The Impact of Different Nitrogen Levels on the Tuber Yield and Anthocyanin Synthesis of Purple Potatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experiment Design
2.3. Determination of Agronomic Traits, Yield, and Quality of Purple Potatoes at Different Nitrogen Levels
2.4. Determination of the Nitrogen Contents of the Plants
2.5. Assay of Anthocyanin, Chlorophyll, and Flavonoids in Purple Potatoes under Various Nitrogen Levels
2.6. RNA Isolation, Transcriptome Sequencing, and Data Analysis
2.7. Quantitative Real-Time PCR (qRT-PCR) Validation
2.8. Data Processing and Statistical Analysis
3. Results
3.1. Effects of Different Nitrogen Levels on the Agronomic Traits, Yield, and Quality of Purple Potatoes
3.1.1. Different Nitrogen Levels Affect Plant Height of Purple Potato
3.1.2. Different Nitrogen Levels Affect the Fresh Weight of Purple Potato Stems and Leaves
3.1.3. Different Nitrogen Levels Affect Tuber Fresh Weight
3.1.4. Different Nitrogen Levels Affect the Yield of Purple Potatoes
3.1.5. Different Nitrogen Levels Affect the Quality of Purple Potatoes
3.2. Nitrogen Uptake and Utilization by Purple Potato Plants at Different Nitrogen Levels
3.2.1. Nitrogen Contents of Purple Potato Plants at Different Growth Stages
3.2.2. Nitrogen Utilization Efficiency of Purple Potato Plants at Different Nitrogen Levels
3.3. Different Nitrogen Levels Affect Tuber Anthocyanidin Accumulation
3.4. Chlorophyll and Flavonoid Contents in Purple Potatoes at Different Nitrogen Levels
3.5. Transcriptome Analysis
3.5.1. Evaluation of the Transcriptome Sequencing Results
3.5.2. Differentially Expressed Genes (DEGs) Analysis
3.5.3. GO and KEGG Analysis of DEGs
3.5.4. Screening of the DEGs Involved in Anthocyanidin Biosynthesis and Metabolism in Purple Potato Tubers
3.6. Verification of Selected DEGs via qRT-PCR
4. Discussion
4.1. The Agronomic Traits, Yield, and Quality of Purple Potatoes under Different Nitrogen Levels
4.2. Tuber Anthocyanidin Content and Related Differentially Expressed Genes in Anabolic Pathways
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, C.R.; Culley, D.; Yang, C.P.; Durst, R.; Wrolstad, R. Variation of Anthocyanin and Carotenoid Contents and Associated Antioxidant Values in Potato Breeding Lines. J. Am. Soc. Hortic. Sci. 2005, 130, 174–180. [Google Scholar] [CrossRef]
- Lu, Y.; Tong, H.; Yao, Z.; Zhang, S.; Xie, K.; Dong, P.; Ren, M. Research Progress in Anthocyanin of Colored Potatoes. Chin. Potato J. 2017, 31, 165–177. [Google Scholar]
- Brown, C.R.; Wrolstad, R.; Durst, R.; Yang, C.-P.; Clevidence, B. Breeding Studies in Potatoes Containing High Concentrations of Anthocyanins. Am. J. Potato Res. 2003, 80, 241–249. [Google Scholar] [CrossRef]
- Jansen, G.; Flamme, W. Coloured Potatoes (Solanum tuberosum L.)—Anthocyanin Content and Tuber Quality. Genet. Resour. Crop Evol. 2006, 53, 1321–1331. [Google Scholar] [CrossRef]
- Chen, M.; Yang, Q. Research Advance on Potato Anthocyanins. Chin. Potato J. 2013, 27, 232–238. [Google Scholar]
- Kosieradzka, I.; Borucki, W.; Matysiak-Kata, I.; Szopa, J.; Sawosz, E. Transgenic Potato Tubers as a Source of Phenoliccompounds. Localization of Anthocyanins in Theperidermis. J. Anim. Feed Sci. 2004, 13, 87–92. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.D.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–887. [Google Scholar] [CrossRef]
- Saito, T.; Nishida, M.; Saito, M.; Tanabe, A.; Eitsuka, T.; Yuan, S.-H.; Ikekawa, N.; Nishida, H. The Fruit of Acanthopanax Senticosus (Rupr. et Maxim.) Harms Improves Insulin Resistance and Hepatic Lipid Accumulation by Modulation of Liver Adenosine Monophosphate–Activated Protein Kinase Activity and Lipogenic Gene Expression in High-Fat Diet–Fed Obese Mice. Nutr. Res. 2016, 36, 1090–1097. [Google Scholar]
- Long, H.; Zhang, F.; Wang, H.; Yang, W.; Hou, H.; Yu, J.; Liu, B. Mulberry Anthocyanins Improves Thyroid Cancer Progression Mainly by Inducing Apoptosis and Autophagy Cell Death. Kaohsiung J. Med. Sci. 2018, 34, 255–262. [Google Scholar] [CrossRef]
- Horbowicz, M.; Kosson, R.; Grzesiuk, A.; Dębski, H. Anthocyanins of Fruits and Vegetables—Their Occurrence, Analysis and Role in Human Nutrition. J. Fruit Ornam. Plant Res. 2008, 68, 5–22. [Google Scholar] [CrossRef]
- Chen, T.; Xie, L.; Wang, G.; Jiao, J.; Zhao, J.; Yu, Q.; Chen, Y.; Shen, M.; Wen, H.; Ou, X.; et al. Anthocyanins-Natural Pigment of Colored Rice Bran: Composition and Biological Activities. Food Res. Int. 2023, 175, 11372. [Google Scholar] [CrossRef]
- Su, X.; Griffin, J.; Xu, J.; Ouyang, P.; Zhao, Z.; Wang, W. Identification and Quantification of Anthocyanins in Purple-Fleshed Sweet Potato Leaves. Heliyon 2019, 5, e0196. [Google Scholar] [CrossRef]
- Liang, L.; Yang, Y.; Wang, E.; Xing, B.; Liang, Z. Research Progress on Biosynthesis and Regulation of Plant Anthocyanin. J. Anhui Agric. Sci. 2018, 46, 18–24. [Google Scholar]
- Kähkönen, M.P.; Heinonen, M. Antioxidant Activity of Anthocyanins and Their Aglycons. J. Agric. Food Chem. 2003, 51, 628–663. [Google Scholar] [CrossRef]
- Bellido, G.G.; Beta, T. Anthocyanin Composition and Oxygen Radical Scavenging Capacity (ORAC) of Milled and Pearled Purple, Black, and Common Barley. J. Agric. Food Chem. 2009, 57, 1022–1028. [Google Scholar] [CrossRef]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Schijlen, E.G.; Hall, R.D.; Bovy, A.G.; Luo, J.; et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Serdula, M.K.; Liu, S. Dietary Intake of Fruits and Vegetables and Risk of Cardiovascular Disease. Curr. Atheroscler. Rep. 2003, 5, 492–499. [Google Scholar] [CrossRef]
- Thompson, M.D.; Thompson, H.J.; McGinley, J.N.; Neil, E.S.; Rush, D.K.; Holm, D.G.; Stushnoff, C. Functional Food Characteristics of Potato Cultivars (Solanum tuberosum L.): Phytochemical Composition and Inhibition of 1-Methyl-1-Nitrosourea Induced Breast Cancer in Rats. J. Food Compos. Anal. 2009, 22, 571–576. [Google Scholar] [CrossRef]
- Stewart, A.J.; Chapman, W.; Jenkins, G.I.; Graham, I.; Martin, T.; Crozier, A. The Effect of Nitrogen and Phosphorus Deficiency on Flavonol Accumulation in Plant Tissues. Plant Cell Environ. 2001, 24, 1189–1197. [Google Scholar] [CrossRef]
- Lea, U.S.; Slimestad, R.; Smedvig, P.; Lillo, C. Nitrogen Deficiency Enhances Expression of Specific MYB and bHLH Transcription Factors and Accumulation of End Products in the Flavonoid Pathway. Planta 2007, 225, 1245–1253. [Google Scholar] [CrossRef]
- Ramsay, N.A.; Glover, B.J. MYB–bHLH–WD40 Protein Complex and the Evolution of Cellular Diversity. Trends Plant Sci. 2005, 10, 63–67. [Google Scholar] [CrossRef]
- Liang, J.; He, J. Protective Role of Anthocyanins in Plants under Low Nitrogen Stress. Biochem. Biophys. Res. Commun. 2018, 498, 946–995. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Liu, J.; Lin, S.; Wang, J.; Lin, W.; Xu, W. GA-DELLA Pathway Is Involved in Regulation of Nitrogen Deficiency-Induced Anthocyanin Accumulation. Plant Cell Rep. 2017, 36, 557–569. [Google Scholar] [CrossRef]
- Sahu, E.; Sarnaik, D.A.; Sharma, P.K.; Barik, S.B.; Yadav, V. Influence of Different Levels of Nitrogen on Potato Cultivars under Chhattisgarh Plains in Dorsa Soil. Progress. Hortic. 2016, 48, 87–95. [Google Scholar] [CrossRef]
- Yang, D. Effect of Different Fertilizer Rates and Fertilization Methodson Yield, Nutrients Accumulation and Tuber Quality of Potato in Xiangyang. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2006. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 13–18. [Google Scholar]
- Wang, H.; Wang, X.; Bi, L.; Wang, Y.; Fan, J.; Zhang, F.; Hou, X.; Cheng, M.; Hu, W.; Wu, L.; et al. Multi-Objective Optimization of Water and Fertilizer Management for Potato Production in Sandy Areas of Northern China Based on TOPSIS. Field Crops Res. 2019, 240, 55–68. [Google Scholar] [CrossRef]
- Bogucka, B.; Elżbieta, T. Effect of Nitrogen and Potassium Fertilization on Mineral and Amino Acid Content of Colored Flesh Potato Cultivar Blue Congo. J. Plant Nutr. 2018, 41, 856–866. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, Q.; Akbar, S.; Zhi, Y.; El Tahchy, A.; Mitchell, M.; Li, Z.; Shrestha, P.; Vanhercke, T.; Ral, J. Genetic Enhancement of Oil Content in Potato Tuber (Solanum tuberosum L.) through an Integrated Metabolic Engineering Strategy. Plant Biotechnol. J. 2017, 15, 56–67. [Google Scholar] [CrossRef]
- Zhu, H.; Shi, Y.; Zhang, N. Applying 3,5-dinitrosalicylic Acid (DNS) Method to Analyzing the Content of Potato Reducing Sugar. Chin. Potato J. 2005, 19, 14–17. [Google Scholar]
- Fan, Y.; Feng, H.; Jin, X.; Yue, J.; Liu, Y.; Li, Z.; Feng, Z.; Song, X.; Yang, G. Estimation of the Nitrogen Content of Potato Plants Based on Morphological Parameters and Visible Light Vegetation Indices. Front. Plant Sci. 2022, 13, 1–15. [Google Scholar] [CrossRef]
- Jue, D.; Sang, X.; Li, Z.; Zhang, W.; Liao, Q.; Tang, J. Determination of the Effects of Pre-Harvest Bagging Treatment on Kiwifruit Appearance and Quality via Transcriptome and Metabolome Analyses. Food Res. Int. 2023, 173, 113276. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Chen, S.; Min, Y.; Tang, Y.; Ma, X.; Li, H.; Li, J.; Liu, Z. Spraying Chitosan on Cassava Roots Reduces Postharvest Deterioration by Promoting Wound Healing and Inducing Disease Resistance. Carbohydr. Polym. 2023, 318, 121133. [Google Scholar] [CrossRef]
- Liu, F.; Chen, G.; Ma, L.; Yang, Y.; Guo, X.; Yang, X.; Dong, D.; Yang, Y. Extraction of total RNA from potato tubers rich in anthocyanins by modified Trizol method. Shandong Agric. Sci. 2018, 50, 114–118. [Google Scholar]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential Gene and Transcript Expression Analysis of RNA-Seq Experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Nurmanov, Y.T.; Chernenok, V.G.; Kuzdanova, R.S. Potato in Response to Nitrogen Nutrition Regime and Nitrogen Fertilization. Field Crops Res. 2019, 231, 115–121. [Google Scholar] [CrossRef]
- Hua, Y.; Xie, G.; Fan, S.; Wang, Y.; Zhang, L.; Zhao, Y.; Shi, X.; Dong, Q. Effects of reduced nitrogen fertilizer application on the growth and development of different potato varieties. Chin Potato J. 2023, 37, 329–337. [Google Scholar]
- Li, J. Characteristics of Nitrogen Utilization under Different Nitrogen Strategies and Nitrogen Diagnosis in Potato. Master’s Thesis, Jilin Agricultural University, Jilin, China, 2006. [Google Scholar]
- Sun, L.; Gu, L.; Peng, X.; Liu, Y.; Li, X.; Yan, X. Effects of Nitrogen Fertilizer Application Time on Dry Matter Accumulation and Yield of Chinese Potato Variety KX 13. Potato Res. 2012, 55, 303–313. [Google Scholar] [CrossRef]
- Meng, X.; Hang, Z.; Zhang, S.; Sun, J.; Xu, F.; Xu, S.; Zheng, B. Dynamic changes of chlorophyll in potato leaves and their correlation with yield. J. Northeast Agric. Sci. 2021, 46, 79–81. [Google Scholar]
- Xuan, W.; Beeckman, T.; Xu, G. Plant Nitrogen Nutrition: Sensing and Signaling. Curr. Opin. Plant Biol. 2017, 39, 57–65. [Google Scholar] [CrossRef]
- Meng, J.; Wang, H.; Chi, R.; Qiao, Y.; Wei, J.; Zhang, Y.; Han, M.; Wang, Y.; Li, H. The eTM–miR858–MYB62—Like Module Regulates Anthocyanin Biosynthesis under Low-nitrogen Conditions in Malus Spectabilis. New Phytol. 2023, 238, 2524–2544. [Google Scholar] [CrossRef] [PubMed]
- An, J.-P.; Wang, X.-F.; Li, Y.-Y.; Song, L.-Q.; Zhao, L.-L.; You, C.-X.; Hao, Y.-J. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 Act in a Regulatory Loop That Synergistically Modulates Ethylene Biosynthesis and Anthocyanin Accumulation. Plant Physiol. 2018, 178, 808–882. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Li, M.; Ma, F.; Cheng, L. Phenylpropanoid Metabolites and Expression of Key Genes Involved in Anthocyanin Biosynthesis in the Shaded Peel of Apple Fruit in Response to Sun Exposure. Plant Physiol. Biochem. 2013, 69, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; An, Y.; Zheng, J.; Sun, M.; Wang, L. Proteomics and SSH Analyses of ALA-Promoted Fruit Coloration and Evidence for the Involvement of a MADS-Box Gene, MdMADS1. Front. Plant Sci. 2016, 7, 1615. [Google Scholar] [CrossRef] [PubMed]
- Feller, A.; Machemer, K.; Braun, E.L.; Grotewold, E. Evolutionary and Comparative Analysis of MYB and bHLH Plant Transcription Factors. Plant J. 2011, 66, 94–113. [Google Scholar] [CrossRef]
- Strygina, K.V.; Kochetov, A.V.; Khlestkina, E.K. Genetic Control of Anthocyanin Pigmentation of Potato Tissues. BMC Genet. 2019, 27, 35–57. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Zhao, Y.; Guo, D.; Zhao, X.; Gao, W.; Zhang, J.; Song, B. StWRKY13 Promotes Anthocyanin Biosynthesis in Potato. Funct. Plant Biol. 2021, 49, 102–114. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, B.; Liu, J.; Guo, D.; Hou, J.; Chen, S.; Song, B.; Xie, C. Analysis of Structural Genes and Key Transcription Factors Related to Anthocyanin Biosynthesis in Potato Tubers. Sci. Hortic. 2017, 225, 310–316. [Google Scholar] [CrossRef]
Primer Name | Forward Primer Sequence (5′→3′) | Reverse Primer Sequence (5′→3′) |
---|---|---|
EF1α | ATTGGAAACGGATATGCTCCA | TCCTTACCTGAACGCCTGTCA |
PGSC0003DMG400004109 | GACCCTGTTGATGGAGAAGGA | GCATTGCACTCTGGTGGTAG |
PGSC0003DMG400037860 | CCTCCTCAACAATGGACCCT | CGCCCATCTCGAAGTTTACC |
PGSC0003DMG401005729 | CCTCTCTGCCAGCTGTTGAT | CACTGGAAAGCCAACTCTGC |
PGSC0003DMG401020664 | CAACACCGGCTGATGTTTCT | TGCTGGTGCCATCATTCCTA |
PGSC0003DMG400008000 | CGTGGCAGCAGTTATGGAAT | AGCAATAAGCCCAGCAAACC |
PGSC0003DMG400026032 | GGTACATTGAGACGGAGGCT | TGAACCTCCACTTCCCACTC |
PGSC0003DMG400021691 | TGTGTTGTTGGATTTGTTGTGC | TGCATTCTCATCCGATGCTG |
PGSC0003DMG400029130 | TGTAAGTCCTTGTGGTTGGC | CGACACCTTTAAGAGTTTCCGT |
PGSC0003DMG400027438 | CCTCGTCCAGGTTCAAAGGA | ACCTTCTCTGCAACTTCACC |
PGSC0003DMG400024644 | GCTTATTGGTGAGCCTGGTG | AGCCAAGTTACTCGGGACAT |
Treatment Group | Yield (kg/hm2) | Average Yield (kg) | Commodity Rate (%) |
---|---|---|---|
N0 (CK) | 8513.70 | 9.09 b | 69.34 |
N1 | 17,164.35 | 18.33 a | 92.79 |
N2 | 19,808.55 | 21.15 a | 92.80 |
N3 | 16,984.50 | 18.14 a | 87.31 |
Treatment Group | Reduced Sugar Content (g/100 g) | Crude Protein Content (mg/g) | Starch Content (mg/g) | Vitamin C Content (mg/100 g) |
---|---|---|---|---|
N0 | 0.12 ± 0.01 d | 10.26 ± 0.09 c | 11.45 ± 0.10 b | 14.08 ± 0.11 b |
N1 | 0.31 ± 0.00 c | 10.43 ± 0.12 c | 13.80 ± 0.09 a | 16.53 ± 0.02 a |
N2 | 0.40 ± 0.01 b | 11.45 ± 0.06 b | 10.43 ± 0.09 c | 12.00 ± 0.10 c |
N3 | 0.55 ± 0.02 a | 13.80 ± 0.20 a | 10.26 ± 0.09 c | 9.84 ± 0.02 d |
Treatment Group | PFPN (kg/kg) | NPE | NAE | NHI |
---|---|---|---|---|
N0 (CK) | - | - | - | 0.68 ± 0.00 c |
N1 | 188.72 ± 1.44 a | 5524.57 ± 4.33 a | 94.12 ± 0.42 a | 0.89 ± 0.01 b |
N2 | 76.29 ± 0.31 b | 577.27 ± 1.22 c | 38.45 ± 0.27 b | 0.72 ± 0.00 b |
N3 | 55.02 ± 2.36 c | 1221.44 ± 3.29 b | 31.37 ± 0.33 c | 0.60 ± 0.02 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Cai, B.; Guo, Y.; Na, T.; Guo, Y. The Impact of Different Nitrogen Levels on the Tuber Yield and Anthocyanin Synthesis of Purple Potatoes. Agriculture 2024, 14, 125. https://doi.org/10.3390/agriculture14010125
Zhang Z, Cai B, Guo Y, Na T, Guo Y. The Impact of Different Nitrogen Levels on the Tuber Yield and Anthocyanin Synthesis of Purple Potatoes. Agriculture. 2024; 14(1):125. https://doi.org/10.3390/agriculture14010125
Chicago/Turabian StyleZhang, Zhaojuan, Binbin Cai, Yiling Guo, Tiancang Na, and Yuchun Guo. 2024. "The Impact of Different Nitrogen Levels on the Tuber Yield and Anthocyanin Synthesis of Purple Potatoes" Agriculture 14, no. 1: 125. https://doi.org/10.3390/agriculture14010125
APA StyleZhang, Z., Cai, B., Guo, Y., Na, T., & Guo, Y. (2024). The Impact of Different Nitrogen Levels on the Tuber Yield and Anthocyanin Synthesis of Purple Potatoes. Agriculture, 14(1), 125. https://doi.org/10.3390/agriculture14010125