Rice-Fallow Targeting for Cropping Intensification through Geospatial Technologies in the Rice Belt of Northeast India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Ground Data
2.2.2. Earth Observation Data
2.3. Mapping
2.3.1. Rice Area Mapping
2.3.2. Rice-Fallow Mapping
2.3.3. Delineating Suitable Rice-Fallow Areas Based on Soil Moisture
2.4. Targeting Suitable Rice-Fallow Areas
3. Results
3.1. Variables Governing the Existence of Rice-Fallows
3.2. Rice Area Mapping
3.3. Rice-Fallow Mapping
3.4. Soil Moisture Suitability Analysis
3.5. Accuracy Assessment
3.6. Targeting Suitable Rice-Fallow Areas through Agronomic Interventions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [PubMed]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Wu, W.; Yu, Q.; You, L.; Chen, K.; Tang, H.; Liu, J. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy 2018, 76, 515–525. [Google Scholar] [CrossRef]
- Mutert, E.; Fairhurst, T.H. Developments in Rice Production in Southeast Asia. Better Crops Int. 2002, 15, 12–17. [Google Scholar]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.; Rao, M.N.; Mohammed, I.A.; Whitbread, A.M. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250|m time-series data. Int. J. Digit. Earth 2016, 9, 981–1003. [Google Scholar] [CrossRef]
- Yadav, G.S.; Lal, R.; Meena, R.S.; Datta, M.; Babu, S.; Das, A.; Layek, J.; Saha, P. Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J. Clean. Prod. 2017, 158, 29–37. [Google Scholar] [CrossRef]
- Naik, S.K.; Mali, S.S.; Jha, B.K.; Kumar, R.; Mondal, S.; Mishra, J.S.; Singh, A.K.; Biswas, A.K.; Choudhary, A.K.; Choudhary, J.S. Intensification of Rice-Fallow Agroecosystem of South Asia with Oilseeds and Pulses: Impacts on System Productivity, Soil Carbon Dynamics and Energetics. Sustainability 2023, 15, 1054. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Panda, B.B.; Tripathi, R.; Shahid, M.; Bihari, P.; Guru, P.K.; Singh, T.; Meena, R.L.; Nayak, A.K. Identification of energy and carbon efficient cropping system for ecological sustainability of rice fallow. Ecol. Indic. 2020, 115, 106431. [Google Scholar] [CrossRef]
- Ali, M.; Ghosh, P.; Hazra, K. Resource conservation technologies in rice fallow. In Resource Conservation Technology in Pulses, 1st ed.; Ghosh, P.K., Kumar, N., Venkatesh, M.S., Hazra, K.K., Nadarajan, N., Eds.; Scientific Publishers: Jodhpur, India, 2014; pp. 83–88. [Google Scholar]
- Singh, N.P.; Praharaj, C.S.; Sandhu, J.S. Utilizing untapped potential of rice fallow of East and North-east India through pulse production. Indian J. Genet. Plant Breed. 2016, 76, 388. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, J.S.; Rao, K.K.; Mondal, S.; Hazra, K.K.; Choudhary, J.S.; Hans, H.; Bhatt, B.P. Crop rotation and tillage management options for sustainable intensification of rice-fallow agro-ecosystem in eastern India. Sci. Rep. 2020, 10, 11146. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, J.S.; Upadhyay, P.K.; Hans, H. Rice fallows in the eastern India: Problems and prospects. Indian J. Agric. Sci. 2019, 89, 567–577. [Google Scholar] [CrossRef]
- Ghosh, P.; Hazra, K.; Nath, C.; Das, A.; Acharya, C. Scope, constraints and challenges of intensifying rice (Oryza sativa) fallows through pulses. Indian J. Agron. 2016, 61, S122–S128. [Google Scholar]
- Kar, G.; Kumar, A. Evaluation of post-rainy season crops with residual soil moisture and different tillage methods in rice fallow of eastern India. Agric. Water Manag. 2009, 96, 931–938. [Google Scholar] [CrossRef]
- Pande, S.; Sharma, M.; Ghosh, R. Role of Pulses in Sustaining Agricultural Productivity in the Rainfed Rice-Fallow Lands of India in Changing Climatic Scenario. In Proceedings of the National Symposium on Food Security in Context of Changing Climate, CSAUAT, Kanpur, India, 30 October–1 November 2010. [Google Scholar]
- Kumar, R.; Mishra, J.S.; Hans, H. Enhancing productivity of rice-fallows of eastern India through inclusion of pulses and oilseeds. Indian Farming 2018, 68, 7–10. [Google Scholar]
- Kumar, R.; Mishra, J.S.; Rao, K.K.; Bhatt, B.P.; Hazra, K.K.; Hans, H.; Mondal, S. Sustainable intensification of rice fallows of Eastern India with suitable winter crop and appropriate crop establishment technique. Environ. Sci. Pollut. Res. 2019, 26, 29409–29423. [Google Scholar] [CrossRef]
- Singh, A.K.; Chakraborti, M.; Datta, M. Improving Rice-Based Cropping Pattern Through Soil Moisture and Integrated Nutrient Management in Mid-Tropical Plain Zone of Tripura, India. Rice Sci. 2014, 21, 299–304. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.P.D.; Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P. A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sens. Environ. 2010, 114, 2637–2650. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Yan, H.; Xiao, X.; Huang, H.; Liu, J.; Chen, J.; Bai, X. Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data. Chin. Geogr. Sci. 2014, 24, 205–219. [Google Scholar] [CrossRef]
- Chen, C.F.; Son, N.T.; Chang, L.Y. Monitoring of rice cropping intensity in the upper Mekong Delta, Vietnam using time-series MODIS data. Adv. Space Res. 2012, 49, 292–301. [Google Scholar] [CrossRef]
- Paliwal, A.; Laborte, A.; Nelson, A.; Singh, R.K. Salinity stress detection in rice crops using time series MODIS VI data. Int. J. Remote Sens. 2019, 40, 8186–8202. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.K.; Sahoo, R.N.; Singh, R.; Pradhan, S.; Singh, S.; Krishna, G.; Pargal, S.; Mahapatra, S.K. Characterization and crop planning of rabi fallows using remote sensing and GIS. Curr. Sci. 2015, 108, 2051–2062. [Google Scholar]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.; Whitbread, A.M. Monitoring of Spatiotemporal Dynamics of Rabi Rice Fallows in South Asia Using Remote Sensing. In Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment; Reddy, G., Singh, S., Eds.; Springer: Cham, Switzerland, 2018; Volume 21. [Google Scholar] [CrossRef]
- Rahman, R.; Saha, S.K. Remote sensing, spatial multi criteria evaluation (SMCE) and analytical hierarchy process (AHP) in optimal cropping pattern planning for a flood prone area. J. Spat. Sci. 2008, 53, 161–177. [Google Scholar] [CrossRef]
- Conrad, C.; Schönbrodt-Stitt, S.; Löw, F.; Sorokin, D.; Paeth, H. Cropping Intensity in the Aral Sea Basin and Its Dependency from the Runoff Formation 2000–2012. Remote Sens. 2016, 8, 630. [Google Scholar] [CrossRef]
- Chandna, P.; Ladha, J.K.; Singh, U.P.; Punia, M.; Gupta, R.; Sidhu, B.S. Using remote sensing technologies to enhance resource conservation and agricultural productivity in underutilized lands of South Asia. Appl. Geogr. 2012, 32, 757–765. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef]
- Kolassa, J.; Reichle, R.H.; Draper, C.S. Merging active and passive microwave observations in soil moisture data assimilation. Remote Sens. Environ. 2017, 191, 117–130. [Google Scholar] [CrossRef]
- Das, K.; Paul, P.K. Present status of soil moisture estimation by microwave remote sensing. Cogent. Geosci. 2015, 1, 1084669. [Google Scholar] [CrossRef]
- Directorate of Economics and Statistics. Statistical Handbook Assam; Directorate of Economics & Statistics, Govt. of Assam: Guwahati, India, 2021. [Google Scholar]
- Ghosh, P.K.; Das, A.; Saha, R.; Kharkrang, E.; Tripathi, A.K.; Munda, G.C.; Ngachan, S.V. Conservation agriculture towards achieving food security in North East India. Curr. Sci. 2010, 99, 915–921. [Google Scholar]
- Bhattacharyya, A.; Mandal, R. A generalized stochastic production frontier analysis of technical efficiency of rice farming. Indian Growth Dev. Rev. 2016, 9, 114–128. [Google Scholar] [CrossRef]
- Hexagon. ERDAS IMAGINE 2020 Update 1. Hexagon, Stockholm. 2020. Available online: https://bynder.hexagon.com/m/4cce2965b2270e54/original/Hexagon_GSP_ERDAS_IMAGINE_2020_Release_Guide.pdf (accessed on 5 May 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 5 May 2022).
- ESRI. ArcGIS Desktop, Release 10.6.; Environmental Systems Research Institute, Inc.: Redlands, CA, USA, 2018.
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Ho, T.K. Random Decision Forest. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Chandna, P.K.; Mondal, S. Assessment of cropping intensity dynamics in Odisha using multitemporal Landsat TM and OLI images. J. Appl. Remote Sens. 2020, 14, 018504. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Mohapatra, K.P.; Das, A.; Das, P.T.; Nongkhlaw, L.; Fiyaz, R.A.; Ngachan, S.V.; Hazarika, S.; Rajkhowa, D.J.; Munda, G.C. Spatial variability in distribution of organic carbon stocks in the soils of North East India. Curr. Sci. 2013, 104, 604–614. [Google Scholar]
- Hanson, B.R.; Orloff, S.; Peters, D. Monitoring soil moisture helps refine irrigation management. Calif. Agric. 2000, 54, 38–42. [Google Scholar] [CrossRef]
- Rao, P.V.; Subbaiah, G.; Veeraraghavaiah, R. Productivity and Nutrient Uptake of Rice Fallow Maize (Zea mays L.) as Influenced by Plant Density and Fertilizer N Under No-Till Conditions. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 827–836. [Google Scholar] [CrossRef]
- Saud, J.; Bezbaruah, M.P. Open grazing and cropping intensity in the Brahmaputra Valley. Agric. Econ. Res. Rev. 2020, 33, 109. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ponce-Campos, G.; Zhang, M.; Chang, S.; Tian, F. Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images. Remote Sens. 2018, 10, 1200. [Google Scholar] [CrossRef]
- Singha, M.; Dong, J.; Zhang, G.; Xiao, X. High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Sci. Data 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Xu, S.; He, T. Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based Algorithm—A Implementation in Hangjiahu Plain in China Using GEE Platform. Remote Sens. 2021, 13, 990. [Google Scholar] [CrossRef]
- Das, A.; Lal, R.; Patel, D.P.; Idapuganti, R.G.; Layek, J.; Ngachan, S.V.; Ghosh, P.K.; Bordoloi, J.; Kumar, M. Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in North Eastern India. Soil Tillage Res. 2014, 143, 50–58. [Google Scholar] [CrossRef]
- Gautam, P.; Lal, B.; Panda, B.B.; Bihari, P.; Chatterjee, D.; Singh, T.; Nayak, P.K.; Nayak, A.K. Alteration in agronomic practices to utilize rice fallows for higher system productivity and sustainability. Field Crops Res. 2021, 260, 108005. [Google Scholar] [CrossRef]
- Chandna, P.K.; Mondal, S. Analyzing multi-year rice-fallow dynamics in Odisha using multi-temporal Landsat-8 OLI and Sentinel-1 Data. GISci. Remote Sens. 2020, 57, 431–449. [Google Scholar] [CrossRef]
- The Directorate of Agriculture. Irrigation. Available online: https://diragri.assam.gov.in/portlets/irrigation (accessed on 12 May 2023).
Data | Resolution (m) | Period of Acquisition | Year | No. of Tiles | Source | Description |
---|---|---|---|---|---|---|
Landsat 8 OLI | 30 | 1st November–30th April | 2018–2019 2019–2020 2020–2021 | 11 | NASA | Cropping systems mapping |
Sentinel-1 | 10 | 15th June–15th December | 2018 2019 2020 | 3 | ESA | Rice area mapping |
SMAP | 9000 | 1st November–30th April | 2018–2019 2019–2020 2020–2021 | 1 | NASA | Soil moisture suitability |
Random Forest (RF) | Neural Network (NN) | Support Vector Machine (SVM) | |||
---|---|---|---|---|---|
Parameter | Value | Parameter | Value | Parameter | Value |
ntree | 500 | Size | 5, 10, 15 | Cost | 0.2, 0,5, 0.1 |
mtry | 1, 2, 5 | Decay | 0.001, 0.01, 0.1 |
Model | Accuracy | Kappa |
---|---|---|
Random Forest (RF) | 0.897 | 0.789 |
Neural Network (NN) | 0.8031 | 0.597 |
Support Vector Machine (SVM) | 0.735 | 0.417 |
Outputs Generated | Year | User’s Accuracy (%) | Producer’s Accuracy (%) | Overall Accuracy (%) | Kappa |
---|---|---|---|---|---|
Rice | 2018–2019 | 95.3 | 81.8 | 91.9 | 0.83 |
2019–2020 | 85.7 | 86.0 | 86.0 | 0.72 | |
2020–2021 | 90.2 | 94.0 | 92.0 | 0.84 | |
Rice-fallow | 2018–2019 | 86.1 | 97.1 | 94.9 | 0.90 |
2019–2020 | 87.7 | 85.8 | 90.0 | 0.80 | |
2020–2021 | 93.0 | 93.8 | 92.9 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, A.K.; Borah, S.B.; Ghosh Dastidar, P.; Sharma, A.; Gogoi, D.; Goswami, P.; Deka, G.; Khandai, S.; Borgohain, R.; Singh, S.; et al. Rice-Fallow Targeting for Cropping Intensification through Geospatial Technologies in the Rice Belt of Northeast India. Agriculture 2023, 13, 1509. https://doi.org/10.3390/agriculture13081509
Srivastava AK, Borah SB, Ghosh Dastidar P, Sharma A, Gogoi D, Goswami P, Deka G, Khandai S, Borgohain R, Singh S, et al. Rice-Fallow Targeting for Cropping Intensification through Geospatial Technologies in the Rice Belt of Northeast India. Agriculture. 2023; 13(8):1509. https://doi.org/10.3390/agriculture13081509
Chicago/Turabian StyleSrivastava, Amit Kumar, Suranjana Bhaswati Borah, Payel Ghosh Dastidar, Archita Sharma, Debabrat Gogoi, Priyanuz Goswami, Giti Deka, Suryakanta Khandai, Rupam Borgohain, Sudhanshu Singh, and et al. 2023. "Rice-Fallow Targeting for Cropping Intensification through Geospatial Technologies in the Rice Belt of Northeast India" Agriculture 13, no. 8: 1509. https://doi.org/10.3390/agriculture13081509
APA StyleSrivastava, A. K., Borah, S. B., Ghosh Dastidar, P., Sharma, A., Gogoi, D., Goswami, P., Deka, G., Khandai, S., Borgohain, R., Singh, S., & Bhattacharyya, A. (2023). Rice-Fallow Targeting for Cropping Intensification through Geospatial Technologies in the Rice Belt of Northeast India. Agriculture, 13(8), 1509. https://doi.org/10.3390/agriculture13081509