Mapping and Candidate Gene Prediction of qPL7-25: A Panicle Length QTL in Dongxiang Wild Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Measurement of Traits
2.3. Linkage Map Construction and QTL Analysis
2.4. Construction of NIL
2.5. QTL Mapping and Statistical Analysis
2.6. RNA Extraction and QRT-PCR Analysis
3. Results
3.1. Phenotypic Data of Panicle Traits of Two Parents and RIL Population
3.2. QTL Analysis of PL
3.3. Fine Mapping of qPL7-25
3.4. Candidate Gene Analysis of qPL7-25
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, Y.G.; Kang, H.J.; Lee, J.S.; Lee, Y.T.; Mccouch, S.R. Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. Crop Sci. 2007, 47, 2403–2417. [Google Scholar] [CrossRef]
- Marathi, B.; Guleria, S.; Mohapatra, T.; Parsad, R.; Mariappan, N.; Kurungara, V.; Atwal, S.; Prabhu, K.; Singh, N.; Singh, A. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.). BMC Plant Biol. 2012, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Moncada, P.; Martinez, C.P.; Borrero, J.; Chatel, M.; Gauch, H.; Guimaraes, E.; Tohme, J.; McCouch, S.R. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor. Appl. Genet. 2001, 102, 41–52. [Google Scholar] [CrossRef]
- Septiningsih, E.M.; Prasetiyono, J.; Lubis, E.; Tai, T.H.; Tjubaryat, T.; Moeljopawiro, S.; McCouch, S.R. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 2003, 107, 1419–1432. [Google Scholar] [CrossRef]
- Septiningsih, E.M.; Trijatmiko, K.R.; Moeljopawiro, S.; McCouch, S.R. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 2003, 107, 1433–1441. [Google Scholar] [CrossRef]
- Thomson, M.J.; Tai, T.H.; McClung, A.M.; Lai, X.H.; Hinga, M.E.; Lobos, K.B.; Xu, Y.; Martinez, C.P.; McCouch, S.R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 2003, 107, 479–493. [Google Scholar] [CrossRef]
- Nguyen, B.D.; Brar, D.S.; Bui, B.C.; Nguyen, T.V.; Pham, L.N.; Nguyen, H.T. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor. Appl. Genet. 2003, 106, 583–593. [Google Scholar] [CrossRef]
- Marri, P.R.; Sarla, N.; Reddy, L.V.; Siddiq, E.A. Identification and mapping of yield and yield related QTHN from an Indian accession of Oryza rufipogon. BMC Genet. 2005, 6, 33–46. [Google Scholar] [CrossRef]
- Sweeney, M.; McCouch, S. The complex history of the domestication of rice. Ann. Bot. 2007, 100, 951–957. [Google Scholar] [CrossRef]
- Koseki, M.; Kitazawa, N.; Yonebayashi, S.; Maehara, Y.; Wang, Z.X.; Minobe, Y. Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol. Genet. Genom. 2010, 284, 45–54. [Google Scholar] [CrossRef]
- Dong, X.X.; Wang, X.Y.; Zhang, L.S.; Yang, Z.T.; Xin, X.Y.; Wu, S.; Sun, C.Q.; Liu, J.X.; Yang, J.S.; Luo, X.J. Identification and characterization of OsEBS, a gene involved in enhanced plant biomass and spikelet number in rice. Plant Biotechnol. J. 2013, 11, 1044–1057. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Yu, L.; Chen, D.; Li, L.; Zhu, Y.; Xiao, Y.; Zhang, D.; Chen, C. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor. Appl. Genet. 2015, 128, 1359–1371. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, S.; Fu, Y.; Su, Z.; Wang, X.; Sun, C. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol. Biol. 2006, 62, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.W.; Peng, X.J.; Qian, M.J.; Cai, Y.C.; Ding, X.; Chen, Q.S.; Cai, Q.Y.; Zhu, Y.L.; Yan, L.G.; Cai, Y.H. The chimeric mitochondrial gene orf182 causes non-pollen-type abortion in Dongxiang cytoplasmic male-sterile rice. Plant J. 2018, 95, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K.; Pandey, P.; Kumar, B.; Suresh, B.G. Genetic architecture, inter-relationship and selection criteria for yield improvement in rice (Oryza sativa L.). Pak. J. Biol. Sci. 2011, 14, 540–545. [Google Scholar] [CrossRef]
- Miura, K.; Ashikari, M.; Matsuoka, M. The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci. 2011, 16, 319–326. [Google Scholar] [CrossRef]
- Bai, X.F.; Wu, B.; Xing, Y.Z. Yield-related QTLs and their applications in rice genetic improvement. J. Integr. Plant Biol. 2012, 54, 300–311. [Google Scholar] [CrossRef]
- Khahani, B.; Tavakol, E.; Shariati, V.; Rossini, L. Meta-QTL and ortho-MQTL analyses identifed genomic regions controlling rice yield, yield-related traits and root architecture under water defcit conditions. Sci. Rep. 2021, 11, 6942. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Nomura, T.; Xu, Y.H.; Zhang, Y.Y.; Peng, Y.; Mao, B.Z.; Hanada, A.; Zhou, H.C.; Wang, R.X.; Li, P.J.; et al. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 2006, 18, 442–456. [Google Scholar] [CrossRef]
- Kurakawa, T.; Ueda, N.; Maekawa, M.; Kobayashi, K.; Kojima, M.; Nagato, Y.; Sakakibara, H.; Kyozuka, J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 2007, 445, 652–655. [Google Scholar] [CrossRef]
- Huang, X.Z.; Qian, Q.; Liu, Z.B.; Sun, H.Y.; He, S.Y.; Luo, D.; Xia, G.M.; Chu, C.C.; Li, J.Y.; Fu, X.D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 2009, 41, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tang, D.; Wang, K.J.; Wu, X.R.; Lu, L.L.; Yu, H.X.; Gu, M.H.; Yan, C.J.; Cheng, Z.K. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol. J. 2011, 9, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.W.; Coneva, V.; Casaretto, J.A.; Ying, S.; Mahmood, K.; Liu, F.; Nambara, E.; Bi, Y.M.; Rothstein, S.J. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. Plant J. 2015, 83, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.P.; Fang, J.; Xu, F.; Wang, W.; Chu, C.C. Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell 2016, 28, 680–695. [Google Scholar] [CrossRef]
- Sun, P.Y.; Zhang, W.H.; Wang, Y.H.; He, Q.; Shu, F.; Liu, H.; Wang, J.; Wang, J.M.; Yuan, L.P.; Deng, H.F. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J. Integr. Plant Biol. 2016, 58, 836–847. [Google Scholar] [CrossRef]
- Huang, Y.; Bai, Y.F.; Luo, M.F.; Ying, Y.Z. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice. J. Integr. Plant Biol. 2019, 61, 987–999. [Google Scholar] [CrossRef]
- Su, S.; Hong, J.; Chen, X.; Zhang, C.; Chen, M.; Luo, Z.; Chang, S.; Bai, S.; Liang, W.; Liu, Q.; et al. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnol. J. 2021, 19, 2304–2318. [Google Scholar] [CrossRef]
- Xue, W.Y.; Xing, Y.Z.; Weng, X.Y.; Zhao, Y.; Tang, W.J.; Wang, L.; Zhou, H.J.; Yu, S.B.; Xu, C.G.; Li, X.H.; et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 2008, 40, 761–767. [Google Scholar] [CrossRef]
- Yan, W.H.; Wang, P.; Chen, H.X.; Zhou, H.J.; Li, Q.P.; Wang, C.R.; Ding, Z.H.; Zhang, Y.S.; Yu, S.B.; Xing, Y.Z.; et al. A Major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 2011, 4, 319–330. [Google Scholar] [CrossRef]
- Li, J.; Xu, R.; Wang, C.C.; Qi, L.; Zheng, X.M.; Wang, W.S.; Ding, Y.B.; Zhang, L.Z.; Wang, Y.Y.; Cheng, Y.L.; et al. A heading date QTL, qHD7.2, from wild rice (Oryza rufipogon) delays flowering and shortens panicle length under long-day conditions. Sci. Rep. 2018, 8, 2928. [Google Scholar]
- Ikeda, K.; Ito, M.; Nagasawa, N.; Kyozuka, J.; Nagato, Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J. 2007, 51, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Ookawa, T.; Hobo, T.; Yano, M.; Murata, K.; Ando, T.; Miura, H.; Asano, K.; Ochiai, Y.; Ikeda, M.; Nishitani, R.; et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 2010, 1, 132. [Google Scholar] [CrossRef] [PubMed]
- Terao, T.; Nagata, K.; Morino, K.; Hirose, T. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor. Appl. Genet. 2010, 120, 875–893. [Google Scholar] [CrossRef] [PubMed]
- Luan, W.J.; Liu, Y.Q.; Zhang, F.X.; Song, Y.L.; Wang, Z.Y.; Peng, Y.K.; Sun, Z.X. OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotech. J. 2011, 9, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.L.; Piao, R.H.; Shi, J.X.; Lee, S.I.; Jiang, W.Z.; Kim, B.K.; Lee, J.; Han, L.Z.; Ma, W.B.; Koh, H.J. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor. Appl. Genet. 2011, 122, 1439–1449. [Google Scholar] [CrossRef]
- Ma, X.F.; Cheng, Z.J.; Qin, R.Z.; Qiu, Y.; Heng, Y.Q.; Yang, H.; Ren, Y.L.; Wang, X.L.; Bi, J.C.; Ma, X.D.; et al. OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice. Plant J. 2013, 73, 190–200. [Google Scholar] [CrossRef]
- Huang, L.J.; Hua, K.; Xu, R.; Zeng, D.L.; Wang, R.C.; Dong, G.J.; Zhang, G.Z.; Lu, X.L.; Fang, N.; Wang, D.K.; et al. The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell 2021, 33, 1212–1228. [Google Scholar] [CrossRef]
- Li, S.B.; Qian, Q.; Fu, Z.M.; Zeng, D.L.; Meng, X.B.; Kyozuka, J.; Maekawa, M.; Zhu, X.D.; Zhang, J.; Li, J.Y.; et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J. 2009, 58, 592–605. [Google Scholar] [CrossRef]
- Miura, K.; Ikeda, M.A.; Matsubara, A.; Song, X.J.; Ito, M.; Asano, K.; Matsuoka, M.; Kitano, H.; Ashikari, M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 2010, 42, 545–549. [Google Scholar] [CrossRef]
- Li, F.; Liu, W.B.; Tang, J.Y.; Chen, J.F.; Tong, H.N.; Hu, B.; Li, C.L.; Fang, J.; Chen, M.S.; Chu, C.C. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res. 2010, 20, 838–849. [Google Scholar] [CrossRef]
- Nakagawa, H.; Tanaka, A.; Tanabata, T.; Ohtake, M.; Fujioka, S.; Nakamura, H.; Ichikawa, H.; Mori, M. SHORT GRAIN1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol. 2012, 158, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Ohmori, Y.; Kitano, H.; Taguchi-Shiobara, F.; Hirano, H.Y. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J. 2012, 70, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Sasao, M.; Yasuno, N.; Takagi, K.; Daimon, Y.; Chen, R.H.; Yamazaki, R.; Tokunaga, H.; Kitaguchi, Y.; Sato, Y.; et al. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc. Natl. Acad. Sci. USA 2013, 110, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Léran, S.; Varala, K.; Boyer, J.C.; Chiurazzi, M.; Crawford, N.; Daniel-Vedele, F.; David, L.; Dickstein, R.; Fernandez, E.; Forde, B.; et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci. 2014, 19, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Xiong, G.S.; Hu, J.; Jiang, L.; Yu, H.; Xu, J.; Fang, Y.X.; Zeng, L.J.; Xu, E.B.; Xu, J.; et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 2015, 47, 944–948. [Google Scholar] [CrossRef]
- Wang, S.K.; Li, S.; Liu, Q.; Wu, K.; Zhang, J.Q.; Wang, S.S.; Wang, Y.; Chen, X.B.; Zhang, Y.; Gao, C.X.; et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 2015, 47, 949–954. [Google Scholar] [CrossRef]
- Zhou, Y.; Miao, J.; Gu, H.Y.; Peng, X.R.; Leburu, M.; Yuan, F.H.; Gu, H.W.; Gao, Y.; Tao, Y.J.; Zhu, J.Y.; et al. Natural variations in SLG7 regulate grain shape in rice. Genetics 2015, 201, 1591–1599. [Google Scholar] [CrossRef]
- Ikeda-Kawakatsu, K.; Maekawa, M.; Izawa, T.; Itoh, J.I.; Nagato, Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J. 2015, 69, 168–180. [Google Scholar] [CrossRef]
- Ikeda-Kawakatsu, K.; Yasuno, N.; Oikawa, T.; Iida, S.; Nagato, Y.; Maekawa, M.; Kyozuka, J. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol. 2009, 150, 736–747. [Google Scholar] [CrossRef]
- Sun, X.W.; Liu, D.Y.; Zhang, X.F.; Li, W.B.; Liu, H.; Hong, W.G.; Jiang, C.B.; Guan, N.; Ma, C.X.; Zeng, H.P.; et al. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar] [CrossRef]
- Vision, T.J.; Brown, D.G.; Shmoys, D.B.; Durrett, R.T.; Tanksley, S.D. Selective mapping: A strategy for optimizing the construction of high-density linkage maps. Genetics 2000, 155, 407–420. [Google Scholar] [CrossRef]
- McCouch, S.R.; Cho, Y.G.; Yano, M.; Paul, E.; Blinstrub, M.; Morishima, H.; Kinoshita, T. Suggestions for QTL nomenclature for rice, Rice Genet. News 1997, 14, 11–13. [Google Scholar]
- Yang, J.; Zhu, J. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor. Appl. Genet. 2005, 110, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yao, W.; Ouyang, Y.D.; Yang, W.N.; Wang, G.W.; Lian, X.M.; Xing, Y.Z.; Chen, L.L.; Xie, W.B. RiceVarMap: A comprehensive database of rice genomic variations. Nucleic Acids Res. 2015, 43, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, J.C.; Yang, L.; Qin, G.; Xia, C.J.; Xu, X.B.; Su, Y.M.; Liu, Y.M.; Ming, L.C.; Chen, L.L.; et al. An inferred functional impact map of genetic variants in rice. Mol. Plant. 2021, 14, 1584–1599. [Google Scholar] [CrossRef]
- Adriani, D.E.; Dingkuhn, M.; Dardou, A.; Adam, H.; Luquet, D.; Lafarge, T. Rice panicle plasticity in near isogenic lines carrying a QTL for larger panicle is genotype and environment dependent. Rice 2016, 9, 28. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.J.; Wang, J.M.; Wang, L.Y.; He, Z.H. Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. Theor. Appl. Genet. 2015, 128, 1151–1161. [Google Scholar] [CrossRef]
- Liu, E.B.; Liu, Y.; Wu, G.C.; Zeng, S.Y.; Thi, T.; Liang, L.J.; Liang, Y.F.; Dong, Z.Y.; She, D.; Wang, H.; et al. Identification of a candidate gene for panicle length in rice (Oryza sativa L.) via association and linkage analysis. Front. Plant Sci. 2016, 7, 596. [Google Scholar] [CrossRef]
- Kumar, M.; Basha, P.O.; Puri, A.; Rajpurohit, D.; Randhawa, G.S.; Sharma, T.R.; Dhaliwal, H.S. A candidate gene OsAPC6 of anaphase-promoting complex of rice identified through T-DNA insertion. Funct. Integr. Genom. 2010, 10, 349–358. [Google Scholar] [CrossRef]
- Li, S.F.; Shen, L.; Hu, P.; Wu, X.M.; Yuan, Q.L.; Rao, Y.C.; Qian, Q.; Wang, K.J.; Zhu, X.D.; Shang, L.G.; et al. A method for effectively overcoming tight functional linkage between genes in rice by CRISPR/Cas9 system. Rice Sci. 2020, 27, 180–183. [Google Scholar]
- Tan, W.C.; Miao, J.; Xu, B.; Zhou, C.T.; Wang, Y.R.; Gu, X.Q.; Liang, S.N.; Wang, B.X.; Chen, C.; Zhu, J.Y.; et al. Rapid production of novel beneficial alleles for improving rice appearance quality by targeting a regulatory element of SLG7. Plant Biotechnol. J. 2023, 21, 1305–1307. [Google Scholar] [CrossRef] [PubMed]
Traits | Loc | Parents | RIL Population | |||||
---|---|---|---|---|---|---|---|---|
DXWR | GLA4 | Average | SD | Variation | Skewness | Kurtosis | ||
PH (cm) | HZ | 154.3 ± 3.5 ** | 83.3 ± 0.8 | 127.3 | 29.2 | 79.0–190.3 | 0.315 | −1.062 |
HN | 133.7 ± 2.6 ** | 86.2 ± 1.2 | 107.5 | 25.3 | 64.8–159.6 | 0.106 | −1.237 | |
PL (cm) | HZ | 23.7 ± 0.5 ** | 21.2 ± 0.7 | 22.1 | 3.1 | 14.8–29.8 | −0.120 | −0.281 |
HN | 22.1 ± 0.3 ** | 20.0 ± 0.3 | 19.5 | 3.0 | 13.7–27.0 | 0.278 | −0.516 | |
PBN | HZ | 15.7 ± 0.3 * | 12.3 ± 0.9 | 14.5 | 1.9 | 10.0–19.0 | 0.062 | −0.646 |
HN | 11.7 ± 0.7 * | 9.3 ± 0.3 | 9.7 | 1.5 | 5.7–13.3 | −0.145 | −0.238 | |
SBN | HZ | 18.3 ± 0.9 * | 26.0 ± 2.7 | 27.3 | 10.1 | 8.6–52.0 | 0.424 | −0.262 |
HN | 13.7 ± 1.5 ** | 24.3 ± 1.5 | 21.4 | 8.7 | 6.7–44.0 | 0.335 | −0.679 | |
SPP | HZ | 133.5 ± 6.5 | 125.3 ± 3.8 | 125.4 | 33.2 | 58.8–233.9 | 0.702 | 0.795 |
HN | 142.5 ± 3.3 | 136.9 ± 3.6 | 99.8 | 30.3 | 45.5–170.1 | 0.349 | −0.735 |
Traits | Loc | PBN | SBN | SPP | PL (cm) |
---|---|---|---|---|---|
PBN | HZ | 1 | |||
HN | 1 | ||||
SBN | HZ | 0.6173 ** | 1 | ||
HN | 0.6347 ** | 1 | |||
SPP | HZ | 0.5484 ** | 0.7837 ** | 1 | |
HN | 0.7484 ** | 0.8470 ** | 1 | ||
PL (cm) | HZ | 0.2934 ** | 0.3321 ** | 0.4884 ** | 1 |
HN | 0.4575 ** | 0.5049 ** | 0.6124 ** | 1 |
Trait | Loc | Chr. | QTL | Marker Interval | F-Value | p-Value | Additive | PVE (%) |
---|---|---|---|---|---|---|---|---|
PL | HZ | 1 | qPL1-37 | M37–M38 | 17.13 | 0.000025 | 0.9532 | 8.99 |
4 | qPL4-26 | M142–M143 | 18.77 | 0.000000 | 0.000000 | 12.92 | ||
7 | qPL7-25 | M234–M235 | 32.32 | 0.000000 | 1.3373 | 18.66 | ||
HN | 1 | qPL1-37 | M37–M38 | 9.42 | 0.000646 | 0.8259 | 7.31 | |
4 | qPL4-26 | M142–M143 | 10.28 | 0.000412 | −0.8356 | 7.48 | ||
7 | qPL7-25 | M234–M235 | 16.80 | 0.000007 | 1.1858 | 13.06 | ||
8 | qPL8-4 | M242–M243 | 10.25 | 0.003005 | 0.7589 | 6.17 | ||
PBN | HZ | 1 | qPBN1-8 | M8–M9 | 17.22 | 0.000005 | −0.6958 | 12.62 |
HN | 1 | qPBN1-8 | M8–M9 | 18.89 | 0.000001 | −0.6390 | 16.12 | |
HZ | 2 | qPBN2-4 | M48–M49 | 8.44 | 0.005070 | −0.4330 | 4.89 | |
HN | 2 | qPBN2-4 | M48–M49 | 9.30 | 0.000710 | −0.4365 | 7.53 | |
HZ | 7 | qPBN7-25 | M234–M235 | 14.84 | 0.000145 | 0.5493 | 7.87 | |
SBN | HZ | 1 | qSBN1-2 | M2–M3 | 11.76 | 0.000330 | −2.6833 | 9.26 |
HN | 1 | qSBN1-5 | M5–M6 | 19.28 | 0.000004 | −3.8478 | 13.91 | |
HN | 1 | qSBN1-6 | M6–M7 | 24.31 | 0.000004 | −3.1235 | 12.55 | |
HN | 5 | qSBN5-22 | M173–M174 | 8.87 | 0.000447 | 2.3278 | 6.97 | |
HZ | 7 | qSBN7-20 | M229–M230 | 10.99 | 0.001025 | 2.8319 | 7.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Rao, Y.; Duan, P.; Wang, Z.; Hu, P.; Yu, R.; Luo, C.; Tang, M.; Lu, C.; Wang, Y.; et al. Mapping and Candidate Gene Prediction of qPL7-25: A Panicle Length QTL in Dongxiang Wild Rice. Agriculture 2023, 13, 1623. https://doi.org/10.3390/agriculture13081623
Li S, Rao Y, Duan P, Wang Z, Hu P, Yu R, Luo C, Tang M, Lu C, Wang Y, et al. Mapping and Candidate Gene Prediction of qPL7-25: A Panicle Length QTL in Dongxiang Wild Rice. Agriculture. 2023; 13(8):1623. https://doi.org/10.3390/agriculture13081623
Chicago/Turabian StyleLi, Sanfeng, Yuchun Rao, Penggen Duan, Zhonghao Wang, Ping Hu, Ruoqian Yu, Chenxi Luo, Mengna Tang, Caolin Lu, Yuexing Wang, and et al. 2023. "Mapping and Candidate Gene Prediction of qPL7-25: A Panicle Length QTL in Dongxiang Wild Rice" Agriculture 13, no. 8: 1623. https://doi.org/10.3390/agriculture13081623
APA StyleLi, S., Rao, Y., Duan, P., Wang, Z., Hu, P., Yu, R., Luo, C., Tang, M., Lu, C., Wang, Y., & Mao, Y. (2023). Mapping and Candidate Gene Prediction of qPL7-25: A Panicle Length QTL in Dongxiang Wild Rice. Agriculture, 13(8), 1623. https://doi.org/10.3390/agriculture13081623