Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Designing
2.2. Data Acquisition
2.2.1. UAS Platform and Data Acquisition
2.2.2. Crop Height and AGB Measurement
2.2.3. Meteorological Data
2.3. Method
2.3.1. Spectral, Structural and Metrological Indicators
2.3.2. SM-CSRM: Data Fusion of Selected VI, mCHM and nGDD
2.3.3. Regression Model and Validation
3. Results
3.1. Correlation Analysis between AGB and VIs
3.2. Determination of the Proposed SM-CSRM
3.2.1. Correlation between Measured AGB and Different Proposed Metrics
3.2.2. Function Fitting between Different Proposed Metrics and Measured AGB
3.3. AGB Estimation and Mapping
3.3.1. Performance Comparison of Data Fusion Using Pixel Level or Feature Level
3.3.2. Statistical Modelling of Wheat AGB
3.3.3. AGB Mapping
4. Discussion
4.1. Advantages of VIs Combining with CHM and GDD
4.2. The Response of Estimated Crop Biomass to Typical Soil Profiles in Reclaimed Cropland
4.3. The Implications and Applicability of the Proposed SM-CSRM
4.4. Limitations and Future Work of the Proposed SM-CSRM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NO. | VI Name | Equation |
---|---|---|
1 | Simple ratio vegetation index, SR | |
2 | Modified ratio vegetation index, MSR | |
3 | Normalized difference vegetation index, NDVI | |
4 | Renormalized difference vegetation index, RDVI | |
5 | Enhanced vegetation index, EVI | |
6 | Difference vegetation index, DVI | |
7 | Triangular vegetation index, TVI | |
8 | Optimized soil adjustment vegetation index, OSAVI | |
9 | Modified soil adjustment vegetation index, MSAVI | |
10 | Modified Nonlinear vegetation index, MNLI | |
11 | MERIS Terrestrial Chlorophyll Index, MTCI | |
12 | Soil adjustment vegetation index, SAVI | |
13 | Chlorophyll vegetation index—green, CIgreen | |
14 | Simple ratio vegetation index—red edge, SRreg | |
15 | Modified ratio vegetation index—red edge, MSRreg | |
16 | Normalized difference vegetation index—red edge, NDVIreg | |
17 | Renormalized difference vegetation index—red edge, RDVIreg | |
18 | Enhanced vegetation index—red edge, EVIreg | |
19 | Difference vegetation index—red edge, DVIreg | |
20 | Triangular vegetation index—red edge, TVIreg | |
21 | Optimized soil adjustment vegetation index—red edge, OSAVIreg | |
22 | Modified soil adjustment vegetation index, MSAVIreg | |
23 | Modified Nonlinear vegetation index—red edge, MNLIreg | |
24 | Soil adjustment vegetation index, SAVIreg | |
25 | Chlorophyll vegetation index—red edge, CIreg |
References
- Avolio, M.L.; Hoffman, A.M.; Smith, M.D. Linking gene regulation, physiology, and plant biomass allocation in Andropogon gerardii in response to drought. Plant Ecol. 2018, 219, 1–15. [Google Scholar] [CrossRef]
- Luis Araus, J.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef]
- Ren, H.; Xiao, W.; Zhao, Y.; Hu, Z. Land damage assessment using maize aboveground biomass estimated from unmanned aerial vehicle in high groundwater level regions affected by underground coal mining. Environ. Sci. Pollut. Res. 2020, 27, 21666–21679. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, W.; Xiao, W.; Zhang, S.; Lv, X.; Zhang, J. Rapid monitoring of reclaimed farmland effects in coal mining subsidence area using a multi-spectral UAV platform. Environ. Monit. Assess. 2020, 192, 474. [Google Scholar] [CrossRef] [PubMed]
- Hensgen, F.; Bühle, L.; Wachendorf, M. The effect of harvest, mulching and low-dose fertilization of liquid digestate on above ground biomass yield and diversity of lower mountain semi-natural grasslands. Agric. Ecosyst. Environ. 2016, 216, 283–292. [Google Scholar] [CrossRef]
- Bhandari, M.; Ibrahim, A.M.H.; Xue, Q.; Jung, J.; Chang, A.; Rudd, J.C.; Maeda, M.; Rajan, N.; Neely, H.; Landivar, J. Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV). Comput. Electron. Agric. 2020, 176, 105665. [Google Scholar] [CrossRef]
- Vergara-Diaz, O.; Zaman-Allah, M.A.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L. A novel Remote Sensing approach for prediction of maize yield under different conditions of nitrogen fertilization. Front. Plant Sci. 2016, 7, 666. [Google Scholar] [CrossRef]
- Breiman, A.; Graur, D. Wheat evolution. Isr. J. Plant Sci. 1995, 43, 85–98. [Google Scholar] [CrossRef]
- Marshall, M.; Thenkabail, P. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM plus, and MODIS vegetation indices in crop biomass estimation. ISPRS J. Photogramm. Remote Sens. 2015, 108, 205–218. [Google Scholar] [CrossRef]
- Poley, L.G.; McDermid, G.J. A Systematic Review of the Factors Influencing the Estimation of Vegetation Aboveground Biomass Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 1052. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Huang, N.; Wang, C.; Gao, S.; Wu, C. Airborne LiDAR technique for estimating biomass components of maize A case study in Zhangye City, Northwest China. Ecol. Indic. 2015, 57, 486–496. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Maimaitiyiming, M.; Hartling, S.; Peterson, K.T.; Maw, M.J.W.; Shakoor, N.; Mockler, T.; Fritschi, F.B. Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 27–41. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef]
- Jiang, Q.; Fang, S.; Peng, Y.; Gong, Y.; Zhu, R.; Wu, X.; Ma, Y.; Duan, B.; Liu, J. UAV-based biomass estimation for rice-combining spectral, TIN-based structural and meteorological features. Remote Sens. 2019, 11, 890. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-ground biomass estimation yield prediction in potato by using UAV-based, R.G.B.; hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. Estimating aboveground biomass leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sens. Environ. 2015, 164, 26–35. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Xie, R.; Li, S. Integrating satellite-derived climatic and vegetation indices to predict smallholder maize yield using deep learning. Agric. Forest Meteorol. 2021, 311, 108666. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Del Campo, A.; Moreno, M.A. Combined use of agro-climatic very high-resolution remote sensing information for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 66–75. [Google Scholar] [CrossRef]
- Prabhakara, K.; Hively, W.D.; McCarty, G.W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C.; Dong, W.; Li, X.; Zhang, Y.; Qin, S.; Oenema, O. Carbon budget of a winter-wheat and summer-maize rotation cropland in the north china plain. Agric. Ecosyst. Environ. 2015, 206, 33–45. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Li, Z.; Zhou, C.; Xu, K. Mapping winter-wheat biomass grain yield based on a crop model UAV remote sensing. Int. J. Remote Sens. 2020, 42, 1577–1601. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Z.; Zhao, Y.; Xiao, W.; Yang, K.; Chen, J. Estimating canopy surface height of wheat corn crops in reclaimed cropland using multispectral images from a small unmanned aircraft system. J. Appl. Remote Sens. 2021, 15, 034506. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, Q.; Wang, W. Research on Biological Zero and Accumulated Temperature of 11 Kinds of Plant Seeds Germination in the North China Plain. Chin. Wild Plant Resour. 2014, 32, 20–23. [Google Scholar]
- Wan, L.; Zhang, J.; Dong, X.; Du, X.; Zhu, J.; Sun, D.; Liu, Y.; He, Y.; Cen, H. Unmanned aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from PROSAIL model. Comput. Electron. Agric. 2021, 187, 106304. [Google Scholar] [CrossRef]
- Li, J.; Wijewardane, N.K.; Ge, Y.; Shi, Y. Improved chlorophyll and water content estimations at leaf level with a hybrid radiative transfer and machine learning model. Comput. Electron. Agric. 2023, 206, 107669. [Google Scholar] [CrossRef]
- Hu, Z.; Shao, F.; McSweeney, K. Reclaiming subsided land with Yellow River sediments: Evaluation of soil-sediment columns. Geoderma 2017, 307, 210–219. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Moreno, M.Á. FORETo: New software for reference evapotranspiration forecasting. J. Arid Environ. 2016, 124, 128–141. [Google Scholar] [CrossRef]
Date | Days after Sowing (DAS) | GDD (°C·d) | nGDD | Notes |
---|---|---|---|---|
5 October 2016 | 1 | 12.3 | 0.0131 | sowing |
23 April 2017 | 201 | 346 | 0.3699 | |
14 May 2017 | 222 | 568.8 | 0.6080 | |
8 June 2017 | 247 | 935.4 | 1 | harvest |
NO. | Fitting Function | Function Equation |
---|---|---|
1 | Linear function | Y = aX + b |
2 | Polynomial function | Y = aX2 + bX + c |
3 | Power function | Y = aXb |
4 | Exponential function | Y = ae (bX) |
5 | Logarithmic function | Y = alnX + b |
NO. | VIs | Pearson Correlation (r) | Spearman Rank-Order Correlation (rs) |
---|---|---|---|
1 | CIgreen | 0.3311 ** | 0.3919 ** |
2 | CIreg | 0.8253 ** | 0.8375 ** |
3 | DVI | 0.8396 ** | 0.8344 ** |
4 | DVIreg | 0.8686 ** | 0.8637 ** |
5 | EVI | 0.7981 ** | 0.8147 ** |
6 | EVIreg | 0.8625 ** | 0.8654 ** |
7 | MNLI | 0.8035 ** | 0.816 ** |
8 | MNLIreg | 0.8636 ** | 0.8641 ** |
9 | MSAVI | 0.8527 ** | 0.8277 ** |
10 | MSAVIreg | 0.8589 ** | 0.8396 ** |
11 | MSR | −0.5764 ** | −0.5614 ** |
12 | MSRreg | 0.8248 ** | 0.8367 ** |
13 | MTCI | 0.8816 ** | 0.8884 ** |
14 | NDVI | −0.4982 ** | −0.5426 ** |
15 | NDVIreg | 0.8222 ** | 0.8358 ** |
16 | OSAVI | 0.5999 ** | 0.6429 ** |
17 | OSAVIreg | 0.8482 ** | 0.8516 ** |
18 | RDVI | 0.7622 ** | 0.7834 ** |
19 | RDVIreg | 0.8611 ** | 0.8647 ** |
20 | SAVI | 0.7863 ** | 0.8053 ** |
21 | SAVIreg | 0.8609 ** | 0.8646 ** |
22 | SR | −0.588 ** | −0.5655 ** |
23 | SRreg | 0.8253 ** | 0.8375 ** |
24 | TVI | 0.8338 ** | 0.8323 ** |
25 | TVIreg | 0.8754 ** | 0.881 ** |
NO. | Input Variable | Fitting Type | Optimal Fitting Result | R2 | RMSE (kg/m2) |
---|---|---|---|---|---|
1 | DVIreg × mCHM × nGDD | Linear | y = 9.764x + 0.3115 | 0.7831 | 0.1804 |
Polynomial | y = −54.67x2 + 16.77x + 0.1572 | 0.7987 | 0.1751 | ||
Power | y = 5.167x0.6055 | 0.7956 | 0.1752 | ||
Exponential | y = 0.4594exp(10.08x) | 0.7425 | 0.1966 | ||
Logarithmic | y = 0.4936ln(x) + 2.389 | 0.7803 | 0.1816 | ||
2 | EVIreg × mCHM × nGDD | Linear | y = 18.67x + 0.2825 | 0.7813 | 0.1812 |
Polynomial | y = −185x2 + 31.7x + 0.1181 | 0.7953 | 0.1765 | ||
Power | y = 8.446x0.645 | 0.7890 | 0.1768 | ||
Exponential | y = 0.447exp(19.22x) | 0.7411 | 0.1972 | ||
Logarithmic | y = 0.5303ln(x) + 2.805 | 0.7774 | 0.1828 | ||
3 | MSAVI × mCHM × nGDD | Linear | y = 2.668x + 0.2141 | 0.7990 | 0.1737 |
Polynomial | y = −1.973x2 + 3.707x + 0.1109 | 0.8026 | 0.1733 | ||
Power | y = 2.487x0.7281 | 0.8018 | 0.1725 | ||
Exponential | y = 0.4017exp(2.868x) | 0.7719 | 0.1850 | ||
Logarithmic | y = 0.5883ln(x) + 1.779 | 0.7791 | 0.1821 | ||
4 | MTCI × mCHM × nGDD | Linear | y = 1.584x + 0.2922 | 0.7853 | 0.1795 |
Polynomial | y = −1.541x2 + 2.865x + 0.1026 | 0.8058 | 0.1719 | ||
Power | y = 1.725x0.6351 | 0.7997 | 0.1734 | ||
Exponential | y = 0.4586exp(1.593x) | 0.7371 | 0.1987 | ||
Logarithmic | y = 0.5309ln(x) + 1.508 | 0.7905 | 0.1774 | ||
5 | TVIreg × mCHM × nGDD | Linear | y = 0.2435x + 0.4179 | 0.7777 | 0.1827 |
Polynomial | y = −0.0449x2 + 0.4419x + 0.2934 | 0.8090 | 0.1705 | ||
Power | y = 0.7112x0.4615 | 0.8035 | 0.1718 | ||
Exponential | y = 0.5258exp(0.2408x) | 0.7218 | 0.2044 | ||
Logarithmic | y = 0.351ln(x) + 0.7836 | 0.7637 | 0.1883 |
Way of Data Fusion | Independent Variable | R2 | RMSE (kg/m2) | nRMSE (%) |
---|---|---|---|---|
Pixel-level | (MTCI × mCHM × nGDD)_mean | 0.8069 | 0.1667 | 19.62 |
Feature-level | MTCI_mean × mCHM_mean × nGDD | 0.8046 | 0.1674 | 19.71 |
Pixel-level | (TVIreg × mCHM × nGDD)_mean | 0.7865 | 0.1724 | 20.29 |
Feature-level | TVIreg_mean × mCHM_mean × nGDD | 0.7788 | 0.1748 | 20.58 |
Input Variables | Dataset | R2 | RMSE (kg/m2) | nRMSE (%) |
---|---|---|---|---|
MTCI × mCHM × nGDD | Training | 0.7840 | 0.1823 | 21.46 |
TVIreg × mCHM × nGDD | Training | 0.7935 | 0.1782 | 20.98 |
MTCI × mCHM × nGDD | Validation | 0.8069 | 0.1667 | 19.62 |
TVIreg × mCHM × nGDD | Validation | 0.7865 | 0.1724 | 20.29 |
Independent Variable | Regression Method | R2 | RMSE (kg/m2) | nRMSE (%) |
---|---|---|---|---|
MTCI | Polynomial | 0.8007 | 0.1682 | 19.80 |
mCHM | Polynomial | 0.6609 | 0.2110 | 24.84 |
MTCI × mCHM | Polynomial | 0.7363 | 0.1959 | 23.06 |
mCHM × nGDD | Polynomial | 0.7945 | 0.1750 | 20.61 |
MTCI × mCHM × nGDD | Polynomial | 0.8069 | 0.1667 | 19.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, Y.; Hu, Z.; Xiao, W. Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data. Agriculture 2023, 13, 1621. https://doi.org/10.3390/agriculture13081621
Zhang J, Zhao Y, Hu Z, Xiao W. Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data. Agriculture. 2023; 13(8):1621. https://doi.org/10.3390/agriculture13081621
Chicago/Turabian StyleZhang, Jianyong, Yanling Zhao, Zhenqi Hu, and Wu Xiao. 2023. "Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data" Agriculture 13, no. 8: 1621. https://doi.org/10.3390/agriculture13081621
APA StyleZhang, J., Zhao, Y., Hu, Z., & Xiao, W. (2023). Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data. Agriculture, 13(8), 1621. https://doi.org/10.3390/agriculture13081621