72 | 0.13 | 0.04 |
Lower sheath | 24.5 | 20.9 | 25.1 | 24.6 | 23.8 | 22.2 | 27.4 | 22.1 | 1.29 | 0.93 | 0.11 | 0.82 | 0.05 | 0.52 | 0.90 | 0.15 |
Upper sheath | 28.7 | 27.3 | 30.0 | 30.4 | 29.5 | 27.9 | 36.1 | 29.4 | 1.07 | 0.05 | 0.01 | 0.15 | 0.08 | 0.13 | 0.45 | 0.15 |
Lower internode | 24.2 | 24.4 | 25.2 | 32.4 | 24.3 | 25.9 | 25.0 | 28.2 | 1.42 | 0.50 | 0.05 | 0.20 | 0.05 | 0.60 | 0.12 | 0.28 |
Upper internode | 28.4 | 28.5 | 25.6 | 33.1 | 27.0 | 31.4 | 23.2 | 29.5 | 2.16 | 0.46 | 0.52 | 0.25 | 0.06 | 0.68 | 0.26 | 0.48 |
−−−−−−−−−−−−−−−−−−−−GLU, % PFCW−−−−−−−−−−−−−−−−−−−− | ||||||||||||||||
Lower blade | 41.4 | 41.5 | 39.6 | 35.2 | 40.5 | 50.3 | 38.5 | 39.3 | 5.81 | 0.56 | 0.30 | 0.80 | 0.71 | 0.41 | 0.45 | 0.80 |
Upper blade | 38.4 | 40.7 | 35.0 | 36.9 | 34.0 | 35.3 | 44.8 | 39.1 | 3.58 | 0.02 | 0.01 | 0.01 | 0.99 | 0.55 | 0.60 | 0.64 |
Lower sheath | 52.4 | 48.2 | 44.9 | 47.1 | 45.5 | 50.5 | 51.8 | 50.1 | 3.33 | 0.58 | 0.77 | 0.18 | 0.90 | 0.97 | 0.58 | 0.22 |
Upper sheath | 47.6 | 38.4 | 44.1 | 40.8 | 47.6 | 38.4 | 52.5 | 38.9 | 3.26 | 0.34 | 0.99 | 0.83 | 0.03 | 0.49 | 0.85 | 0.20 |
Lower internode | 47.3 | 47.4 | 51.3 | 47.6 | 51.1 | 49.2 | 39.9 | 43.0 | 2.27 | 0.28 | 0.20 | 0.08 | 0.63 | 0.34 | 0.81 | 0.12 |
Upper internode | 40.9 | 38.4 | 44.7 | 46.9 | 38.5 | 41.9 | 38.8 | 34.3 | 1.53 | 0.02 | 0.22 | 0.01 | 0.81 | 0.88 | 0.55 | 0.07 |
−−−−−−−−−−−−−−−−−−−−UA, % PFCW−−−−−−−−−−−−−−−−−−−− | ||||||||||||||||
Lower blade | 4.5 | 3.9 | 6.3 | 3.5 | 5.3 | 3.8 | 4.0 | 3.6 | 0.88 | 0.62 | 0.98 | 0.37 | 0.09 | 0.52 | 0.67 | 0.25 |
Upper blade | 4.5 | 3.3 | 4.1 | 3.0 | 3.6 | 2.9 | 3.2 | 3.0 | 0.31 | 0.07 | 0.26 | 0.70 | 0.06 | 0.29 | 0.57 | 0.82 |
Lower sheath | 4.2 | 4.3 | 3.8 | 4.3 | 3.8 | 4.5 | 3.7 | 4.3 | 0.48 | 0.83 | 0.68 | 0.98 | 0.23 | 0.60 | 0.86 | 0.75 |
Upper sheath | 3.4 | 4.0 | 3.7 | 4.3 | 3.8 | 5.3 | 3.8 | 3.9 | 0.53 | 0.27 | 0.56 | 0.19 | 0.19 | 0.85 | 0.48 | 0.48 |
Lower internode | 3.6 | 2.7 | 3.7 | 3.2 | 3.9 | 2.7 | 3.5 | 3.0 | 1.19 | 0.86 | 0.41 | 0.28 | 0.01 | 0.73 | 0.09 | 0.73 |
Upper internode | 5.7 | 3.3 | 7.0 | 3.3 | 6.6 | 3.0 | 7.8 | 3.2 | 0.55 | 0.16 | 0.04 | 0.85 | 0.01 | 0.27 | 0.20 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, G.; Thomas, S.E.; Teets, C.L.; Corl, B.A. Intrinsic and Extrinsic Factors Affecting Neutral Detergent Fiber (NDF) Digestibility of Vegetative Tissues in Corn for Silage. Agriculture 2023, 13, 1485. https://doi.org/10.3390/agriculture13081485
Ferreira G, Thomas SE, Teets CL, Corl BA. Intrinsic and Extrinsic Factors Affecting Neutral Detergent Fiber (NDF) Digestibility of Vegetative Tissues in Corn for Silage. Agriculture. 2023; 13(8):1485. https://doi.org/10.3390/agriculture13081485
Chicago/Turabian StyleFerreira, Gonzalo, Sarah E. Thomas, Christy L. Teets, and Benjamin A. Corl. 2023. "Intrinsic and Extrinsic Factors Affecting Neutral Detergent Fiber (NDF) Digestibility of Vegetative Tissues in Corn for Silage" Agriculture 13, no. 8: 1485. https://doi.org/10.3390/agriculture13081485
APA StyleFerreira, G., Thomas, S. E., Teets, C. L., & Corl, B. A. (2023). Intrinsic and Extrinsic Factors Affecting Neutral Detergent Fiber (NDF) Digestibility of Vegetative Tissues in Corn for Silage. Agriculture, 13(8), 1485. https://doi.org/10.3390/agriculture13081485