Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measuring Environmental Performance
2.2. Measuring Economic Performance
3. Results
3.1. Effect of Crop Rotation on NUE
3.2. Effect of Crop Rotation on Gross Margin
3.3. Effect of Tillage Type on NUE
3.4. Effect of Tillage Type on Gross Margin
3.5. Environmental and Economic Performance of Catch Crops
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camaréna, S. Artificial intelligence in the design of the transitions to sustainable food systems. J. Clean. Prod. 2020, 271, 122574. [Google Scholar] [CrossRef]
- Fridman, D.; Koellner, T.; Kissinger, M. Exploring global interregional food system’s sustainability using the functional regions typology. Glob. Environ. Chang. 2021, 68, 102276. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Antle, J.M.; Crissman, C.C.; Bowen, W. The trade-off analysis model: Integrated biophysical and economic modeling of agricultural production systems. Agric. Syst. 2004, 80, 43–66. [Google Scholar] [CrossRef]
- Vastola, A.; Zdruli, P.; D’Amico, M.; Pappalardo, G.; Viccaro, M.; Di Napoli, F.; Cozzi, M.; Romano, S. A comparative multidimensional evaluation of conservation agriculture systems: A case study from a Mediterranean area of Southern Italy. Land Use Policy 2017, 68, 326–333. [Google Scholar] [CrossRef]
- Špička, J.; Vintr, T.; Aulová, R.; Macháčková, J. Trade-off between the economic and environmental sustainability in Czech dual farm structure. Agric. Econ. 2020, 66, 243–250. [Google Scholar] [CrossRef]
- Deng, J.; Ni, H.; Zhang, Z.; Usman, S.; Yang, X.; Shen, Y.; Li, Y. Designing productive, energy-efficient, and environmentally friendly production systems by replacing fallow period with annual forage cultivation on the Loess Plateau of China. J. Clean. Prod. 2021, 320, 128660. [Google Scholar] [CrossRef]
- European Parliament. Green Deal: Key to a Climate-Neutral and Sustainable EU. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20200618STO81513/green-deal-key-to-a-climate-neutral-and-sustainable-eu (accessed on 15 June 2023).
- Marvin, H.J.; Bouzembrak, Y.; Van der Fels-Klerx, H.J.; Kempenaar, C.; Veerkamp, R.; Chauhan, A.; Stroosnijder, S.; Top, J.; Simsek-Senel, G.; Vrolijk, H.; et al. Digitalisation and Artificial Intelligence for sustainable food systems. Trends Food Sci. Technol. 2022, 120, 344–348. [Google Scholar] [CrossRef]
- European Parliament. Creating a Sustainable Food System: The EU’s Strategy. Available online: https://www.europarl.europa.eu/news/en/headlines/priorities/climate-change/20200519STO79425/creating-a-sustainable-food-system-the-eu-s-strategy (accessed on 15 June 2023).
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System. Available online: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 15 June 2023).
- European Parliament and the Council of the EU. Regulation 2020/852 (the Taxonomy Regulation). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32020R0852 (accessed on 15 June 2023).
- Eurostat. Agriculture. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 15 June 2023).
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia y Garcia, A.; Gaudin, A.C.M.; et al. Long-Term Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Dalgaard, T.; Hansen, B.; Hasler, B.; Hertel, O.; Hutchings, N.J.; Jacobsen, B.H.; Jensen, L.S.; Kronvang, B.; Olesen, J.E.; Schjørring, J.K.; et al. Policies for agricultural nitrogen management—Trends, challenges and prospects for improved efficiency in Denmark. Environ. Res. Lett. 2014, 9, 115002. [Google Scholar] [CrossRef]
- Aronsson, H.; Hansen, E.M.; Thomsen, I.K.; Liu, J.; Øgaard, A.F.; Känkänen, H.; Ulén, B.J.J.O. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland. J. Soil Water Conserv. 2016, 71, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Vogeler, I.; Hansen, E.M.; Thomsen, I.K. The effect of catch crops in spring barley on nitrate leaching and their fertilizer replacement value. Agric. Ecosyst. Environ. 2023, 343, 108282. [Google Scholar] [CrossRef]
- Thapa, R.; Mirsky, S.B.; Tully, K.L. Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. J. Environ. Qual. 2018, 47, 1400–1411. [Google Scholar] [CrossRef]
- Kros, J.; Hutchings, N.J.; Kristensen, I.T.; Kristensen, I.S.; Børgesen, C.D.; Voogd, J.C.; Dalgaard, T.; de Vries, W. A comparison of disaggregated nitrogen budgets for Danish agriculture using Europe-wide and national approaches. Sci. Total Environ. 2018, 643, 890–901. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Hongwen, L. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Selyaninov, G.T. About climate agricultural estimation. Proc. Agric. Meteorol. 1928, 20, 165–177. [Google Scholar]
- Skowera, B.; Jędrszczyk, E.; Kopcińska, J.; Ambroszczyk, A.M.; Kołton, A. The effects of hydrothermal conditions during vegetation period on fruit quality of processing tomatoes. Pol. J. Environ. Stud. 2014, 23, 195–202. [Google Scholar]
- LVS ISO 13878:1998; Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (“Elemental Analysis”). 1st ed. ISO: Geneva, Switzerland, 1998; p. 5.
- LVS ISO 10694:2006 A/L; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). ISO: Geneva, Switzerland, 2006.
- Platform on Sustainable Finance: Technical Working Group. Part B—Annex: Full list of Technical Screening Criteria. 2021. Available online: https://finance.ec.europa.eu/document/download/f7383cf5-43b3-45f8-9c6d-ab9571918849_en?filename=210803-sustainable-finance-platform-report-technical-screening-criteria-taxonomy-annex_en.pdf (accessed on 8 June 2023).
- Platform on Sustainable Finance: Technical Working Group. Supplementary: Methodology and Technical Screening Criteria. 2022. Available online: https://finance.ec.europa.eu/document/download/7599ea2d-975c-4b25-adca-de1d26533e99_en?filename=221128-sustainable-finance-platform-technical-working-group_en.pdf (accessed on 8 June 2023).
- International Organization for Standardization. Cereals and Pulses—Determination of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl Method, 2nd ed.; ISO: Geneva, Switzerland, 2013; p. 12. [Google Scholar]
- Kārkliņš, A.; Ruža, A. Lauku Kultūraugu Mēslošanas Normatīvi (Fertiliser Recommendations for Agricultural Crops); Latvia University of Agriculture: Jelgava, Latvia, 2013; pp. 7–8. (In Latvian) [Google Scholar]
- Baddeley, J.A.; Jones, S.; Topp, C.F.E.; Watson, C.A.; Helming, J.; Stoddard, F.L. Biological Nitrogen Fixation (BNF) by Legume Crops in Europe. Legume Futures Report 1.5. 2013. Available online: https://www.legumehub.eu/wp-content/uploads/2021/06/Legume-Futures-Report-1.5.pdf (accessed on 8 June 2023).
- Piliksere, D.; Auzins, A.; Aboltins, A. Effect of Crop Rotation on Nitrogen Use Efficiency—Case Study of Latvia. In Proceedings of the 21th International Scientific Conference Engineering for Rural Development Proceedings, Jelgava, Latvia, 25–27 May 2022; pp. 400–406. [Google Scholar] [CrossRef]
- Central Statistical Bureau of Latvia. Purchase Prices of Agricultural Products 1995–2021. Available online: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__NOZ__LA__LAC/LAC020/ (accessed on 10 December 2022).
- Kazotnieks, J.; Latvian Rural Advisory and Training Centre, Ozolnieki, Latvia. Personal communication, 2021.
- Latvian Rural Advisory and Training Centre. Lauksaimniecības Bruto Segumu Aprēķini (Agricultural Gross Margin Calculations). Available online: https://new.llkc.lv/lv/nozares/ekonomika/bruto-segumi (accessed on 16 June 2023). (In Latvian).
- Kārkliņš, A.; Līpenīte, I. Aprēķinu Metodes Un Normatīvi Augsnes Iekultivēšanai Un Mēslošanas Līdzekļu Lietošanai. Rokasgrāmata (Calculation Methods and Standards for Cultivating Soil and Using Fertilizers. Handbook); Latvia University of Agriculture: Jelgava, Latvia, 2019; p. 156. (In Latvian) [Google Scholar]
- Auzins, A.; Kazotnieks, J.; Leimane, I.; Miglavs, A. Assessment of Carbon Dioxide Emissions from Different Tillage Systems. In Proceedings of the 20th International Scientific Conference Engineering for Rural Development Proceedings, Jelgava, Latvia, 26–28 May 2021; pp. 1558–1562. [Google Scholar] [CrossRef]
- Wanic, M.; Żuk-Gołaszewska, K.; Orzech, K. Catch crops and the soil environment—A review of the literature. J. Elem. 2019, 24, 31–45. [Google Scholar] [CrossRef]
- Burger, M.; Dumlao, M.R.; Wang, J.; Moradi, B.Z.; Horwath, W.R.; Silk, W.K. Cover Crop Development Related to Nitrate Uptake and Cumulative Temperature. Crop Sci. 2017, 57, 971–982. [Google Scholar] [CrossRef]
- Heuermann, D.; Gentsch, N.; Guggenberger, G.; Reinhold-Hurek, B.; Schweneker, D.; Feuerstein, U.; Heuermann, M.C.; Groß, J.; Kümmerer, R.; Bauer, B.; et al. Catch crop mixtures have higher potential for nutrient carry-over than pure stands under changing environments. Eur. J. Agron. 2022, 136, 126504. [Google Scholar] [CrossRef]
- Magdoff, F.; van ES, H. Building Soils For Better Crops Ecological Management For Healthy Soils, 4th ed.; USDA (Sustainable Agriculture, Research and Education Programme (SARE)): College Park, MD, USA, 2021; pp. 137–156. Available online: https://www.sare.org/wp-content/uploads/Building-Soils-for-Better-Crops.pdf (accessed on 22 June 2023).
- LLI-49 Project. Optimal Catch Crop Solutions to Reduce Pollution in the Transboundary Venta and Lielupe River Basins, Joint Report on Activity AT1.1. Catch Crops and Their Growing Potentials in Venta and Lielupe RBDs 2019. Available online: https://2014-2020.latlit.eu/lli-49-optimal-catch-crop-solutions-to-reduce-pollution-in-the-transboundary-venta-and-lielupe-river-basins/ (accessed on 22 June 2023).
- Couëdel, A.; Kirkegaard, J.; Alletto, L.; Justes, É. Crucifer—Legume cover crop mixtures for biocontrol: Towards a new multi-service paradigm. Adv. Agron. 2019, 157, 55–139. [Google Scholar]
- Clark, A. Managing Cover Crops Profitably, 3rd ed.; USDA (Sustainable Agriculture, Research and Education Programme (SARE)): College Park, MD, USA, 2012; pp. 66–145. Available online: https://www.sare.org/wp-content/uploads/Managing-Cover-Crops-Profitably.pdf (accessed on 22 June 2023).
- Talgre, L.; Lauringson, E.; Makke, A.; Lauk, R. Biomass production and nutrient binding of catch crops. Zemdirbyste 2011, 98, 251–258. [Google Scholar]
- Selzer, T.; Schubert, S. Nutrient uptake of catch crops under non-limiting growth conditions. Ann. Appl. Biol. 2019, 174, 179–189. [Google Scholar]
- Talgre, L. Biomass Production of Different Green Manure Crops and Their Effect on the Succeeding Crops Yield. Ph.D. Thesis, Institute of Agricultural and Environmental Sciences Estonian University of Life Sciences, Tartu, Estonia, 8 March 2013. [Google Scholar]
- Böldt, M.; Taube, F.; Vogeler, I.; Reinsch, T.; Kluß, C.; Loges, R. Evaluating Different Catch Crop Strategies for Closing the Nitrogen Cycle in Cropping Systems—Field Experiments and Modelling. Sustainability 2021, 13, 394. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Christensen, B.T. Yields of wheat and soil carbon and nitrogen contents following long-term incorporation of barley straw and rye-grass catch crops. Soil Use Manag. 2004, 20, 432–438. [Google Scholar] [CrossRef]
- Wendling, M.; Charles, R.; Herrera, J.; Amossé, C.; Jeangros, B.; Walter, A.; Büchi, L. Effect of species identity and diversity on biomass production and its stability in cover crop mixtures. Agric. Ecosyst. Environ. 2019, 281, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.; Chalk, P.M. The role of 15N in tracing N dynamics in agro-ecosystems under alternative systems of tillage management: A review. Soil Tillage Res. 2020, 197, 10449. [Google Scholar] [CrossRef]
- Liu, X.; Dong, W.; Jia, S.; Liu, Q.; Li, Y.; Hossain, M.E.; Liu, E.; Kuzyakov, Y. Transformations of N derived from straw under long-term conventional and no-tillage soils: A 15N labelling study. Sci. Total Environ. 2021, 786, 147428. [Google Scholar] [CrossRef]
- Price, N.; Harris, J.P.; Taylor, M.; Williams, J.R.; Anthony, S.G.; Duethmann, D.; Gooday, R.D.; Lord, E.I.; Chambers, B.J.; Chadwick, D.R.; et al. An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from Agriculture. DEFRA Project WQ0106. 2011, p. 22. Available online: https://repository.rothamsted.ac.uk/item/98583/an-inventory-of-mitigation-methods-and-guide-to-their-effects-on-diffuse-water-pollution-greenhouse-gas-emissions-and-ammonia-emissions-from-agriculture (accessed on 22 June 2023).
- Latvian Rural Advisory and Training Centre. Crop Technological Models. Unpublished data of the EIP-Agri project “Development of electronic farm management system” (No. 18-00-A01612-000018).
Number of Years of Occurrence in Crop Rotation | Share of Area with Wheat, % | Share of Area with Oilseed Rape, % | Share of Area with Cereals (Wheat Excluded), % | Share of Area with Pulses and/or Legumes, % |
---|---|---|---|---|
0 | 16 | 53.6 | 5 | 77 |
1 | 16 | 36 | 9 | 20 |
2 | 21 | 10 | 12 | 2 |
3 | 27 | 0.4 | 28 | 1 |
4 | 18 | 0 | 33 | 0 |
5 | 3 | 0 | 13 | 0 |
Field Case Study | Ploughing | Min-Till | Strip-Till | No-Till |
---|---|---|---|---|
Crop rotation involving only cereals | ||||
Field A | X | X | - | X |
Crop rotation including maize | ||||
Field B | - | X | - | X |
Field C | X | X | - | - |
Crop rotation involving cereals, oilseed rape, and faba beans | ||||
Field D | X | X | - | X |
Field E * | - | X | X | - |
Field F | X | X | X | - |
Location | Stende | Vitini | ||||
---|---|---|---|---|---|---|
Year | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 |
pHKCl | 4.9–5.7 | 6.1 | 6.8 | 7.4 | 7.3–7.6 | 7 |
Organic matter, % | 2.0–2.5 | 3.7 | 3.8–4.3 | 2.7 | 3.7–4.7 | 3 |
P2O5, mg kg−1 | 158–219 | 238 | 42 | 165 | 75–201 | 230–370 |
K2O, mg kg−1 | 169–182 | 107 | 128 | 131 | 130 | |
Preceding crop | Winter wheat | Winter wheat | ||||
Following crop | Spring barley | Spring barley | Field pea | Faba beans |
Field Crop | Product | Dry Matter, % | N Content, kg·t−1 Dry Matter |
---|---|---|---|
Winter wheat | Grain | 86 | 22.0 |
Rye | Grain | 86 | 17.4 |
Winter barley | Grain | 86 | 20.3 |
Winter triticale | Grain | 86 | 18.6 |
Spring wheat | Grain | 86 | 25.3 |
Spring barley | Grain | 86 | 21.0 |
Oats | Grain | 86 | 18.1 |
Field peas and faba beans | Seeds | 86 | 45.7 |
Winter oilseed rape | Seeds | 92 | 29.1 |
Spring oilseed rape | Seeds | 92 | 38.3 |
Crop Rotation | Number of Farm Fields * | Average NUE, % | CI for Average NUE **, % |
---|---|---|---|
Wheat | 5 | 74.3 | (71.2, 77.3) |
Various species of cereals | 11 | 74.7 | (67.4, 81.9) |
Wheat–oilseed rape | 42 | 63.9 | (60.7, 67.1) |
If N content of winter rapeseed is adjusted | 42 | 66.1 | (62.9, 69.3) |
Wheat–pulses | 6 | 63.4 | (58.8, 68.0) |
If biological N fixation is excluded | 6 | 81.2 | (75.0, 87.3) |
Wheat–oilseed rape–pulses | 18 | 63.1 | (59.9, 66.2) |
If biological N fixation is excluded | 18 | 82.1 | (77.4, 86.7) |
If N content of winter rapeseed is adjusted | 18 | 65.4 | (62.3, 68.5) |
If biological fixation is excluded and N content of winter rapeseed is adjusted | 18 | 85.1 | (80.5, 89.7) |
Wheat–barley–oilseed rape | 9 | 63.0 | (57.0, 69.0) |
If N content of winter rapeseed is adjusted | 9 | 65.0 | (58.6, 71.4) |
Wheat–oilseed rape–fallow | 7 | 61.4 | (54.1, 68.8) |
If N content of winter rapeseed is adjusted | 7 | 65.2 | (57.4, 73.0) |
Green maize–other field crops | 2 | 72.9 | (47.8, 98.0) |
Crop Rotation | Number of Farm Fields | Average Annual Gross Margin, EUR ha−1 | Average Annual Consumption of PPPs, EUR ha−1 | Average Annual Consumption of N, kg ha−1 | Average Annual Consumption of Diesel, liter ha−1 |
---|---|---|---|---|---|
Wheat | 5 | 401 | 82 | 149 | 65 |
(217.4, 583.6) ** | (39.1, 124.3) | (101.7, 195.4) | (59.2, 70.5) | ||
Various species of cereals | 15 | 183 | 36 | 110 | 61 |
(117.0, 248.8) | (25.6, 45.8) | (95.6, 124.5) | (57.5, 64.4) | ||
Wheat–oilseed rape | 51 | 439 | 98 | 175 | 60 |
(401.3, 477.5) | (91.2, 105.2) | (168.7, 180.9) | (58.4, 62.1) | ||
Wheat–pulses | 7 | 331 | 91 | 132 | 60 |
(294.7, 366.4) | (59.5, 122.5) | (102.8, 160.7) | (52.8, 66.3) | ||
Wheat–oilseed rape–pulses | 19 | 444 | 89 | 136 | 59 |
(407.0, 480.5) | (77.6, 101.0) | (129.3, 142.2) | (55.7, 61.9) | ||
Wheat–barley–oilseed rape | 11 | 358 | 87 | 165 | 60 |
(270.9, 445.6) | (74.8, 98.4) | (146.5, 183.5) | (55.6, 63.5) | ||
Wheat–oilseed rape–fallow * | 7 | 425 | 88 | 159 | 67 |
(291.0, 559.6) | (73.0, 103.3) | (151.4, 165.9) | (58.0, 76.8) | ||
Green maize–other field crops | 6 | 375 | 56 | 184 | 69 |
(298.4, 451.7) | (38.4, 74.1) | (131.9, 236.3) | (50.2, 88.7) |
Field Case Study | Ploughing | Min-Till | Strip-Till | No-Till |
---|---|---|---|---|
Crop rotation involving only cereals | ||||
Field A | 57 | 51 | – | 59 |
Crop rotation including maize | ||||
Field B | – | 82 | – | 72 |
Field C | 74 | 63 | – | – |
Crop rotation involving cereals, oilseed rape, and faba beans | ||||
Field D | 70 | 70 | – | 64 |
Field E * | – | 80 | 82 | – |
Field F | 75 | 74 | 72 | – |
Field Case Study (Field A) | Ploughing | Min-till/Ploughing—Difference in % | No-Till/ Ploughing—Difference in % |
---|---|---|---|
Average annual gross margin (EUR ha−1) | 73 | 24 | 87 |
Average annual consumption of diesel (l ha −1) | 65 | −32 | −43 |
Field Case Study | Field B | Field C | |||
---|---|---|---|---|---|
Ploughing | Min-Till/Ploughing—Difference in % | No-Till/ Ploughing—Difference in % | Min-Till | No-Till/ Min-Till— Difference in % | |
Average annual gross margin (EUR ha−1) | 387 | 31 | 27 | 297 | −37 |
Average annual consumption of diesel (l ha−1) | 88 | −8 | −34 | 95 | −19 |
Field Case Studies | Field D | Field E * | Field F | |||||
---|---|---|---|---|---|---|---|---|
Ploughing | Min-Till/Ploughing—Difference in % | No-Till/ Ploughing—Difference in % | Min-Till | Strip-Till/ Min-Till—Difference in % | Ploughing | Min-Till/Ploughing—Difference in % | Strip-Till/ Ploughing—Difference in % | |
Average annual gross margin (EUR ha−1) | 381 | −1 | −11 | 579 | 9 | 497 | 3 | −5 |
Average annual consumption of diesel (l ha−1) | 84 | −21 | −39 | 51 | −10 | 68 | −24 | −29 |
Crop Rotation: Wheat–Oilseed Rape Tillage System | Number of Farm Fields | Average Annual Gross Margin, EUR ha−1 | Average Annual Consumption of PPPs, EUR ha−1 | Average Annual Consumption of N, kg ha−1 | Average Annual Consumption of Diesel, liter ha−1 |
---|---|---|---|---|---|
Ploughing | 14 | 377 | 89 | 177 | 67 |
(302.5, 452.0) * | (73.2, 104.5) | (161.1, 193.7) | (64.7, 69.3) | ||
Non-inversion tillage | 21 | 487 | 91 | 167 | 55 |
(437.6, 537.1) | (63.9, 118.7) | (146.6, 187.8) | (47.9, 61.4) |
Mix/Control | Location | Part of Plant | Dry Matter Yield, t ha−1 ± SD | rdw/HTC | rShdw/Rdw | Ntotal, g kg−1 | Ctotal, g kg−1 | C:N |
---|---|---|---|---|---|---|---|---|
Control | S | Sh | 0.37 ± 0.19 | −0.85 | 0.62 | - | - | - |
R | 0.29 ± 0.20 | −0.1 | - | - | - | |||
V | Sh | 0.75 ± 0.42 | −0.75 | 0.77 | - | - | - | |
R | 0.75 ± 0.43 | −0.99 *** | - | - | - | |||
Oats and mustard | S | Sh | 0.88 ± 0.56 | −0.95 ** | 0.99 *** | 36.82 | 441.86 | 12 |
R | 0.38 ± 0.20 | −0.89 | 15.07 | 346.72 | 23 | |||
V | Sh | 1.71 ± 0.95 | −0.97 ** | 0.99 *** | 29.35 | 410.92 | 14 | |
R | 0.57 ± 0.27 | −0.97 ** | 14.68 | 337.55 | 23 | |||
Mustard and radish | S | Sh | 0.91 ± 0.60 | −0.94 | 0.97 ** | 32.46 | 421.97 | 13 |
R | 0.29 ± 0.15 | −0.83 | 14.14 | 367.76 | 26 | |||
V | Sh | 1.18 ± 0.81 | −0.51 | 0.99 *** | 31.46 | 377.55 | 12 | |
R | 0.42 ± 0.25 | −0.63 | 17.67 | 406.47 | 23 | |||
Ryegrass, buckwheat, and phacelia | S | Sh | 0.60 ± 0.34 | −0.91 | 0.98 *** | 25.53 | 383.00 | 15 |
R | 0.39 ± 0.02 | −0.82 | 19.23 | 403.86 | 21 | |||
V | Sh | 0.98 ± 0.74 | −0.58 | 0.99 *** | 30.24 | 393.18 | 13 | |
R | 0.62 ± 0.28 | −0.54 | 18.18 | 345.35 | 19 | |||
Ryegrass, crimson clover, and phacelia * | S | Sh | 0.67 ± 0.43 | −0.99 *** | 0.83 | 36.72 | 440.66 | 12 |
R | 0.79 ± 0.34 | −0.77 | 13.77 | 371.86 | 27 | |||
V | Sh | 0.81 ± 0.39 | −0.89 | 0.88 | 26.06 | 364.86 | 14 | |
R | 0.80 ± 0.47 | −0.57 | 14.74 | 339.00 | 23 | |||
Oats, spring vetch, and phacelia | S | Sh | 0.62 ± 0.41 | −0.99 *** | 0.69 | 39.33 | 432.61 | 11 |
R | 0.43 ± 0.22 | −0.64 | 15.70 | 314.07 | 20 | |||
V | Sh | 1.23 ± 0.94 | −0.53 | 0.99 *** | 28.45 | 426.79 | 15 | |
R | 0.55 ± 0.25 | −0.59 | 10.43 | 229.36 | 22 | |||
Rye, oilseed rape, and winter vetch/phacelia | S | Sh | 0.52 ± 0.31 | −0.84 | 0.83 | 33.06 | 396.73 | 12 |
R | 0.42 ± 0.21 | −0.38 | 22.31 | 401.56 | 18 | |||
V | Sh | 1.03 ± 0.59 | −0.72 | 0.94 | 30.25 | 363.06 | 12 | |
R | 0.53 ± 0.28 | −0.92 | 20.37 | 387.08 | 19 |
Tested Catch Crop Mixtures | 2019–2020 | 2020–2021 | 2021–2022 | Average |
---|---|---|---|---|
Field trials in Stende: | ||||
Rye, winter oilseed rape, and phacelia/winter vetch | +5.9 | +2.7 | −0.8 | +2.6 |
Oats, spring vetch, and phacelia | +9.1 | −1.4 | +2.3 | +3.3 |
Oats and mustard | −3.7 | +8.9 | −0.7 | +1.5 |
Radish and mustard | +5.6 | +10.5 | −2.3 | +4.6 |
Ryegrass, buckwheat, and phacelia | +3.0 | +12.1 | +3.5 | +6.2 |
Oats, crimson clover, and phacelia * | +2.7 | +0.9 | −3.2 | +0.2 |
Field trials in Vitini: | ||||
Rye, winter oilseed rape, and phacelia | −3.9 | +2.2 | −0.1 | −0.6 |
Oats, spring vetch, and phacelia | +3.7 | +2.1 | +1.2 | +2.3 |
Oats and mustard | +11.3 | +5.6 | +1.0 | +5.9 |
Radish and mustard | +18.0 | +4.7 | −0.8 | +7.3 |
Ryegrass, buckwheat, and phacelia | +9.1 | +5.7 | −0.1 | +4.9 |
Oats, crimson clover, and phacelia * | −4.9 | +1.3 | −0.8 | −1.5 |
Tested Catch Crop Mixture | 2020–2021 | 2021–2022 | Average |
---|---|---|---|
Rye, winter oilseed rape, and phacelia/winter vetch | +8.5 | +3.3 | +5.9 |
Oats, spring vetch, and phacelia | +4.1 | +6.6 | +5.4 |
Oats and mustard | +15.0 | +3.4 | +9.2 |
Radish and mustard | +16.7 | +1.8 | +9.2 |
Ryegrass, buckwheat, and phacelia | +18.4 | +7.8 | +13.1 |
Oats, crimson clover, and phacelia * | +6.6 | +0.9 | +3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auzins, A.; Leimane, I.; Krievina, A.; Morozova, I.; Miglavs, A.; Lakovskis, P. Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage. Agriculture 2023, 13, 1539. https://doi.org/10.3390/agriculture13081539
Auzins A, Leimane I, Krievina A, Morozova I, Miglavs A, Lakovskis P. Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage. Agriculture. 2023; 13(8):1539. https://doi.org/10.3390/agriculture13081539
Chicago/Turabian StyleAuzins, Alberts, Ieva Leimane, Agnese Krievina, Inga Morozova, Andris Miglavs, and Peteris Lakovskis. 2023. "Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage" Agriculture 13, no. 8: 1539. https://doi.org/10.3390/agriculture13081539
APA StyleAuzins, A., Leimane, I., Krievina, A., Morozova, I., Miglavs, A., & Lakovskis, P. (2023). Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage. Agriculture, 13(8), 1539. https://doi.org/10.3390/agriculture13081539