The Impact of Multi-Dimensional Vectors on China’s Agricultural Products Export: Based on fsQCA
Abstract
:1. Introduction
2. Materials and Methods
2.1. CAGE Theoretical Framework
2.2. Research Method
2.2.1. Fuzzy-Set Qualitative Comparative Analysis (fsQCA)
2.2.2. Dependent Variables
2.2.3. Independent (Precursor) Variables
- Geographical Distance (DS)
- 2.
- Cultural Distance (CD)
- 3.
- Institutional (or administrative) Distance (ZD)
- 4.
- Economic Distance (ED)
2.3. Data Adaptability Analysis
2.3.1. Panel Data Analysis
2.3.2. Calibration of Original Data
3. Results
3.1. Necessity Analysis
3.2. Configuration Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, L.; Tong, G. Research on the competitiveness and influencing factors of agricultural products trade between China and the countries along the “belt and road”. Alex. Eng. J. 2022, 61, 8919–8931. [Google Scholar] [CrossRef]
- Xing, L.; Yin, X.; Cao, C.; Elahi, E.; Wei, T. The impact of multidimensional distance on agricultural exports: Evidence from China based on the technological added value. Sustainability 2022, 15, 393. [Google Scholar] [CrossRef]
- Wan, L.; Gao, X. The influence of cultural, geographical and institutional distance on China’s import and export trade: An empirical test of the trade data with 32 countries or regions. Int. Econ. Trade Res. 2014, 30, 39–48. [Google Scholar]
- Lankhuizen, M.B.; de Groot, H.L. Cultural distance and international trade: A non-linear relationship. Lett. Spat. Resour. Sci. 2016, 9, 19–25. [Google Scholar] [CrossRef]
- Carrère, C.; Schiff, M. On the geography of trade: Distance is alive and well. Rev. Économique 2005, 56, 1249–1274. [Google Scholar] [CrossRef]
- Belloc, M. Institutions and international trade: A reconsideration of comparative advantage. J. Econ. Surv. 2006, 20, 3–26. [Google Scholar] [CrossRef]
- Liu, A.; Lu, C.; Wang, Z. The roles of cultural and institutional distance in international trade: Evidence from China’s trade with the Belt and Road countries. China Econ. Rev. 2020, 61, 101234. [Google Scholar] [CrossRef]
- Pankaj, G. Distance still matters: The hard reality of global expansion. Harv. Bus. Rev. 2001, 79, 137–147. [Google Scholar]
- Zhang, Z.; Bao, J. Effects of multiple distances on inbound and outbound tourism flows in China: A configuration-based perspective. Sci. Geogr. Sin. 2021, 41, 13–21. [Google Scholar] [CrossRef]
- Kano, K.; Kano, T.; Takechi, K. The price of distance: Pricing-to-market and geographic barriers. J. Econ. Geogr. 2021, 22, 873–899. [Google Scholar] [CrossRef]
- Lawrence, E.R.; Raithatha, M.; Rodriguez, I. The effect of cultural and institutional factors on initiation, completion, and duration of cross-border acquisitions. J. Corp. Financ. 2021, 68, 101950. [Google Scholar] [CrossRef]
- Liu, A.; Lu, C.; Wang, Z. Does cultural distance hinder exports?: A comparative study of China and the United States. Econ. Model. 2021, 105, 105668. [Google Scholar] [CrossRef]
- Mendel, J.M.; Korjani, M.M. On establishing nonlinear combinations of variables from small to big data for use in later processing. Inf. Sci. 2014, 280, 98–110. [Google Scholar] [CrossRef]
- Harms, P.; Shuvalova, D. Cultural distance and international trade in services: A disaggregate view. Econ. Syst. 2020, 44, 100786. [Google Scholar] [CrossRef]
- Lankhuizen, M.; de Groot, H.L.; Linders, G.J.M. The trade-off between foreign direct investments and exports: The role of multiple dimensions of distance. World Econ. 2011, 34, 1395–1416. [Google Scholar] [CrossRef]
- Tadesse, B.; White, R. Cultural distance as a determinant of bilateral trade flows: Do immigrants counter the effect of cultural differences? Appl. Econ. Lett. 2010, 17, 147–152. [Google Scholar] [CrossRef]
- Ragin, C.C.; Fiss, P.C. Net effects analysis versus configurational analysis: An empirical demonstration. Redesigning Soc. Inq. Fuzzy Sets Beyond 2008, 240, 190–212. [Google Scholar]
- Di Paola, N. Pathways to academic entrepreneurship: The determinants of female scholars’ entrepreneurial intentions. J. Technol. Transf. 2021, 46, 1417–1441. [Google Scholar] [CrossRef]
- Kumar, S.; Sahoo, S.; Lim, W.M.; Kraus, S.; Bamel, U. Fuzzy-set qualitative comparative analysis (fsQCA) in business and management research: A contemporary overview. Technol. Forecast. Soc. Change 2022, 178, 121599. [Google Scholar] [CrossRef]
- Huarng, K.-H.; Yu, T.H.-K. Using qualitative approach to forecasting regime switches. Qual. Quant. 2017, 51, 2035–2048. [Google Scholar] [CrossRef]
- Khedhaouria, A.; Cucchi, A. Technostress creators, personality traits, and job burnout: A fuzzy-set configurational analysis. J. Bus. Res. 2019, 101, 349–361. [Google Scholar] [CrossRef]
- Lee, C.K.H. How guest-host interactions affect consumer experiences in the sharing economy: New evidence from a configurational analysis based on consumer reviews. Decis. Support Syst. 2022, 152, 113634. [Google Scholar] [CrossRef]
- Dahms, S. Foreign-owned subsidiary knowledge sourcing: The role of location and expatriates. J. Bus. Res. 2019, 105, 178–188. [Google Scholar] [CrossRef]
- Acquah, I.S.K.; Naude, M.J.; Sendra-García, J. Supply chain collaboration in the petroleum sector of an emerging economy: Comparing results from symmetrical and asymmetrical approaches. Technol. Forecast. Soc. Chang. 2021, 166, 120568. [Google Scholar] [CrossRef]
- Du, Y.; Kim, P.H. One size does not fit all: Strategy configurations, complex environments, and new venture performance in emerging economies. J. Bus. Res. 2021, 124, 272–285. [Google Scholar] [CrossRef]
- Mix, C. Technology, Geography, and Trade over Time: The Dynamic Effects of Changing Trade Policy; International Finance Discussion Papers 1304; Board of Governors of the Federal Reserve Syste: Washington, DC, USA, 2020. [CrossRef]
- Eaton, J.; Kortum, S. Technology, geography, and trade. Econometrica 2002, 70, 1741–1779. [Google Scholar] [CrossRef]
- Balogh, J.M.; Aguiar, G.M.B. Determinants of Latin American and the caribbean agricultural trade: A gravity model approach. Agric. Econ. 2022, 68, 127–136. [Google Scholar] [CrossRef]
- Feyrer, J. Distance, trade, and income—The 1967 to 1975 closing of the suez canal as a natural experiment. J. Dev. Econ. 2021, 153, 102708. [Google Scholar] [CrossRef]
- Limao, N.; Venables, A.J. Infrastructure, geographical disadvantage, transport costs, and trade. World Bank Econ. Rev. 2001, 15, 451–479. [Google Scholar] [CrossRef]
- Narayan, S.; Nguyen, T.T. Does the trade gravity model depend on trading partners? Some evidence from Vietnam and her 54 trading partners. Int. Rev. Econ. Financ. 2016, 41, 220–237. [Google Scholar] [CrossRef]
- Cyrus, T.L. Cultural distance and bilateral trade. Glob. Econ. J. 2012, 12, 1850275. [Google Scholar] [CrossRef]
- Álvarez, I.C.; Barbero, J.; Rodríguez-Pose, A.; Zofío, J.L. Does Institutional quality matter for trade? Institutional conditions in a sectoral trade framework. World Dev. 2018, 103, 72–87. [Google Scholar] [CrossRef]
- Kogut, B.; Singh, H. The effect of national culture on the choice of entry mode. J. Int. Bus. Stud. 1988, 19, 411–432. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, B.; Cao, Y.; Sun, P. Impact of multi-dimensional and dynamic distance on China’s exports of wooden forest products to countries along the “belt and road”. Sustainability 2020, 12, 3339. [Google Scholar] [CrossRef]
- Boisso, D.; Ferrantino, M. Economic distance, cultural distance, and openness in international trade: Empirical puzzles. J. Econ. Integr. 1997, 12, 456–484. [Google Scholar]
- Stafford-Smith, M.; Griggs, D.; Gaffney, O.; Ullah, F.; Reyers, B.; Kanie, N.; Stigson, B.; Shrivastava, P.; Leach, M.; O’Connell, D. Integration: The key to implementing the sustainable development goals. Sustain. Sci. 2017, 12, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, L.A. Alternative trading systems: Description of ATS trading in national market system stocks. Div. Econ. Risk Anal. White Pap. 2013. [Google Scholar] [CrossRef]
- Levchenko, A.A. Institutional quality and international trade. Rev. Econ. Stud. 2007, 74, 791–819. [Google Scholar] [CrossRef]
- Jackson, G.; Deeg, R. Comparing capitalisms: Understanding institutional diversity and its implications for international business. J. Int. Bus. Stud. 2008, 39, 540–561. [Google Scholar] [CrossRef]
- Fisher, E.O.N.; Gilbert, J.; Marshall, K.; Oladi, R. A New Measure of Economic Distance; CESifo Working Paper Series No. 5362; Center for Economic Studies and ifo Institute (CESifo): Munich, Germany, 2015. [Google Scholar]
- Liu, W. The Impact of RMB Exchange Rate Fluctuation on enterprises’ export decisions—From the perspective of heterogeneity. Mod. Econ. 2020, 11, 920. [Google Scholar] [CrossRef]
- Cristea, A.D. The effect of communication costs on trade in headquarter services. Rev. World Econ. 2015, 151, 255–289. [Google Scholar] [CrossRef]
- Kónya, I. Modeling cultural barriers in international trade. Rev. Int. Econ. 2006, 14, 494–507. [Google Scholar] [CrossRef]
- Anderson, J.E.; Van Wincoop, E. Trade costs. J. Econ. Lit. 2004, 42, 691–751. [Google Scholar] [CrossRef]
- Egger, P.; Pfaffermayr, M. Distance, trade and FDI: A Hausman–Taylor sur approach. J. Appl. Econom. 2004, 19, 227–246. [Google Scholar] [CrossRef]
- Han, X.; Chen, Y.; Zhao, H. Temporal–spatial evolution, influencing factors, and driving mechanisms of environmental regulation performance disparities: Evidence from China. Sustainability 2023, 15, 11519. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z. How do cultural and institutional distance affect China’s ofdi towards the obor countries? TalTech J. Eur. Stud. 2017, 7, 24–42. [Google Scholar] [CrossRef]
- Slangen, A.H.; Beugelsdijk, S.; Hennart, J.-F. The impact of cultural distance on bilateral arm’s length exports: An international business perspective. Manag. Int. Rev. 2011, 51, 875–896. [Google Scholar] [CrossRef]
- Sheikh, M.R.; Chaudhry, I.S.; Gul, N.; Akhtar, M.H. Institutional determinants of bilateral trade flows: A panel data analysis. Rev. Econ. Dev. Stud. 2018, 4, 247–260. [Google Scholar] [CrossRef]
- Novy, D. Gravity redux: Measuring international trade costs with panel data. Econ. Inq. 2013, 51, 101–121. [Google Scholar] [CrossRef]
Year | Ratio of Agriculture in GDP (%) | Agricultural Products Exported 1 | Agricultural Products Imported 1 | Agricultural Trade Deficit 1 |
---|---|---|---|---|
2015 | 8.4 | 70.18 | 115.94 | 45.76 |
2016 | 8.1 | 72.61 | 110.65 | 38.04 |
2017 | 7.5 | 75.14 | 124.72 | 49.58 |
2018 | 7.0 | 79.32 | 136.71 | 57.39 |
2019 | 7.1 | 78.57 | 149.88 | 71.31 |
2020 | 7.7 | 76.03 | 170.8 | 94.77 |
2021 | 7.2 | 84.35 | 219.82 | 135.47 |
2022 | 7.3 | 98.26 | 236.06 | 137.8 |
Variables | Instructions | Units | Type of Data | Data Source |
---|---|---|---|---|
EX | China’s agricultural exports to each sample country | Billion USD | Continuous | TradeMap.org |
DS | Straight-line distances from 63 capitals to Beijing | Km | Continuous | CEPII France database |
CD | The improved Kogut index based on Hofstede’s six cultural dimensions | Discrete | Hofstede | |
ZD | WGI index | Discrete | World Bank database | |
ED | GDP gap between China and sample countries | USD | Continuous | World Bank database |
Variables | Obs | Mean | Median | Std | Min | Max |
---|---|---|---|---|---|---|
EX | 1197 | 11.122 | 11.11 | 2.395 | 0 | 16.11 |
DS | 1197 | 8.941 | 8.940 | 0.534 | 6.860 | 9.870 |
ED | 1197 | 8.922 | 8.910 | 1.517 | 2.530 | 11.62 |
ZD | 1197 | 0.340 | 0.330 | 0.180 | 0.020 | 0.720 |
CD | 1197 | 2.202 | 1.820 | 1.204 | 0.420 | 5.460 |
Export | Coef. | Std. Err. | t | P > |t| |
---|---|---|---|---|
CD | −0.520 | 0.053 | −9.82 | 0.000 |
_cons | 12.268 | 0.133 | 92.26 | 0.000 |
ED | 0.166 | 0.044 | 3.76 | 0.000 |
_cons | 9.640 | 0.399 | 24.14 | 0.000 |
DS | −1.843 | 0.112 | −16.43 | 0.000 |
_cons | 27.601 | 1.005 | 27.47 | 0.000 |
ZD | 0.956 | 0.369 | 2.59 | 0.010 |
_cons | 10.797 | 0.142 | 76.16 | 0.000 |
Fuzzy-Set Variables | Full Membership | Crossover Point | Full Non-Membership |
---|---|---|---|
Export | 15.229 | 11.672 | 8.800 |
CD | 0.602 | 1.818 | 4.263 |
ED | 10.942 | 9.059 | 7.385 |
DS | 7.970 | 8.942 | 9.736 |
ZD | 0.583 | 0.311 | 0.109 |
Classification | Country | Ex (Raw Data) | Calibration (0~1) |
---|---|---|---|
High-level agricultural exports | United States | 15.4982 | 0.961 |
Chile | 15.4644 | 0.961 | |
Hungary | 15.2344 | 0.951 | |
Lithuania | 15.8835 | 0.971 | |
Non-high-level agricultural exports | India | 8.798 | 0.051 |
Ireland | 7.68754 | 0.021 | |
Belarus | 6.02345 | 0.001 | |
Luxembourg | 6.22456 | 0.001 |
Variables | Dependent Variable: EX | Dependent Variable: ~EX | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
CD | 0.689 | 0.700 | 0.574 | 0.592 |
~CD 1 | 0.599 | 0.581 | 0.709 | 0.698 |
ED | 0.700 | 0.666 | 0.620 | 0.599 |
~ED | 0.578 | 0.600 | 0.655 | 0.689 |
DS | 0.684 | 0.732 | 0.566 | 0.615 |
~DS | 0.640 | 0.592 | 0.753 | 0.708 |
ZD | 0.618 | 0.648 | 0.596 | 0.635 |
~ZD | 0.652 | 0.614 | 0.670 | 0.640 |
Variables | 2016 | 2017 | ||
---|---|---|---|---|
~EX 1 | EX 2 | ~EX | EX | |
M1 | ~CD *~ZD | CD *ED *~DS *~ZD | ~CD *~ZD | CD *~ED *DS *~ZD |
M2 | ~CD *~ED | ~CD *~ED | CD *ED *~DS *ZD | |
M3 | ~ED *DS *ZD | ~ED *DS *ZD | ||
Overall solution coverage | 0.58 | 0.28 | 0.58 | 0.49 |
Overall solution consistency | 0.85 | 0.84 | 0.85 | 0.80 |
Variables | 2018 | 2019 | ||
---|---|---|---|---|
~EX | EX | ~EX | EX | |
M1 | ~CD *~ZD | CD *~ED *DS *~ZD | ~CD *~ZD | CD *ED *~DS |
M2 | ~CD *~ED | CD *ED *~DS *ZD | ~CD *~ED | CD *~ED *DS *~ZD |
M3 | ~ED *DS *ZD | |||
Overall solution coverage | 0.54 | 0.50 | 0.59 | 0.52 |
Overall solution consistency | 0.85 | 0.80 | 0.84 | 0.79 |
Non-High-Level Agricultural Exports | RC | UC | C | High-Level Agricultural Exports | RC | UC | C | ||
---|---|---|---|---|---|---|---|---|---|
M1 | ~CD *~ED | 0.44 | 0.05 | 0.78 | M1 | CD *~ED *~DS *~ZD | 0.36 | 0.36 | 0.81 |
M2 | ~CD *~DS *~ZD | 0.40 | 0.01 | 0.77 | |||||
M3 | CD *ED *DS *~ZD | 0.28 | 0.08 | 0.82 | |||||
Solution coverage | 0.55 | Solution coverage | 0.36 | ||||||
Solution consistency | 0.77 | Solution consistency | 0.81 | ||||||
Path M1: Bulgaria, Luxembourg, India, Turkey, Vietnam, Uganda, Sweden, Jordan, Latvia, Estonia, Switzerland, Norway, Hungary, Pakistan | Path M1: Netherlands, Costa Rica | ||||||||
Path M2: Bulgaria, Uganda, Sweden, India, Turkey, Nigeria, Belarus, Norway, Hungary | |||||||||
Path M3: El Salvador |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Xing, L.; Cui, C. The Impact of Multi-Dimensional Vectors on China’s Agricultural Products Export: Based on fsQCA. Agriculture 2023, 13, 1760. https://doi.org/10.3390/agriculture13091760
Yin X, Xing L, Cui C. The Impact of Multi-Dimensional Vectors on China’s Agricultural Products Export: Based on fsQCA. Agriculture. 2023; 13(9):1760. https://doi.org/10.3390/agriculture13091760
Chicago/Turabian StyleYin, Xiaomiao, Lirong Xing, and Chunxiao Cui. 2023. "The Impact of Multi-Dimensional Vectors on China’s Agricultural Products Export: Based on fsQCA" Agriculture 13, no. 9: 1760. https://doi.org/10.3390/agriculture13091760
APA StyleYin, X., Xing, L., & Cui, C. (2023). The Impact of Multi-Dimensional Vectors on China’s Agricultural Products Export: Based on fsQCA. Agriculture, 13(9), 1760. https://doi.org/10.3390/agriculture13091760