Nutrient Cycling with Duckweed for the Fertilization of Root, Fruit, Leaf, and Grain Crops: Impacts on Plant–Soil–Leachate Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Analytical Methods
2.3. Derived Parameters
2.4. Statistical Analysis and Regression Modeling
3. Results
3.1. Experimental Results and ANOVA
3.1.1. Variation in Leaching of Ions
3.1.2. Variation in Crop Yield
3.1.3. Variation in Crop Nutrients and Nutrient Use Efficiency
3.1.4. Variation in Soil Nutrient Residue
3.2. Regression Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. How to Feed the World in 2050; Food and Agricultural Organization: Roma, Italy, 2009. [Google Scholar]
- FAO. World Fertilizer Trends and Outlook to 2022; Food and Agricultural Organization: Roma, Italy, 2019; p. 40. [Google Scholar]
- Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S.-W.; Hara, M.; Hosono, H. Ammonia Synthesis Using a Stable Electride as an Electron Donor and Reversible Hydrogen Store. Nat. Chem. 2012, 4, 934–940. [Google Scholar] [CrossRef]
- Smil, V. Nitrogen in Crop Production: An Account of Global Flows. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; McCarthy, M.J.; Peierls, B.L.; Wilhelm, S.W. Algal Blooms: Noteworthy Nitrogen. Science 2014, 346, 175. [Google Scholar] [CrossRef]
- Huber, B. Report: Fertilizer Responsible for More than 20 Percent of Total Agricultural Emissions. Available online: https://thefern.org/ag_insider/report-fertilizer-responsible-for-more-than-20-percent-of-total-agricultural-emissions/ (accessed on 26 October 2022).
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse Gas Emissions from Global Production and Use of Nitrogen Synthetic Fertilisers in Agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Timsina, J. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Walia, M.K.; Gupta, R.K.; Singh, R.; Dhaliwal, M.K. Effect of Manures and Fertilizers on Soil Physical Properties, Build-up of Macro and Micronutrients and Uptake in Soil under Different Cropping Systems: A Review. J. Plant Nutr. 2019, 42, 2873–2900. [Google Scholar] [CrossRef]
- Utah State Extension Sustainable Manure and Compost Application: Garden and Micro Farm Guidelines. Available online: https://extension.usu.edu/yardandgarden/research/sustainable-manure-and-compost-application (accessed on 26 October 2022).
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- OCHA Wastewater as a Resource. Available online: https://reliefweb.int/report/world/wastewater-resource-may-2022 (accessed on 27 October 2022).
- Mihai, F.-C.; Minea, I. Sustainable Alternative Routes versus Linear Economy and Resources Degradation in Eastern Romania. Sustainability 2021, 13, 10574. [Google Scholar] [CrossRef]
- Femeena, P.V.; House, G.; Rachel, A. Brennan Creating a Circular Nitrogen Bioeconomy in Agricultural Systems through Nutrient Recovery and Upcycling by Microalgae and Duckweed: Past Efforts and Future Trends. J. ASABE 2022, 65, 327–346. [Google Scholar] [CrossRef]
- Mehta, N.; Shah, K.J.; Lin, Y.-I.; Sun, Y.; Pan, S.-Y. Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources. Environments 2021, 8, 20. [Google Scholar] [CrossRef]
- Culley, D.D., Jr.; Rejmánková, E.; Květ, J.; Frye, J.B. Production, Chemical Quality and Use of Duckweeds (Lemnaceae) in Aquaculture, Waste Management, and Animal Feeds. J. World Maric. Soc. 1981, 12, 27–49. [Google Scholar] [CrossRef]
- Landolt, E. The Family of Lemnaceae—Monographic Study, Vols. 1 and 2—(Vols. 2 and 4 of Biosystematic Investigations in the Family of Duckweeds (Lemnaceae)). Plant Growth Regul. 1988, 7, 309–310. [Google Scholar] [CrossRef]
- Journey, W.; Spira, W.; Skillicorn, P. Duckweed Aquaculture: A New Aquatic Farming System for Developing Countries; World Bank: Bretton Woods, NH, USA, 1993. [Google Scholar]
- Fernandez Pulido, C.R.; Caballero, J.; Bruns, M.A.; Brennan, R.A. Recovery of Waste Nutrients by Duckweed for Reuse in Sustainable Agriculture: Second-Year Results of a Field Pilot Study with Sorghum. Ecol. Eng. 2021, 168, 106273. [Google Scholar] [CrossRef]
- Kreider, A.N.; Fernandez Pulido, C.R.; Bruns, M.A.; Brennan, R.A. Duckweed as an Agricultural Amendment: Nitrogen Mineralization, Leaching, and Sorghum Uptake. J. Environ. Qual. 2019, 48, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Roman, B.; Brennan, R.A.; Lambert, J.D. Duckweed Protein Supports the Growth and Organ Development of Mice: A Feeding Study Comparison to Conventional Casein Protein. J. Food Sci. 2021, 86, 1750–3841.15635. [Google Scholar] [CrossRef] [PubMed]
- Calicioglu, O.; Brennan, R.A. Sequential Ethanol Fermentation and Anaerobic Digestion Increases Bioenergy Yields from Duckweed. Bioresour. Technol. 2018, 257, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.J.; Stomp, A.M. Growing Duckweed to Recover Nutrients from Wastewaters and for Production of Fuel Ethanol and Animal Feed. Clean-Soil Air Water 2009, 37, 17–26. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Sree, K.S.; Bog, M.; Ecker, J.; Seeliger, C.; Böhm, V.; Lorkowski, S.; Sommer, K.; Vetter, W.; Tolzin-Banasch, K.; et al. Nutritional Value of the Duckweed Species of the Genus Wolffia (Lemnaceae) as Human Food. Front. Chem. 2018, 6, 483. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, X.; Lian, Y.; Xu, L.; Chen, Y. Reduction of Ammonia Volatilization from Urea by a Floating Duckweed in Flooded Rice Fields. Soil Sci. Soc. Am. J. 2009, 73, 1890–1895. [Google Scholar] [CrossRef]
- Sun, H.A.D.; Feng, Y.; Vithanage, M.; Mandal, S.; Shaheen, S.M.; Rinklebe, J.; Shi, W.; Wang, H. Floating Duckweed Mitigated Ammonia Volatilization and Increased Grain Yield and Nitrogen Use Efficiency of Rice in Biochar Amended Paddy Soils. Chemosphere 2019, 237, 124532. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zhang, B.; Zhao, M.; Zeng, K.; Yin, B. Duckweed (Spirodela Polyrhiza) as Green Manure for Increasing Yield and Reducing Nitrogen Loss in Rice Production. Field Crops Res. 2017, 214, 273–282. [Google Scholar] [CrossRef]
- Ahmad, Z.; Hossain, N.S.; Hussain, S.G.; Khan, A.H. Effect of Duckweed (Lemna Minor) as Complement to Fertilizer Nitrogen on the Growth and Yield of Rice. Int. J. Trop. Agric. 1990, 8, 72–79. [Google Scholar]
- Henze, M.; Comeau, Y. Wastewater Characterization. In Biological Wastewater Treatment: Principles Modelling and Design; IWA Publishing: London, UK, 2008; Chapter 3; pp. 33–52. ISBN 978-1-84339-188-3. [Google Scholar]
- Varvel, G.E.; Peterson, T.A. Nitrogen Fertilizer Recovery by Corn in Monoculture and Rotation Systems. Agron. J. 1990, 82, 935–938. [Google Scholar] [CrossRef]
- NDSU Agriculture and Extension Phosphorus Behavior in the Environment. Available online: https://www.ag.ndsu.edu:8000/agriculture/ag-hub/publications/phosphorus-behavior-environment (accessed on 7 November 2022).
- Bai, Y.; Zhao, Y. The Effect of the Rainfall on the Nitrogen Fertilizer Schedule of Maize in Jilin, China. Water Supply 2021, 22, 1492–1502. [Google Scholar] [CrossRef]
- McKay Fletcher, D.; Ruiz, S.; Williams, K.; Petroselli, C.; Walker, N.; Chadwick, D.; Jones, D.L.; Roose, T. Projected Increases in Precipitation Are Expected to Reduce Nitrogen Use Efficiency and Alter Optimal Fertilization Timings in Agriculture in the South East of England. ACS EST Eng. 2022, 2, 1414–1424. [Google Scholar] [CrossRef]
- Kirchmann, H.; Bergström, L. Do Organic Farming Practices Reduce Nitrate Leaching? Commun. Soil Sci. Plant Anal. 2001, 32, 997–1028. [Google Scholar] [CrossRef]
- Wei, Z.; Hoffland, E.; Zhuang, M.; Hellegers, P.; Cui, Z. Organic Inputs to Reduce Nitrogen Export via Leaching and Runoff: A Global Meta-Analysis. Environ. Pollut. 2021, 291, 118176. [Google Scholar] [CrossRef] [PubMed]
- University of Missouri Extension Nitrogen in the Environment: Leaching. Available online: https://extension.missouri.edu/publications/wq262 (accessed on 7 November 2022).
- Buchanan, M.A.; Gliessman, S.R. The Influence of Conventional and Compost Fertilization on Phosphorus Use Efficiency by Broccoli in a Phosphorus Deficient Soil. Am. J. Altern. Agric. 1990, 5, 38–46. [Google Scholar] [CrossRef]
- Schröder, J.J.; Smit, A.L.; Cordell, D.; Rosemarin, A. Improved Phosphorus Use Efficiency in Agriculture: A Key Requirement for Its Sustainable Use. Chemosphere 2011, 84, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, A.F. Direct Emission of Nitrous Oxide from Agricultural Soils. Nutr. Cycl. Agroecosyst 1996, 46, 53–70. [Google Scholar] [CrossRef]
- Chai, R.; Ye, X.; Ma, C.; Wang, Q.; Tu, R.; Zhang, L.; Gao, H. Greenhouse Gas Emissions from Synthetic Nitrogen Manufacture and Fertilization for Main Upland Crops in China. Carbon Balance Manag. 2019, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Del Grosso, S.J.; Wirth, T.; Ogle, S.M.; Parton, W.J. Estimating Agricultural Nitrous Oxide Emissions. Eos Trans. Am. Geophys. Union 2008, 89, 529. [Google Scholar] [CrossRef]
- Novoa, R.S.A.; Tejeda, H.R. Evaluation of the N2O Emissions from N in Plant Residues as Affected by Environmental and Management Factors. Nutr. Cycl. Agroecosyst 2006, 75, 29–46. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L. 1955-Greenhouse Gas Emissions from Cropping Systems and the Influence of Fertilizer Management; International Plant Nutrition Institute: Ottawa, ON, Canada, 2007. [Google Scholar]
- Frimpong, K.A.; Baggs, E.M. Do Combined Applications of Crop Residues and Inorganic Fertilizer Lower Emission of N2O from Soil? Soil Use Manag. 2010, 26, 412–424. [Google Scholar] [CrossRef]
- Roba, T.B. Review on: The Effect of Mixing Organic and Inorganic Fertilizer on Productivity and Soil Fertility. Open Access Libr. J. 2018, 5, 1. [Google Scholar] [CrossRef]
- Brunetti, G.; Traversa, A.; De Mastro, F.; Cocozza, C. Short Term Effects of Synergistic Inorganic and Organic Fertilization on Soil Properties and Yield and Quality of Plum Tomato. Sci. Hortic. 2019, 252, 342–347. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; Ma, Y.; Sun, L.; Xiong, Z.; Huang, Q.; Sheng, Q. Methane and Nitrous Oxide Emissions as Affected by Organic–Inorganic Mixed Fertilizer from a Rice Paddy in Southeast China. J. Soils Sediments 2013, 13, 1408–1417. [Google Scholar] [CrossRef]
- Schleuss, P.M.; Widdig, M.; Heintz-Buschart, A.; Kirkman, K.; Spohn, M. Interactions of Nitrogen and Phosphorus Cycling Promote P Acquisition and Explain Synergistic Plant-Growth Responses. Ecology 2020, 101, e03003. [Google Scholar] [CrossRef]
- Graciano, C.; Goya, J.F.; Frangi, J.L.; Guiamet, J.J. Fertilization with Phosphorus Increases Soil Nitrogen Absorption in Young Plants of Eucalyptus Grandis. For. Ecol. Manag. 2006, 236, 202–210. [Google Scholar] [CrossRef]
- Payne, W.A.; Hossner, L.R.; Onken, A.B.; Wendt, C.W. Nitrogen and Phosphorus Uptake in Pearl Millet and Its Relation to Nutrient and Transpiration Efficiency. Agron. J. 1995, 87, 425–431. [Google Scholar] [CrossRef]
- Grunes, D.L. Effect of Nitrogen on the Availability of Soil and Fertilizer Phosphorus to Plants. In Advances in Agronomy; Norman, A.G., Ed.; Academic Press: Cambridge, MA, USA, 1959; Volume 11, pp. 369–396. [Google Scholar]
- Allison, S.D.; Vitousek, P.M. Responses of Extracellular Enzymes to Simple and Complex Nutrient Inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Marklein, A.R.; Houlton, B.Z. Nitrogen Inputs Accelerate Phosphorus Cycling Rates across a Wide Variety of Terrestrial Ecosystems. New Phytol. 2012, 193, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Olander, L.P.; Vitousek, P.M. Regulation of Soil Phosphatase and Chitinase Activityby N and P Availability. Biogeochemistry 2000, 49, 175–191. [Google Scholar] [CrossRef]
- Tinker, P.B. The Role of Microorganisms in Mediating and Facilitating the Uptake of Plant Nutrients from Soil. In Biological Processes and Soil Fertility; Tinsley, J., Darbyshire, J.F., Eds.; Developments in Plant and Soil Sciences; Springer: Dordrecht, The Netherlands, 1984; pp. 77–91. ISBN 978-94-009-6101-2. [Google Scholar]
- Baldwin, J.P. A Quantitative Analysis of the Factors Affecting Plant Nutrient Uptake from Some Soils. J. Soil Sci. 1975, 26, 195–206. [Google Scholar] [CrossRef]
- Clément, C.-C.; Cambouris, A.N.; Ziadi, N.; Zebarth, B.J.; Karam, A. Nitrogen Source and Rate Effects on Residual Soil Nitrate and Overwinter NO3-N Losses for Irrigated Potatoes on Sandy Soils. Can. J. Soil. Sci. 2020, 100, 44–57. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Schweissing, F.C.; Bartolo, M.E.; Reule, C.A. Corn Response to Nitrogen Fertilization in a Soil with High Residual Nitrogen. Agron. J. 2005, 97, 1222–1229. [Google Scholar] [CrossRef]
- Jjagwe, J.; Chelimo, K.; Karungi, J.; Komakech, A.J.; Lederer, J. Comparative Performance of Organic Fertilizers in Maize (Zea mays L.) Growth, Yield, and Economic Results. Agronomy 2020, 10, 69. [Google Scholar] [CrossRef]
- Abedi, T.; Alemzadeh, A.; Kazemeini, S.A. Effect of Organic and Inorganic Fertilizers on Grain Yield and Protein Banding Pattern of Wheat. Aust. J. Crop Sci. 2010, 4, 384–389. [Google Scholar]
- Amujoyegbe, B.J.; Opabode, J.T.; Olayinka, A. Effect of Organic and Inorganic Fertilizer on Yield and Chlorophyll Content of Maize (Zea mays L.) and Sorghum Sorghum bicolour (L.) Moench). Afr. J. Biotechnol. 2007, 6, 1869–1873. [Google Scholar]
kg/ha | |||||
---|---|---|---|---|---|
Plant | Nitrogen (N) | Phosphorus (P) | Phosphorus Pentoxide (P2O5) | Potassium (K) | Potassium Oxide (K2O) |
Beet | 151 | 100 | 230 | 176 | 211 |
Kale | 402 | 97 | 224 | 121 | 145 |
Tomato | 302 | 42 | 97 | 225 | 269 |
Sorghum | 157 | 47 | 109 | 191 | 230 |
Plant | Treatment | Mass of Amendment (g/pot) | N (kg/ha) | P (kg/ha) | K (kg/ha) |
---|---|---|---|---|---|
Beet | Control | 0 | 0 | 0 | 0 |
Fertilizer (F) | 2.73 | 247 | 40 | 205 | |
Duckweed (D) | 21 | 366 | 95 | 499 | |
Mix (D, F) | 8.4, 1.656 | 295 | 62 | 323 | |
Kale | Control | 0 | 0 | 0 | 0 |
Fertilizer (F) | 8.7 | 547 | 89 | 454 | |
Duckweed (D) | 45.35 | 549 | 143 | 748 | |
Mix (D, F) | 18.14, 5.22 | 548 | 111 | 572 | |
Tomato | Control | 0 | 0 | 0 | 0 |
Fertilizer (F) | 9.67 | 316 | 52 | 262 | |
Duckweed (D) | 50.5 | 317 | 82 | 432 | |
Mix (D, F) | 20.2, 5.8 | 316 | 64 | 330 | |
Sorghum | Control | 0 | 0 | 0 | 0 |
Fertilizer (F) | 5.95 | 155 | 25 | 128 | |
Duckweed (D) | 31 | 155 | 40 | 211 | |
Mix (D, F) | 12.4, 3.55 | 155 | 31 | 162 |
Crop | Treatment | Fresh Mass (ton/ha) | Dry Mass (ton/ha) |
---|---|---|---|
Beet (root) | Control | 20.62 ± 3.3 (b) | 3.7 ± 0.25 (b) |
Fertilizer | 55.68 ± 11.19 (a) | 9.55 ± 2.86 (a) | |
Duckweed | 46.33 ± 7.59 (ab) | 8.13 ± 1.42 (ab) | |
Mix | 45.44 ± 9.46 (ab) | 8.62 ± 1.34 (ab) | |
p-value | 0.016 | 0.040 | |
Kale (leaves) | Control | 19.11 ± 0.15 (c) | 3.75 ± 0.26 (c) |
Fertilizer | 45.79 ± 4.43 (a) | 7.77 ± 0.26 (a) | |
Duckweed | 30.85 ± 3.7 (b) | 4.96 ± 0.21 (b) | |
Mix | 31.62 ± 1.69 (b) | 4.55 ± 0.1 (b) | |
p-value | <0.001 | <0.001 | |
Tomato (fruit) | Control | 80.13 ± 14.44 (a) | 4.49 ± 1.06 (a) |
Fertilizer | 120.95 ± 31.74 (a) | 7.83 ± 1.85 (a) | |
Duckweed | 110.48 ± 28.28 (a) | 8.11 ± 1.95 (a) | |
Mix | 143 ± 30.15 (a) | 8.3 ± 1.48 (a) | |
p-value | 0.213 | 0.141 | |
Sorghum (grain head) | Control | 7.2 ± 0.47 (b) | 5.1 ± 0.4 (b) |
Fertilizer | 9.23 ± 0.13 (a) | 6.56 ± 0.04 (a) | |
Duckweed | 10.28 ± 0.64 (a) | 7.49 ± 0.52 (a) | |
Mix | 10.03 ± 0.64 (a) | 7.15 ± 0.5 (a) | |
p-value | 0.001 | 0.002 |
(kg/ha) | (%) | |||||||
---|---|---|---|---|---|---|---|---|
Plant | Treatment | Initial Soil TN (Before Planting) | N Added | N Plant Tissue | TIN Leached | Final Soil TN (After Harvest) | TN Change | N Loss |
Beet | Control | 3395.3 | 0.0 | 56.6 | 28.5 | 3276.5 | −3.5 | 1.0 |
Fertilizer | 3621.7 | 247.2 | 169.8 | 83.3 | 3440.6 | −5.0 | 4.5 | |
Duckweed | 3734.8 | 366.0 | 130.2 | 68.1 | 3768.8 | 0.9 | 3.3 | |
Mix | 3621.7 | 294.7 | 135.8 | 75.4 | 3406.6 | −5.9 | 7.6 | |
Kale | Control | 2436.4 | 0.0 | 43.2 | 12.9 | 2326.4 | −4.5 | 2.2 |
Fertilizer | 2515.0 | 547.0 | 224.0 | 61.2 | 2436.4 | −3.1 | 11.1 | |
Duckweed | 2750.8 | 548.9 | 141.5 | 73.8 | 3057.3 | 11.1 | 0.8 | |
Mix | 2515.0 | 547.8 | 121.8 | 63.6 | 2153.5 | −14.4 | 23.6 | |
Tomato | Control | 4420.7 | 0.0 | 93.7 | 11.9 | 4227.2 | −4.4 | 2.0 |
Fertilizer | 4563.3 | 316.2 | 130.4 | 22.6 | 4386.1 | −3.9 | 7.0 | |
Duckweed | 4563.3 | 316.9 | 136.5 | 21.3 | 4402.4 | −3.5 | 6.6 | |
Mix | 4563.3 | 316.4 | 154.8 | 29.2 | 4881.1 | 7.0 | −3.8 | |
Sorghum | Control | 3637.8 | 0.0 | 99.1 | 15.2 | 3363.4 | −7.5 | 4.4 |
Fertilizer | 3637.8 | 154.6 | 115.3 | 24.7 | 3337.4 | −8.3 | 8.3 | |
Duckweed | 3637.8 | 155.1 | 133.2 | 26.4 | 3569.6 | −1.9 | 1.7 | |
Mix | 3637.8 | 154.8 | 125.1 | 32.5 | 3423.5 | −5.9 | 5.6 |
Change between Pre-Treatment and Post-Harvest Soils Min. Value Max. Value | |||||||
---|---|---|---|---|---|---|---|
Plant | Treatment | % C | % TN | % P | % K | % Mg | % Ca |
Beet | Control | −1.6 | −3.6 | 13 | −25 | 21 | 39 |
Fertilizer | −5.7 | −5 | 104 | 67 | 23 | 37 | |
Duckweed | 4.5 | 0.9 | 98 | 59 | 20 | 48 | |
Mix | −4.4 | −5.9 | 134 | 90 | 28 | 54 | |
Kale | Control | −0.5 | −4.5 | 5 | 14 | 23 | 48 |
Fertilizer | 0.1 | −3.1 | 19 | 197 | 25 | 42 | |
Duckweed | 16.6 | 11.1 | 164 | 346 | 30 | 84 | |
Mix | −12.5 | −14.3 | 33 | 160 | 38 | 36 | |
Tomato | Control | −2.4 | −4.4 | −26 | −46 | 5 | 26 |
Fertilizer | −2.7 | −3.9 | 15 | −3 | 18 | 27 | |
Duckweed | −5.3 | −3.5 | 31 | 38 | 31 | 47 | |
Mix | 8.5 | 7 | 15 | −8 | 17 | 27 | |
Sorghum | Control | −7 | −7.5 | 16 | −25 | 29 | 52 |
Fertilizer | −6.1 | −8.3 | 17 | −9 | 16 | 38 | |
Duckweed | −0.5 | −1.9 | 30 | 56 | 15 | 41 | |
Mix | −2.3 | −5.9 | 25 | 57 | 16 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez Pulido, C.R.; Femeena, P.V.; Brennan, R.A. Nutrient Cycling with Duckweed for the Fertilization of Root, Fruit, Leaf, and Grain Crops: Impacts on Plant–Soil–Leachate Systems. Agriculture 2024, 14, 188. https://doi.org/10.3390/agriculture14020188
Fernandez Pulido CR, Femeena PV, Brennan RA. Nutrient Cycling with Duckweed for the Fertilization of Root, Fruit, Leaf, and Grain Crops: Impacts on Plant–Soil–Leachate Systems. Agriculture. 2024; 14(2):188. https://doi.org/10.3390/agriculture14020188
Chicago/Turabian StyleFernandez Pulido, Carlos R., Pandara Valappil Femeena, and Rachel A. Brennan. 2024. "Nutrient Cycling with Duckweed for the Fertilization of Root, Fruit, Leaf, and Grain Crops: Impacts on Plant–Soil–Leachate Systems" Agriculture 14, no. 2: 188. https://doi.org/10.3390/agriculture14020188
APA StyleFernandez Pulido, C. R., Femeena, P. V., & Brennan, R. A. (2024). Nutrient Cycling with Duckweed for the Fertilization of Root, Fruit, Leaf, and Grain Crops: Impacts on Plant–Soil–Leachate Systems. Agriculture, 14(2), 188. https://doi.org/10.3390/agriculture14020188