Lethal and Sublethal Effects of an Essential Oil-Based Emulsion of Patchouli, Pogostemon cablin (Lamiaceae), on the Tomato Leafminer
Abstract
:1. Introduction
2. Material and Methods
2.1. Insects
2.2. Emulsion
2.3. Bioassays
2.4. Dose–Response Curve
2.5. Time-Mortality Bioassay
2.6. Oviposition Rate
2.7. Oviposition Preference
2.8. Statistical Analyses
3. Results
3.1. Dose-Mortality Bioassay
3.2. Time-Mortality Bioassay
3.3. Oviposition
3.4. Oviposition Preference
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guedes, R.N.C.; Picanço, M.C. The tomato borer Tuta absoluta in South America: Pest status, management and insecticide resistance. EPPO Bull. 2012, 42, 211–216. [Google Scholar] [CrossRef]
- Campos, M.R.; Biondi, A.; Adiga, A.; Guedes, R.N.C.; Desneux, N. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 2017, 90, 787–796. [Google Scholar] [CrossRef]
- Biondi, A.; Guedes, R.N.C.; Wan, F.-H.; Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: Past, present, and future. Annu. Rev. Entomol. 2018, 63, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.A.; Picanço, M.C.; Bacci, L.; Crespo, A.L.B.; Rosado, J.F.; Guedes, R.N.C. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag. Sci. 2011, 67, 913–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muszinski, T.; Lavendowski, I.M.; Maschio, L.M.d.A. Constatação de Scrobipalpula absoluta (Meyrick, 1917) [=Gnorimoschema absoluta] (Lepidoptera, Gelechiidae), como praga do tomateiro (Lycopersicon esculentum Mill.), no litoral do Paraná. An. Soc. Entomológica Bras. 1982, 11, 291–292. [Google Scholar] [CrossRef]
- Galdino, d.S.T.V.; Picanço, M.C.; Ferreira, D.O.; Silva, G.A.R.; de Souza, T.C.; Silva, G.A. Is the performance of a specialist herbivore affected by female choices and the adaptability of the offspring? PLoS ONE 2015, 10, e0143389. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Luna, M.G.; Guillemaud, T.; Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: The new threat to tomato world production. J. Pest Sci. 2011, 84, 403–408. [Google Scholar] [CrossRef]
- EPPO. EPPO’s Plant Quarantine Data Retrieval System, Version 4.6. 2007. Available online: http://www.eppo.org/DATABASES/pqr/pqr.htm (accessed on 25 November 2022).
- Sousa, A.H.; Faroni, L.R.A.; Guedes, R.N.C. Locomotor behavior of Sitophilus zeamais populations under sublethal ozone exposure. J. Pest Sci. 2017, 90, 239–247. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Rani, P.U.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An overview of micro- and nanoemulsions as vehicles for essential oils: Formulation, preparation and stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Lucia, A.; Guzmán, E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv. Colloid Interface Sci. 2021, 287, 102330. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Chang, F.-Y.; Hung, D.-K. Terpene microemulsions for transdermal curcumin delivery: Effects of terpenes and cosurfactants. Colloids Surf. B Biointerfaces 2011, 82, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Werdin González, J.O.; Stefanazzi, N.; Murray, A.P.; Ferrero, A.A.; Band, B.F. Novel nanoinsecticides based on essential oils to control the German cockroach. J. Pest Sci. 2015, 88, 393–404. [Google Scholar] [CrossRef]
- Rocha, A.G.; Oliveira, B.M.S.; Melo, C.R.; Sampaio, T.S.; Blank, A.F.; Lima, A.D.; Nunes, R.S.; Araújo, A.P.A.; Cristaldo, P.F.; Bacci, L. Lethal effect and behavioral responses of leaf-cutting ants to essential oil of Pogostemon cablin (Lamiaceae) and its nanoformulation. Neotrop. Entomol. 2018, 47, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.A.; Farder-Gomes, C.F.; Ribeiro, A.V.; Costa, T.L.; França, J.C.O.; Bacci, L.; Demuner, A.J.; Serrão, J.E.; Picanço, M.C. Lethal and sublethal effects of an emulsion based on Pogostemon cablin (Lamiaceae) essential oil on the coffee berry borer, Hypothenemus hampei. Environ. Sci. Pollut. Res. 2022, 29, 45763–45773. [Google Scholar] [CrossRef]
- Montefuscoli, A.R.; González, J.O.W.; Palma, S.D.; Ferrero, A.A.; Band, B.F. Design and development of aqueous nanoformulations for mosquito control. Parasitol. Res. 2014, 113, 793–800. [Google Scholar] [CrossRef]
- Ga’al, H.; Fouad, H.; Mao, G.; Tian, J.; Jianchu, M. Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1171–1179. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.-X.; Wang, Y.; You, C.-X.; Guo, S.-S.; Du, Y.-S.; Du, S.-S. Bioactivities of patchoulol and phloroacetophenone from Pogostemon cablin essential oil against three insects. Int. J. Food Prop. 2019, 22, 1365–1374. [Google Scholar] [CrossRef] [Green Version]
- Lima Santos, L.; Brandão, L.B.; da Costa, A.L.P.; Martins, R.L.; Rodrigues, A.B.L.; Lobato, A.A.; da Silva de Almeida, S.S.M. Bioinsecticidal and pharmacological activities of the essential oil of Pogostemon cablin benth leaves: A Review. Pharmacogn. Rev. 2022, 16, 139–145. [Google Scholar] [CrossRef]
- Gantner, M.; Najda, A.; Piesik, D. Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphid. Plant Prot. Sci. 2019, 55, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Piesik, D.; Wenda-Piesik, A.; Krasińska, A.; Wrzesińska, D.; Delaney, K.J. Volatile organic compounds released by Rumex confertus following Hypera rumicis herbivory and weevil responses to volatiles. J. Appl. Entomol. 2016, 140, 308–316. [Google Scholar] [CrossRef]
- Yarou, B.B.; Bawin, T.; Boullis, A.; Heukin, S.; Lognay, G.; Verheggen, F.J.; Francis, F. Oviposition deterrent activity of basil plants and their essentials oils against Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Sci. Pollut. Res. 2018, 25, 29880–29888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genç, H. The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae): Pupal key characters for sexing individuals. Turk. J. Zool. 2016, 40, 801–805. [Google Scholar] [CrossRef]
- Nayana, B.P.; Kalleshwaraswamy, C.M. Biology and external morphology of invasive tomato leaf miner, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). Pest Manag. Hortic. Ecosyst. 2015, 21, 169–174. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Therneau, T.M.; Lumley, T.; Elizabeth, A.; Cynthia, C. Survival: Survival Analysis. 2022. Available online: https://cran.r-project.org/web/packages/survival/survival.pdf (accessed on 25 November 2022).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Lenth, R.V.; Buerkner, P.; Giné-Vázquez, I.; Herve, M.; Jung, M.; Love, J.; Miguez, F.; Riebl, H.; Singmann, H. Emmeans: Estimated Marginal Means, aka Least-Squares Means. 2023. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 27 November 2022).
- Gierer, F.; Vaughan, S.; Slater, M.; Thompson, H.M.; Elmore, J.S.; Girling, R.D. A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure. Environ. Pollut. 2019, 249, 236–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; Megharaj, M. Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? Sci. Total Environ. 2019, 654, 177–189. [Google Scholar] [CrossRef]
- Upadhayay, J.; Rana, M.; Juyal, V.; Bisht, S.S.; Joshi, R. Impact of pesticide exposure and associated health effects. In Pesticides in Crop Production; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 69–88. [Google Scholar]
- Zhu, Q.; Yang, Y.; Zhong, Y.; Lao, Z.; O’Neill, P.; Hong, D.; Zhang, K.; Zhao, S. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere 2020, 254, 126779. [Google Scholar] [CrossRef]
- Barradas, T.N.; de Holanda e Silva, K.G. Nanoemulsions as optimized vehicles for essential oils. In Sustainable Agriculture Reviews 44: Pharmaceutical Technology for Natural Products Delivery Vol. 2 Impact of Nanotechnology, Sustainable Agriculture Reviews; Saneja, A., Panda, A.K., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 115–167. [Google Scholar]
- Gaire, S.; Lewis, C.D.; Booth, W.; Scharf, M.E.; Zheng, W.; Ginzel, M.D.; Gondhalekar, A.D. Bed bugs, Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils. Pestic. Biochem. Physiol. 2020, 169, 104667. [Google Scholar] [CrossRef] [PubMed]
- Oladipupo, S.O.; Hu, X.P.; Appel, A.G. Essential oils in urban insect management—A review. J. Econ. Entomol. 2022, 115, 1375–1408. [Google Scholar] [CrossRef] [PubMed]
- Şengül Demirak, M.Ş.; Canpolat, E. Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects 2022, 13, 162. [Google Scholar] [CrossRef]
- Shahzad, K.; Manzoor, F. Nanoformulations and their mode of action in insects: A review of biological interactions. Drug Chem. Toxicol. 2021, 44, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alves, T.; Cruz, G.; Wanderley-Teixeira, V.; Teixeira, A.; Oliveira, J.; Correia, A.; Câmara, C.; Cunha, F. Effects of Piper hispidinervum on spermatogenesis and histochemistry of ovarioles of Spodoptera frugiperda. Biotech. Histochem. 2014, 89, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Cruz, G.; Teixeira, V.; Oliveira, J.; Teixeira, A.; Araújo, A.; Alves, T.; Magliano, F.; Breda, M. Histological and histochemical changes by clove essential oil upon the gonads of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Int. J. Morphol. 2015, 33, 1393–1400. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.-W.; Li, A.-L.; Wan, F.-H.; Liu, W.-X.; Johnson, D. Effects of plant essential oils on immature and adult sweetpotato whitefly, Bemisia tabaci biotype B. Crop Prot. 2010, 29, 1200–1207. [Google Scholar] [CrossRef]
Treatment | n (Number of Insects) | LD50 (CI95%) (µg of Formulation/mg of Insect) | LD90 (CI95%) (µg of Formulation/mg of Insect) | Slope | χ2 | p |
---|---|---|---|---|---|---|
Essential oil of patchouli | 200 | 9.86 (6.95–12.5) | 21.7 (16.4–38.7) | 3.74 ± 0.38 | 5.82 | 0.12 |
EO-based emulsion | 240 | 14.0 (12.1–16.0) | 36.2 (29.5–49.7) | 3.10 ± 0.40 | 2.37 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, T.L.; Santos, R.C.d.; Santos, A.A.; Pimentel, E.d.S.; Lima, E.; Batista, C.V.; Bacci, L.; Freitas, D.R.d.; Picanço, M.C. Lethal and Sublethal Effects of an Essential Oil-Based Emulsion of Patchouli, Pogostemon cablin (Lamiaceae), on the Tomato Leafminer. Agriculture 2023, 13, 1540. https://doi.org/10.3390/agriculture13081540
Costa TL, Santos RCd, Santos AA, Pimentel EdS, Lima E, Batista CV, Bacci L, Freitas DRd, Picanço MC. Lethal and Sublethal Effects of an Essential Oil-Based Emulsion of Patchouli, Pogostemon cablin (Lamiaceae), on the Tomato Leafminer. Agriculture. 2023; 13(8):1540. https://doi.org/10.3390/agriculture13081540
Chicago/Turabian StyleCosta, Thiago Leandro, Renata Cordeiro dos Santos, Abraão Almeida Santos, Emílio de Souza Pimentel, Eraldo Lima, Claudio Vieira Batista, Leandro Bacci, Damaris Rosa de Freitas, and Marcelo Coutinho Picanço. 2023. "Lethal and Sublethal Effects of an Essential Oil-Based Emulsion of Patchouli, Pogostemon cablin (Lamiaceae), on the Tomato Leafminer" Agriculture 13, no. 8: 1540. https://doi.org/10.3390/agriculture13081540
APA StyleCosta, T. L., Santos, R. C. d., Santos, A. A., Pimentel, E. d. S., Lima, E., Batista, C. V., Bacci, L., Freitas, D. R. d., & Picanço, M. C. (2023). Lethal and Sublethal Effects of an Essential Oil-Based Emulsion of Patchouli, Pogostemon cablin (Lamiaceae), on the Tomato Leafminer. Agriculture, 13(8), 1540. https://doi.org/10.3390/agriculture13081540