Application of OpenAir and AgDRIFT Models to Estimate Organophosphate Pesticide Spray Drift: A Case Study in Macon County, Alabama
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Cropland Data
2.2.2. Pesticide Data
2.2.3. Satellite Imagery and GIS Dataset
2.2.4. Meteorology Data
2.2.5. Modeling and Its Boundary Conditions
OpenAir Model
AgDRIFT Model
2.3. Methodology
2.4. Study Hypotheses
3. Results and Discussion
3.1. Estimating Average Pesticide Application Rates
3.2. Pesticide Trend Analysis and Concentration Distribution
3.3. Prevailing Weather and Potential Pesticide Dispersion
3.4. Potential Pesticide Drift
3.5. Temporal Variations of Pesticide Concentrations
3.6. Estimating Spray Drift Deposition Using the AgDRIFT Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AgDRIFT®® | Modified Version of the AGricultural DISPersal Atmospheric Model |
OpenAir Package | Tools for the Analysis of Air Pollution Data |
OP | Organophosphate Pesticide |
GIS | Geographic Information System |
USGS | United States Geological Service |
USEPA | United States Environmental Protection Agency |
USDA | United States Department of Agriculture |
SDTF | Spray Drift Task Force |
RUP | Restricted Use Pesticide |
PUR | Pesticide Use Reporting |
PNSP | Pesticide National Synthesis Project |
CDL | Cropland Data Layer |
OLI | Operational Land Imager |
NWS | National Weather Service |
CRADA | Cooperative Research and Development Agreement |
MRCC | Midwestern Regional Climate Center |
Cli-DAP | Climate Data Access Portal |
RCCs | Regional Climate Centers |
NOAA | National Oceanic and Atmospheric Administration |
GCS | Geographic Coordinate System |
PCS | Projected Coordinate System |
UTM | Universal Transverse Mercator |
kg | Kilogram |
g | Gram |
ha | Hectare |
m | Meter |
m/s | Meters per Second |
mph | Miles per Hour |
References
- Hilz, E.; Vermeer, A. Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop. Prot. 2013, 44, 75–83. [Google Scholar] [CrossRef]
- Berg, F.; Kubiak, R.; Benjey, W. Emission of pesticides into the air. Water Air Soil Pollut. 1999, 115, 195–218. [Google Scholar] [CrossRef]
- Caldwell, B.; Wolf, T. Measurement of long-distance particle drift using fluorescent tracer-samplers, sensitivity, detection limits and background-boom. Asp. Appl. Biol. 2006, 77, 371–378. [Google Scholar]
- Dappen, P.; Merchant, J.; Ratcliffe, I.; Robbins, C. Delineation of 2005 Land Use Patterns for the State of Nebraska; Center for Advanced Land Management Information Technologies, School of Natural Resources, University of Nebraska-Lincoln: Lincoln, NE, USA, 2007; Available online: http://nlcs1.nlc.state.ne.us/epubs/n1500/b009-2007.pdf (accessed on 14 August 2023).
- Gregorio, E.; Torrent, X.; Planas, S.; Rosell-Polo, J.R. Assessment of spray drift potential reduction for hollow-core nozzles: Part 2. LiDAR technique. Sci. Total Environ. 2019, 687, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Marusek, J.; Cockburn, M.; Mills, P.; Ritz, B. Control selection and pesticide exposure assessment via GIS in prostate cancer studies. Am. J. Prev. Med. 2006, 30, S109–S116. [Google Scholar] [CrossRef]
- Oerke, E. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Rosell, J.; Sanz, R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput. Electr. Agric. 2021, 81, 124–141. [Google Scholar] [CrossRef]
- Torrent, X.; Gregorio, E.; Douzals, J.P.; Tinet, C.; Rosell-Polo, J.R.; Santiago, P. Assessment of spray drift potential reduction for hollow-cone nozzles: Part1. Classification using indirect methods. Sci. Total Environ. 2019, 692, 1322–1333. [Google Scholar] [CrossRef]
- EPA-United States Environmental Protection Agency. Introduction to pesticide drift. 2018. Available online: https://www.epa.gov/reducing-pesticide-drift/introduction-pesticide-drift (accessed on 20 April 2023).
- Wan, N. Pesticides Exposure Modeling Based on GIS and Remote Sensing Land Use Data. Appl. Geogr. 2015, 56, 99–106. [Google Scholar] [CrossRef]
- Desmarteau, D.A.; Ritter, A.M.; Hendley, P.; Guevara, M.W. Impact of Wind Speed and Direction and Key Meteorological Parameters on Potential Pesticide Drift Mass Loadings from Sequential Aerial Applications. Integr. Environ. Assess. Manag. 2020, 16, 197–210, PMCID:PMC7064987. [Google Scholar] [CrossRef] [PubMed]
- Allwine, J.; Thistle, H.; Teske, M.; Anhold, H. The agricultural dispersal-valley spray drift modeling system compared with pesticide drift data. Environ. Toxicol. Chem. 2010, 21, 1085–1090. [Google Scholar] [CrossRef]
- Arvidsson, T.; Bergstrom, L.; Kreuger, J. Spray drift as influenced by meteorological and technical factors. Pest Manag. Sci. 2011, 67, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, T.; Bergström, L.; Kreuger, J. Comparison of collectors of airborne spray drift. Experiments in a wind tunnel and field measurements. Pest Manag. Sci. 2011, 67, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Grella, M.; Marucco, P.; Balsari, P. Toward a new method to classify the airblast sprayers according to their potential drift reduction: Comparison of direct and new indirect measurement methods. Pest Manag. Sci. 2019, 75, 2219–2235. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhang, R.; Chen, L.; Xu, G.; Li, L. High-accuracy, high resolution downwash flow field measurements of an unmanned helicopter for precision agriculture. Comput. Electron. Agric. 2020, 173, 105390. [Google Scholar] [CrossRef]
- De Schampheleire, M.; Nuyttens, D.; Dekeyser, D.; Verboven, P.; Spanoghe, P.; Cornelis, W.; Gabriels, D.; Steurbaut, W. Deposition of spray drift behind border structures. Crop. Prot. 2009, 28, 1061–1075. [Google Scholar] [CrossRef]
- Baker, T.; Stone, W. Estimated Annual Agricultural Pesticide Use for Counties of the Conterminous United States, 2008–2012; U.S. Geological Survey Data Series; U.S. Geological Survey: Reston, VA, USA, 2015; Volume 907, 9p. [CrossRef]
- İtmeç, M.; Bayat, A.; Bolat, A.; Toraman, M.C.; Soysal, A. Assessment of Spray Drift with Various Adjuvants in a Wind Tunnel. Agronomy 2022, 12, 2377. [Google Scholar] [CrossRef]
- Taylor, W.; Womac, A.; Miller, H.; Taylor, P. An attempt to relate drop size to drift risk. In Proceedings of the International Conference on Pesticide Application for Drift Management, Waikoloa, HI, USA, 27–29 October 2004; pp. 210–223. [Google Scholar]
- Lee, C.; Burdick, A.; Olszyk, D. GIS-Based Risk Assessment of Pesticide Drift Case Study: Fresno County, California; EPA/600/R-05/029 (NTIS PB2007-107907); U.S. Environmental Protection Agency: Washington, DC, USA, 2005.
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size, and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Nuyttens, D.; De Schampheleire, M.; Baetens, K.; Sonck, B. The influence of operator-controlled variables on spray drift from field crop sprayers. Trans. ASABE 2007, 50, 1129–1140. [Google Scholar] [CrossRef]
- Jong, F.; Snoo, G.; Zande, J. Estimated nationwide effects of pesticide spray drift on terrestrial habitats in the Netherlands. J. Environ. Manag. 2008, 86, 721–730. [Google Scholar] [CrossRef]
- Forster, A.; Mercer, N.; Schou, C. Spray droplet impaction models and their use within AGDISP software to predict retention. N. Z. Plant Prot. 2012, 65, 85–92. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.-Y.; Choi, L.-Y.; Hong, S.-W.; Noh, H.; Yu, S.-H. Airborne-Spray-Drift Collection Efficiency of Nylon Screens: Measurement and CFD Analysis. Agronomy 2022, 12, 2865. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, Y.; Goh, K.S. Modeling spray drift and runoff-related inputs of pesticides to receiving water. Environ. Pollut. 2017, 234, 48–58. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Z.; Xu, G.; Chen, L.; Hewitt, J. Effect of spray adjuvant types and concentration on nozzle atomization. Trans. Chin. Soc. Agric. Eng. 2018, 34, 36–43. [Google Scholar] [CrossRef]
- Kira, O.; Dubowski, Y.; Linker, R. In-situ open path FTIR measurements of the vertical profile of spray drift from air-assisted sprayers. Biosyst. Eng. 2018, 169, 32–41. [Google Scholar] [CrossRef]
- Ann, M. Modeling Exposure to Pesticide Drift in Madison County, Illinois. In A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Field of Geography; Southern Illinois University Edwardsville: Edwardsville, IL, USA, 2019; p. 76. [Google Scholar]
- Larsen, K.; Black, P.; Rydz, E.; Nicol, A.-M.; Peters, C.E. Peters. Using geographic information systems to estimate potential pesticide exposure at the population level in Canada. Environ. Res. 2020, 191, 110100. [Google Scholar] [CrossRef] [PubMed]
- El Afandi, G.; Ismael, H.; Fall, S.; Ankumah, R. Effectiveness of Utilizing Remote Sensing and GIS Techniques to Estimate the Exposure to Agricultural Pesticides Drift over Macon, Alabama. Agronomy 2023, 13, 1759. [Google Scholar] [CrossRef]
- Ward, H.; Nuckols, R.; Weigel, J.; Maxwell, S.; Cantor, P.; Miller, S. Identifying populations potentially exposed to agricultural pesticides using remote sensing and a geographic information system. Environ. Health Perspect. 2000, 108, 5–12. [Google Scholar]
- Nuyttens, D.; Taylor, W.A.; De Schampheleire, M.; Verboven, P.; Dekeyser, D. Influence of nozzle type and size on drift potential by means of different wind tunnel evaluation methods. Biosyst. Eng. 2009, 103, 271–280. [Google Scholar] [CrossRef]
- Ferguson, J.; Chechetto, G.; O’Donnell, C.; Door, G.; Moore, H.; Baker, G. Determining the drift potential of Venturi nozzles compared with standard nozzles across three insecticide spray solutions in a wind tunnel. Pest Manag. Sci. 2016, 72, 1460–1466. [Google Scholar] [CrossRef]
- Brody, J.; Vorhees, D.; Melly, J.; Swedis, R.; Drivas, P.; Rudel, R. Using GIS and historical records to reconstruct residential exposure to large-scale pesticide application. J. Expo. Anal. Environ. Epidemiol. 2002, 12, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Brody, J.; Aschengrau, A.; McKelvey, W.; Rudel, R.; Swartz, C.; Kennedy, T. Breast cancer risk and historical exposure to pesticides from wide-area applications assessed with GIS. Environ. Health Perspect. 2004, 112, 889–897. [Google Scholar] [CrossRef]
- Maxwell, S.; Jaymie, R.; Pierre, G. Use of Land Surface Remotely Sensed Satellite and Airborne Data for Environmental Exposure Assessment in Cancer Research. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 176. [Google Scholar] [CrossRef]
- Wang, Z.; He, X.; Li, T.; Huang, M.; Zhang, Y.; Xu, L.; Deng, X. Evaluation method of pesticide droplet drift based on laser imaging. Trans. Chin. Soc. Agric. Eng. 2019, 35, 73–79. [Google Scholar] [CrossRef]
- Gil, E.; Llorens, J.; Llop, J.; Fàbregas, X.; Gallart, M. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying. Sensors 2013, 13, 516–534. [Google Scholar] [CrossRef] [PubMed]
- Teske, M.E.; Bird, S.L.; Esterly, D.M.; Curbishley, T.B.; Ray, S.L.; Perry, S.G. AgDrift®®: A model for estimating near-field spray drift from aerial applications. Environ. Toxicol. Chem. 2002, 21, 659–671. [Google Scholar] [CrossRef]
- Carlsen, S.C.; Spliid, N.H.; Svensmark, B. Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 2006, 64, 778–786. [Google Scholar] [CrossRef]
- Schampheleire, D.; Spanoghe, P.; Brusselman, E.; Sonck, S. Risk assessment of pesticide spray drift damage in Belgium. Crop. Prot. 2009, 26, 602–611. [Google Scholar] [CrossRef]
- Lu, C.; Fenske, R.A.; Simcox, N.J.; Kalman, D. Pesticide exposure of children in an agricultural community: Evidence of household proximity to farmland and take-home exposure pathways. Environ. Res. 2000, 84, 290–302. [Google Scholar] [CrossRef]
- Gil, Y.; Sinfort, C. Emission of pesticides to the air during sprayer application: A bibliographic review. Atmos. Environ. 2005, 39, 5183–5193. [Google Scholar] [CrossRef]
- Carslaw, D.; Ropkins, K. Openair—An r package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Carslaw, D.C. The Openair Manual—Open-Source Tools for Analysing Air Pollution Data; Manual for Version 1.1–4; King’s College London: London, UK, 2015. [Google Scholar]
- Carslaw, D.C. The Openair Manual—Open-Source Tools for Analyzing Air Pollution Data; Manual for Version 2.6-6; University of York: York, UK, 2019. [Google Scholar]
- Abdou, A.E.A. Temperature trend on Makkah, Saudi Arabia. Atmos. Clim. Sci. 2014, 4, 457–481. [Google Scholar] [CrossRef]
- Munir, S. Modelling the non-linear association of particulate matter (PM10) with meteorological parameters and other air pollutants—A case study in Makkah. Arab. J. Geosci. 2016, 9, 64. [Google Scholar] [CrossRef]
- Mohtar, A.A.A.; Latif, M.T.; Baharudin, N.H.; Ahamad, F.; Chung, J.X.; Othman, M.; Juneng, L. Variation of major air pollutants in different seasonal conditions in an urban environment in Malaysia. Geosci. Lett. 2018, 5, 21. [Google Scholar] [CrossRef]
- Ghosh, S.; Biswas, J.; Guttikunda, S.; Roychowdhury, S.; Nayak, M. An investigation of potential regional and local source regions affecting fine particulate matter concentrations in Delhi, India. J. Air Waste Manag. Assoc. 2015, 65, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Catalán, F.; Chandia, D.; Toro Araya, R.; Leiva Guzman, M.A. The AtmChile Open-Source Interactive Application for Exploring Air Quality and Meteorological Data in Chile. Atmosphere 2022, 13, 1364. [Google Scholar] [CrossRef]
- Díaz, J.J.; Mura, I.; Franco, J.F.; Akhavan-Tabatabaei, R. Aire—A web-based R application for simple, accessible, and repeatable analysis of urban air quality data. Environ. Model. Softw. 2021, 138, 104976. [Google Scholar] [CrossRef]
- USGS. Pesticide National Synthesis Project (PNSP). Estimated Annual Agricultural Pesticide Use. 2019. Available online: https://water.usgs.gov/nawqa/pnsp/usage/maps/county-level/ (accessed on 18 May 2023).
- Copenhaver, K.; Hamada, Y.; Mueller, S.; Dunn, J.B. Examining the Characteristics of the Cropland Data Layer in the Context of Estimating Land Cover Change. ISPRS Int. J. Geo-Inf. 2021, 10, 281. [Google Scholar] [CrossRef]
- Wieben, C.M. Estimated Annual Agricultural Pesticide Use by Major Crop or Crop Group for States of the Conterminous United States, 1992–2019 (Including Preliminary Estimates for 2018–2019); U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2021. [CrossRef]
- Bell, E.M.; Hertz-Picciotto, I.; Beaumont, J.J. Case-cohort analysis of agricultural pesticide applications near maternal residence and selected cases of fetal death. Am. J. Epidemiol. 2001, 154, 702–710. [Google Scholar] [CrossRef]
- Bird, S.L.; Perry, S.G.; Ray, S.L.; Teske, M.E. Evaluation of the AgDISP aerial spray algorithms in the AgDRIFT model. Environ. Toxicol. Chem. 2002, 21, 672–681. [Google Scholar] [CrossRef]
- Teske, M.E.; Bird, S.L.; Esterly, D.M.; Ray, S.L.; Perry, S.G. A User’s Guide for AgDRIFT 1.0: A Tiered Approach for the Assessment of Spray Drift of Pesticides; Technical Note Number 95-10; Continuum Dynamics, Inc.: Princeton, NJ, USA, 1997. [Google Scholar]
- Thelin, P.; Stone, W. Estimation of Annual Agricultural Pesticide Use for Counties of the Conterminous United States, 1992–2009; U.S. Geological Survey Scientific Investigations Report 2013-5009; U.S. Geological Survey: Reston, VA, USA, 2013; 54p.
- Balsari, P.; Marucco, P.; Tamagnone, M. A test bench for the classification of boom sprayers according to drift risk. Crop. Prot. 2007, 26, 1482–1489. [Google Scholar] [CrossRef]
- Ward, H.; Lubin, J.; Giglierano, J.; Colt, S.; Wolter, C.; Bekiroglu, N.; Camaan, D.; Hartge, P.; Nuckols, R. Proximity to crops and residential exposure to agricultural herbicides in Iowa. Environ. Health Perspect. 2006, 114, 893–897. [Google Scholar] [CrossRef] [PubMed]
Pesticides | ACEPHATE | CHLORPYR | DICROTOP | PHORATE | PHORATE | TERBUFOS | TRIBUFOS | Total Amount (Kg) |
---|---|---|---|---|---|---|---|---|
2017 | 24.70 | 50.60 | 94.30 | 410.50 | 170.30 | 150.00 | 2843.30 | 3743.70 |
2019 | 22.50 | 64.40 | 88.80 | 390.70 | 175.20 | 148.00 | 2450.60 | 3340.20 |
Factor | More Drift | Less Drift |
---|---|---|
Spray droplet size | smaller | larger |
Release (or boom) height | higher | lower |
Wind speed | higher | lower |
Spray pressure | higher | lower |
Nozzle size | smaller | larger |
Nozzle orientation (aircraft) | forward | backward |
Nozzle location (aircraft) | beyond ¾ wingspan | ¾ or less wingspan |
Nozzle type | smaller droplets | larger droplets |
Air temperature | higher | lower |
Air stability | inversion | lapse |
Pesticide volatility | volatile | nonvolatile |
Relative humidity | lower | higher |
Shorter Field | ||
---|---|---|
Crop | Pixel counts | Acreage |
Corn | 6.073 | 13,506 |
Cotton | 15,667 | 34,843 |
Other crops | 68,098 | 151,446 |
Total | 89,838 | 199,795 |
Spring Union field | ||
Crop | Pixel counts | Acreage |
Corn | 4578 | 10,181 |
Cotton | 5514 | 12,263 |
Other crops | 13,638 | 3033 |
Total | 23,730 | 52,774 |
AgDRIFT Modeling Results | |||
---|---|---|---|
Crop | Potential Drift for Ground Application (M) | Potential Drift for Aerial Application (M) | Potential Drift for Mixed Application (M) |
Cotton | 237.5 | 450 | 200 |
Corn | 237.5 | 500 | 225 |
Sensitive Resources | Total Acres | Average Potential Drift for Each Direction in Shorter Field | Drift Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N | NE | E | SE | S | SW | W | NW | |||
Residential areas | 214.50 | 0.00 | 0.00 | 0.00 | 0.00 | 2.41 | 2.65 | 1.30 | 0.00 | 0.80 |
Water bodies | 1860.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.90 | 3.70 | 1.90 | 0.00 | 1.06 |
Sensitive crops | 132.40 | 0.00 | 0.00 | 0.00 | 0.00 | 4.20 | 2.60 | 2.00 | 0.00 | 1.10 |
Sensitive Resources | Total Acres | Average Potential Drift for Each Direction In Spring Union Field | Drift Average | |||||||
N | NE | E | SE | S | SW | W | NW | |||
Residential areas | 103.50 | 0.00 | 0.00 | 2.14 | 3.40 | 2.90 | 1.50 | 0.00 | 0.00 | 1.25 |
Water bodies | 2640.00 | 0.00 | 0.00 | 2.31 | 4.20 | 2.80 | 1.30 | 0.00 | 0.00 | 1.32 |
Sensitive crops | 165.40 | 0.00 | 0.00 | 1.90 | 1.85 | 3.50 | 2.10 | 0.00 | 0.00 | 1.16 |
Crops | High Boom; Fine Spray | Low Boom; Fine Spray | High Boom; Med/Coarse Spray | Low Boom; Med/Coarse Spray |
---|---|---|---|---|
Estimated Drift Distance for Ground Application | ||||
Cotton | 300 | 150 | 125 | 100 |
Corn | 260 | 130 | 100 | 75 |
Estimated Drift Distance for Aerial Application | ||||
Cotton | 1000 | 750 | 600 | 400 |
Corn | 800 | 700 | 500 | 400 |
Ground Application Method | Parameters Downwind Distance Range in Meters | Worst-Case Scenario | |||
---|---|---|---|---|---|
25 | 50 | 75 | 100 | Medium Droplet Distribution | |
Swath width (m)/number | 12/2 | 12/4 | 12/6 | 12/8 | Medium droplet distribution |
Downwind drift | 3.6 | 2 | 0.6 | 0.4 | Medium droplet distribution |
Drift rate (%) | 17 | 9.6 | 5.8 | 2.3 | Medium droplet distribution |
Drift area (km2) | 0.14 | 0.08 | 0.04 | 0.014 | Medium droplet distribution |
Aerial | Parameters Downwind Distance Range m | Worst-Case Scenario | |||
---|---|---|---|---|---|
50 | 100 | 150 | 300 | Medium Droplet Distribution | |
Swath width (m)/number | 15/3 | 15/6 | 15/10 | 15/20 | Medium droplet distribution |
Downwind drift | 7.2 | 5.2 | 3.3 | 1.4 | Medium droplet distribution |
Drift rate (%) | 52 | 48.3 | 46.5 | 33.5 | Medium droplet distribution |
Drift area (km2) | 0.47 | 0.40 | 0.35 | 0.25 | Medium droplet distribution |
Shorter Field | |||||||||
---|---|---|---|---|---|---|---|---|---|
Crop | Method | Treated Area (ha) | Wind Direction | Applied Rate Rp (kg/ha) | Drift Fraction Fd | Deposition Area (ha) | Swath Width (m) | Drift Mass (kg) | Average Drift Applied (%) |
Cotton | Ground Aerial | 26.8 34.2 | NE NW | 2.30 2.60 | 0.222 0.350 | 3.61 4.80 | 1–8 1–20 | 0.7 1.3 | 3.97 5.62 |
Corn | Ground Aerial | 28.3 36.5 | NE NW | 2.30 2.60 | 0.222 0.350 | 2.82 5.60 | 1–8 1–20 | 0.7 1.3 | 3.97 5.50 |
Spring Union Field | |||||||||
Crop | Method | Treated Area (ha) | Wind Direction | Applied Rate Rp (kg/ha) | Drift Fraction Fd | Deposition Area (ha) | Swath Width (m) | Drift Mass (kg) | Drift/ Total Applied (%) |
Cotton | Ground Aerial | 26.8 34.2 | SE SW | 2.30 2.60 | 0.222 0.350 | 3.61 4.80 | 1–8 1–20 | 0.7 1.3 | 3.97 5.62 |
Corn | Ground Aerial | 28.3 36.5 | SE SW | 2.30 2.60 | 0.222 0.350 | 2.82 5.60 | 1–8 1–20 | 0.7 1.3 | 3.97 5.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Afandi, G.; Ismael, H.; Fall, S. Application of OpenAir and AgDRIFT Models to Estimate Organophosphate Pesticide Spray Drift: A Case Study in Macon County, Alabama. Agriculture 2023, 13, 1763. https://doi.org/10.3390/agriculture13091763
El Afandi G, Ismael H, Fall S. Application of OpenAir and AgDRIFT Models to Estimate Organophosphate Pesticide Spray Drift: A Case Study in Macon County, Alabama. Agriculture. 2023; 13(9):1763. https://doi.org/10.3390/agriculture13091763
Chicago/Turabian StyleEl Afandi, Gamal, Hossam Ismael, and Souleymane Fall. 2023. "Application of OpenAir and AgDRIFT Models to Estimate Organophosphate Pesticide Spray Drift: A Case Study in Macon County, Alabama" Agriculture 13, no. 9: 1763. https://doi.org/10.3390/agriculture13091763
APA StyleEl Afandi, G., Ismael, H., & Fall, S. (2023). Application of OpenAir and AgDRIFT Models to Estimate Organophosphate Pesticide Spray Drift: A Case Study in Macon County, Alabama. Agriculture, 13(9), 1763. https://doi.org/10.3390/agriculture13091763