Effects of Certain Pesticides on the Predatory Mite Typhlodromus ndibu Pritchard and Baker (Acari: Phytoseiidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Predatory Mite
2.2. Pesticide
2.3. Toxicity Assessment of Pesticides on Adult Females and Immature Stages of T. ndibu
2.3.1. Toxicity Assessment of Pesticides on Adult Female T. ndibu
- Level 1: Non-toxic (mortality rate of predatory mites < 30%);
- Level 2: Slightly toxic (mortality rate of predatory mites from 30% to 79%);
- Level 3: Moderately toxic (mortality rate of predatory mites from 80% to 99%);
- Level 4: Highly toxic (mortality rate of predatory mites > 99%).
2.3.2. Toxicity Assessment of Pesticides on Immature Stages
2.4. Assessment of the Effects of Pesticides on the Biological Traits of Adult Female Predatory Mites
2.5. Statistical Analysis
3. Results
3.1. Evaluation of Pesticide Efficacy on Predatory Mites
3.1.1. Evaluation of Pesticide Efficacy on Adult Female Typhlodromus ndibu
3.1.2. Evaluation of Pesticide Efficacy on Immature Predatory Mites
3.2. Evaluation of The Impact of Plant Protection Agents on the Biological Characteristics of Adult Predatory Mites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Sanderson, J.P. Relative Toxicity of Abamectin to the Predatory Mite Phytoseiulus persimilis (Acari: Phytoseiidae) and Twospotted Spider Mite (Acari: Tetranychidae). J. Econ. Entomol. 1990, 83, 1783–1790. [Google Scholar] [CrossRef]
- Gotoh, T.; Kubota, M. Population dynamics of the citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae) in Japanese pear orchards. Exp. Appl. Acarol. 1997, 21, 343–356. [Google Scholar] [CrossRef]
- Jamieson, L.E.; Charles, J.G.; Stevens, P.S.; McKenna, C.E.; Bawden, R. Natural enemies of citrus red mite (Panonychus citri) in citrus orchards. N. Z. Plant Prot. 2005, 58, 299–305. [Google Scholar] [CrossRef]
- Fadamiro, H.Y.; Xiao, Y.; Nesbitt, M.; Childers, C.C. Diversity and Seasonal Abundance of Predacious Mites in Alabama Satsuma Citrus. Ann. Entomol. Soc. Am. 2009, 102, 617–628. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Van Pottelberge, S.; Nauen, N.; Tirry, L. Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Manag. Sci. 2007, 63, 1172–1177. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Vontas, J.; Tsagkarakou, A.; Dermauw, W.; Tirry, L. Acaricide Reistance Mechanisms in Two-Spotted Spider Mit Tetranychus urticae and Other Important Acari: A review. Insect Biochem. Mol. Biol. 2010, 40, 563–572. [Google Scholar] [CrossRef]
- Cloyd, R.A.; Gale, C.L.; Keith, S.R. Compatibility of Three Miticides with the Predatory Mites Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias Henriot (Acari: Phytoseiidae). Hortscience 2006, 41, 707–710. [Google Scholar] [CrossRef]
- Hoy, M.A. Agricultural Acarology: Introduction to Integrated Mite Management; CRC Press: Boca Raton, FL, USA, 2011; 430p. [Google Scholar]
- Haddi, K.; Berger, M.; Bielza, P.; Cifuentes, D.; Field, L.M.; Gorman, K.; Rapisarda, C.; Williamson, M.S.; Bass, C. Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochem. Mol. Biol. 2012, 42, 506–513. [Google Scholar] [CrossRef]
- Nauen, R.; Stumpf, N.; Elbert, A.; Zebitz, C.; Kraus, W. Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Manag. Sci. 2001, 57, 253–261. [Google Scholar] [CrossRef]
- Hamedi, N.; Fathipour, Y.; Saber, M. Sublethal effects of fenpyroximate on life table parameters of the predatory mite Phytoseius plumifer. BioControl 2010, 55, 271–278. [Google Scholar] [CrossRef]
- Irigaray, F.J.S.-D.; Zalom, F.G.; Thompson, P.B. Residual toxicity of acaricides to Galendromus occidentalis and Phytoseiulus persimilis reproductive potential. Biol. Control 2007, 40, 153–159. [Google Scholar] [CrossRef]
- Amor, F.; Medina, P.; Bengochea, P.; Canovas, M.; Vega, P.; Correia, R.; García, F.; Gómez, M.; Budia, F.; Viñuela, E.; et al. Effect of emamectin benzoate under semi-field and field conditions on key predatory biological control agents used in vegetable greenhouses. Biocontrol Sci. Technol. 2012, 22, 219–232. [Google Scholar] [CrossRef]
- Duke, S.O.; Pan, Z.; Bajsa-Hirschel, J.; Boyette, C.D. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. Adv. Weed Sci. 2022, 40, e020210054. [Google Scholar] [CrossRef]
- Glare, T.R. Types of Biopesticides. In Biopesticides Handbook; Nollet, L.M.L., Rathore, H.S., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 7–25. [Google Scholar]
- Gupta, I.; Singh, R.; Muthusamy, S.; Sharma, M.; Grewal, K.; Singh, H.P.; Batish, D.R. Plant Essential Oils as Biopesticides: Applications, Mechanisms, Innovations, and Constraints. Plants 2023, 12, 2916. [Google Scholar] [CrossRef]
- Abbey, L.; Abbey, J.; Leke-Aladekoba, A.; Iheshiulo, E.M.A.; Ijenyo, M. Biopesticides and Biofertilizers: Types, Production, Benefits, and Utilization. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels; Simpson, B.K., Aryee, A.N.A., Toldrá, F., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 479–500. [Google Scholar]
- Roshan, A.; Verma, N.K. A brief study on neem (Azarrdirachta indica A.) and its application-a review. Res. J. Phytomed. 2015, 1, 1–3. [Google Scholar]
- Adusei, S.; Azupio, S. Neem: A Novel Biocide for Pest and Disease Control of Plants. J. Chem. 2022, 2022, 6778554. [Google Scholar] [CrossRef]
- Kavousi, A.; Talebi, K. Side-Effects of Three Pesticides on Predatory Mite, Phytoseiulus persimilis (Acari: Phytoseiidae). Exp. Appl. Acarol. 2003, 31, 51–58. [Google Scholar] [CrossRef]
- Hoyt, S.C. Integrated chemical control of insects and biological control of mites on apples in Washington. J. Econ. Entomol. 1969, 62, 74–86. [Google Scholar] [CrossRef]
- Childers, C.C.; Enns, W.R. Predaceous arthropods associated with spider mites in Missouri apple orchards. J. Kans. Entomol. Soc. 1975, 48, 453–471. [Google Scholar]
- McMurtry, J.A. Phytoseiid Predators in Orchard Systems: A Classical Biological Control Success Story. In Biological Control of Pests by Mites; Hoy, M.A., Cunningham, G.L., Knutson, L., Eds.; University of California: Berkeley, CA, USA, 1983; pp. 21–26. [Google Scholar]
- Childers, C.C. Biological Control of Phytophagous Mites on Florida citrus Utilizing Predatory Arthropods. In Pest Management in the Subtropics: Biological Control; Rosen, D., Bennet, F., Capinera, J., Eds.; Ña Florida Perspective; Intercept: Andover, UK, 1994; pp. 255–288. [Google Scholar]
- Wood, L.; Raworth, D.A.; Mackauer, M. Biological control of the twospotted spider mite in raspberries with the predator mite, Phytoseiulus persimilis. J. Entomol. Soc. Br. Columbia 1994, 91, 59–61. [Google Scholar]
- McMurtry, J.A.; Croft, B.A. Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 1997, 42, 291–321. [Google Scholar] [CrossRef]
- Sato, E.M.; Miyata, T.; Kawai, A.; Nakano, O. Selection for Resistance and Susceptibility to Methidathion and Cross Resistance in Amblyseius wormersleyi Schicha (Acari: Phytoseiidae). Appl. Entomol. Zool. 2000, 35, 393–399. [Google Scholar] [CrossRef]
- Gerson, U.; Smiley, R.L.; Ochoa, R. Mites (Acari) for Pest Control; Blackwell Science: Oxford, UK, 2003; 539p. [Google Scholar]
- McMurtry, J.A.; de Moraes, G.J.; Sourasso, N.F. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol. 2013, 18, 297–320. [Google Scholar] [CrossRef]
- McMurtry, J.A.; Sourassou, N.F.; Demite, P. The Phytoseiidae (Acari: Mesostigmata) as Biological Control Agents. In Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms; Carrillo, D., de Moraes, G.J., Peña, J., Eds.; Springer: Cham, Switzerland; London, UK, 2015; pp. 133–149. [Google Scholar]
- Zanardi, O.Z.; Bordini, G.P.; Franco, A.A.; de Morais, M.R.; Yamamoto, P.T. Development and reproduction of Panonychus citri (Prostigmata: Tetranychidae) on different species and varieties of citrus plants. Exp. Appl. Acarol. 2015, 67, 565–581. [Google Scholar] [CrossRef]
- Demite, P.R.; McMurtry, J.A.; de Moraes, G.J. Phytoseiidae Database: A website for taxonomic and distributional information on phytoseiid mites (Acari). Zootaxa 2014, 3795, 571–577. [Google Scholar] [CrossRef]
- Demite, P.R.; de Moraes, G.J.; McMurtry, J.A.; Denmark, H.A.; Castilho, R.C. Phytoseiidae Database. Available online: www.lea.esalq.usp.br/phytoseiidae (accessed on 21 July 2023).
- Pritchard, A.E.; Baker, E.W. Mites of the family Phytoseiidae from Central Africa, with remarks on the genera of the world. Hilgardia 1962, 33, 205–309. [Google Scholar] [CrossRef]
- Matthysse, J.G.; Denmark, H.A. Some phytoseiids of Nigeria (Acarina: Mesostigmata). Fla. Entomol. 1981, 64, 340–357. [Google Scholar] [CrossRef]
- Oomen, P.A. Studies on population dynamics of the scarlet mite Brevipalpus phoenicis, a pest of tea in Indonesia. Mededelingen Landbouwhogeschool. 1982, 82, 1–88. [Google Scholar]
- Ueckermann, E.A.; Zannou, I.D.; De Moraes, D.J.; Oliveira, A.R.; Hanna, R.; Yaninek, J.R. Phytoseiid mites of the tribe Typhlodromini (Acari: Phytoseiidae) from sub-Saharan Africa. Zootaxa 2008, 1901, 1–122. [Google Scholar] [CrossRef]
- El-Banhawy, E.M.; Irungu, L.; Mugo, H. Survey of predacious mites (Acari: Phytoseiidae) inhabiting coffee trees in Kenya with description of some new species. Acarologia 2009, 49, 121–137. [Google Scholar]
- Kreiter, S.; Payet, R.M.; Douin, M.; Fontaine, O.; Fillâtre, J.; Le Bellec, F.L. Phytoseiidae of La Réunion Island (Acari: Mesostigmata): Three new species and two males described, new synonymies, and new records. Acarologia 2020, 60, 111–195. [Google Scholar] [CrossRef]
- Croft, B.A.; Nelson, E.E. Toxicity of apple orchard pesticides to Michigan populations of Amblyseius fallacis. Environ. Entomol. 1972, 1, 576–579. [Google Scholar] [CrossRef]
- Overmeer, W.P.J. Toxicological Methods. In Spider Mites 1B; Helle, W., Sabelis, M.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1985; pp. 183–189. [Google Scholar]
- Henderson, C.F.; Tilton, E.W. Tests with acaricides against the brow wheat mite. J. Entomol. 1995, 48, 157–161. [Google Scholar] [CrossRef]
- Hassan, S.A. Activities of the IOBC/WPRS Working Group “Pesticides and Beneficial Organisms”. In Pesticides and Beneficial Organisms; Vogt, H., Ed.; IOBC/WPRS Bulletin: Montfavet, France, 1994; Volume 17, pp. 1–5. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; pp. 306–308. [Google Scholar]
- Muhammad, A.; Kashere, M.A. NEEM, Azadirachta indica L. (A. Juss): An eco-friendly botanical insecticide for managing farmers’ insects pest problems-a review. Fudma J. Sci. 2021, 4, 484–491. [Google Scholar] [CrossRef]
- Gupta, A.; Ansari, S.; Gupta, S.; Narwani, M.; Gupta, M.; Singh, M. Therapeutics role of neem and its bioactive constituents in disease prevention and treatment. J. Pharmacogn. Phytochem. 2019, 8, 680–691. [Google Scholar]
- Brito, H.M.; Gondim Junior, M.G.C.; Oliveira, J.V.; Câmara, C.A.G. Toxicidade de formulações de nim (Azadirachta indica A. Juss.) ao ácaro-rajado e a Euseius alatus De Leon e Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae). Neotrop. Entomol. 2006, 35, 500–505. [Google Scholar] [CrossRef]
- Venzon, M.; Rosado, M.C.; Fadini, M.A.M.; Ciociola, A.I.; Pallini, A. The potential of NeemAzal for the control of coffee leaf pests. Crop Prot. 2005, 24, 213–219. [Google Scholar] [CrossRef]
- Silva, A.C.B.; Teodoro, A.V.; Oliveira, E.E.; Maciel, A.G.S. Lethal and sublethal effects of neem oil to the predatory mite Proprioseiopsis neotropicus (Acari: Phytoseiidae). Rev. Colomb. Entomol. 2013, 39, 221–225. [Google Scholar] [CrossRef]
- Stark, J.D.; Walter, J.F. Neem oil and neem oil components affect the efficacy of commercial neem insecticides. J. Agric. Food Chem. 1995, 43, 507–512. [Google Scholar] [CrossRef]
- Sundaram, K.M.S. Azadirachtin biopesticide: A review of studies conducted on its analystical chemistry, environmental behavior and biological effects. J. Environ. Sci. Health-Part B Pestic. 1996, 31, 913–948. [Google Scholar] [CrossRef]
- Mordue, A.J.; Morgan, E.D.; Nisbet, A.J. Azadirachtin, a Natural Product in Insect Control. In Comprehensive Molecular Insect Science; Gilbert, L.I., Iatrou, K., Gill, S.S., Eds.; Elsevier: Oxford, UK, 2005; pp. 117–135. [Google Scholar]
- David, G.J.; O’Malley, K.; Rayner, M. Effect of alpha cypermethrin and bifenthrin on the survival of five acarine predators of Halotydeus destructor (Acari: Penthaieidae). Exp. Appl. Acarol. 1995, 19, 647–654. [Google Scholar] [CrossRef]
- Barroso, G.; Godoy, L.L.; Iost Filho, F.H.; Yamada, M.; Santana, E.D.R.; Pazini, J.d.B.; de Queiroz Oliveira, L.V.; Yamamoto, P.T. Predator-Unfriendly Pesticides Harm the Beneficial Mite Neoseiulus idaeus Denmark & Muma (Acari: Phytoseiidae). Agronomy 2023, 13, 1061. [Google Scholar] [CrossRef]
- Manita, K.; Akio, T. Effects of Some Pesticides on the Predatory Mite, Neoseiulus longispinosus (Evans) (Gamasina: Phytoseiidae). J. Acarol. Soc. Jpn. 2006, 15, 17–27. [Google Scholar] [CrossRef]
- Mochizuki, M. Effectiveness and pesticide susceptibility of the pyrethroid-resistant predatory mite Amblyseius womersleyi in the integrated pest management of tea pests. BioControl 2003, 48, 207–221. [Google Scholar] [CrossRef]
- Amano, H.; Ishii, Y.; Kobori, Y. Pesticide susceptibility of two dominant phytoseiid mites, Neoseiulus californicus and N. womersleyi, in conventional Japanese fruit orchards (Gamasina: Phytoseiidae). J. Acarol. Soc. Jpn. 2004, 13, 65–70. [Google Scholar] [CrossRef]
- Kim, S.S.; Paik, C.H. Comparatie toxicity of fenyroximate to the predatory mite, Amblyseius womersleyi Schicha and the kanzawa spider mite, Tetranychus kanzawai Kishida (Acarina: Phytoseiidae, Tetranychidae). Appl. Entomol. Zool. 1996, 31, 369–377. [Google Scholar] [CrossRef]
- Ghasemzadeh, S.; Qureshi, J.A. Demographic analysis of fenpyroximate and thiacloprid exposed predatory mite Amblyseius swirskii (Acari: Phytoseiidae). PLoS ONE 2018, 13, e0206030. [Google Scholar] [CrossRef]
- Kishimoto, H.; Yaginuma, K.; Toyama, M. Effects of pesticides on four native generalist phytoseiid species (Acari: Phytoseiidae). Jpn. J. Appl. Entomol. 2018, 62, 29–39. [Google Scholar] [CrossRef]
- Zanardi, O.Z.; Ribeiro, L.P.; Ansante, T.F.; Santos, M.S.; Bordini, G.P.; Yamamoto, P.T.; Vendramim, J.D. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Prot. 2015, 67, 160–167. [Google Scholar] [CrossRef]
- Fang, X.D.; Ouyang, G.C.; Lu, H.L.; Guo, M.F.; Wu, W.N. Ecological control of citrus pests primarily using predatory mites and the bio-rational pesticide matrine. J. Pest Manag. 2017, 64, 262–270. [Google Scholar] [CrossRef]
Common Names | Active Ingredients | Concentration Rates/16 L * | Manufacturing Company |
---|---|---|---|
Ortus 5EC | Fenpyroximate 5% | 19–27 mL | Central plant protection joint stock company 1 Le trong Tan, Ha Noi, Vietnam |
Fastac 5EC | Alpha-cypermethrin 5% | 10–20 mL | UPL Vietnam Co., Ltd. Ho chi Minh City, Vietnam. |
Chess 50WG | Pymetrozin 500 g/kg | 15 g | Syngenta, VN Ho Chi Minh City, Vietnam. |
Applaud 10WP | Buprofezin 100 g/kg | 40 g | Nihon Nohyaku C., Ltd. Tokyo, Japan |
Kobisuper 1SL | Matrine 10g/L | 19 mL | Nam Bac Co., Ltd. Ho Chi Minh City, Vietnam. |
NeemNim | Azadirachtin 0.3% | 16 mL | Ngan Anh Co., Ltd. Ho Chi Minh City, Vienam |
Pesticide | % Mortality 1 (Mean ± SE; %) | IOBC Category 2 | ||
---|---|---|---|---|
24 h * | 48 h * | 72 h * | ||
Ortus 5EC (Fenpyroximate 5%) | 61.46 ± 1.09 a | 67.06 ± 1.58 a | 73.97 ± 2.43 a | 2 |
Fastac 5EC (Alpha cypermethrin 5%) | 58.75 ± 0.82 ab | 62.64 ± 1.17 ab | 67.86 ± 1.54 ab | 2 |
Chess 50WG (Pymetrozin 500 g/kg) | 58.79 ± 0.88 abc | 59.86 ± 0.96 b | 65.32 ± 1.14 b | 2 |
Applaud 10WP (Buprofezin 100 g/kg) | 54.62 ± 1.29 b | 58.19 ± 1.31 b | 60.57 ± 1.19 b | 2 |
Kobisuper 1SL (Matrine 10 g/L) | 28.81 ± 1.74 c | 34.87 ± 1.76 c | 37.85 ± 2.14 c | 2 |
NeemNim (Azadirachtin 0.3%) | 21.61 ± 2.42 d | 27.37 ± 2.37 d | 29.04 ± 2.29 d | 1 |
Control | 0.91 e | 0.91 e | 0.91 e | 1 |
df | 5 | 5 | 5 | |
F | 133.29 | 105.43 | 93.61 |
Pesticide | % Mortality 1 (Mean ± SE; %) | IOBC Category 2 | ||
---|---|---|---|---|
24 h * | 48 h * | 72 h * | ||
Ortus 5EC (Fenpyroximate 5%) | 73.44 ± 0.97 a | 89.09 ± 0.00 a | 89.09 ± 0.00 a | 3 |
Fastac 5EC (Alpha cypermethrin 5%) | 70.83 ± 2.03 ab | 74.83 ± 2.75 ab | 83.57 ± 2.33 ab | 3 |
Chess 50WG (Pymetrozin 500 g/kg) | 58.79 ± 1.10 abc | 63.87 ± 1.26 abc | 71.91 ± 1.29 abc | 2 |
Applaud 10WP (Buprofezin 100 g/kg) | 55.43 ± 1.13 bcd | 62.67 ± 1.23 bc | 67.98 ± 1.19 bcd | 2 |
Kobisuper 1SL (Matrine 10 g/L) | 40.23 ± 3.33 cd | 45.48 ± 3.32 cd | 49.96 ± 3.26 cd | 2 |
NeemNim (Azadirachtin 0.3%) | 26.71 ± 1.67 d | 30.73 ± 1.96 d | 33.14 ± 1.93 d | 2 |
Control | 0.91 e | 0.91 e | 0.91 e | 1 |
df | 5 | 5 | 5 | |
H | 53.10 | 53.59 | 54.25 |
Pre-Oviposition Period (Days) * | Oviposition Period (Days) * | Post-Oviposition Period (Days) * | Female Adult Periods (Days) * | Oviposition Rate (Eggs/Female/Day) * | Total Number of Eggs (Eggs/Female) * | Hatching Egg Proportion of the Progeny (%) * | Female Proportion of the Progeny (%) * | |
---|---|---|---|---|---|---|---|---|
NT1 | 4.53 ± 0.18 a | 9.03 ± 0.35 b | 3.00 ± 0.15 d | 16.57 ± 0.35 e | 1.09 ± 0.02 a | 10.03± 0.49 b | 53.27 ± 1.704 b | 46.42 ± 0.53 c |
NT2 | 3.70 ± 0.23 b | 9.89 ± 0.45 b | 3.13 ± 0.13 cd | 16.73 ± 0.41 e | 1.18 ± 0.03 a | 11.90 ± 0.79 b | 59.04 ± 0.68 b | 51.34 ± 0.50 bc |
NT3 | 2.67 ± 0.18 c | 10.2 ± 0.31 b | 4.37 ± 0.24 b | 17.23 ± 0.27 de | 1.19 ± 0.04 a | 12.30 ± 0.45 b | 64.89 ± 0.63 b | 55.01 ± 0.63 bc |
NT4 | 2.60 ± 0.11 c | 12.03 ± 0.23 ab | 4.19 ± 0.21 b | 18.83 ± 0.39 cd | 1.19 ± 0.10 ab | 14.37 ± 0.47 ab | 70.33 ± 0.65 ab | 58.52 ± 1.15 ab |
NT5 | 2.20 ± 0.17 c | 13.70 ± 0,28 a | 4.57 ± 0.29 b | 20.47 ± 0.35 bc | 1.31 ± 0.03 a | 18.03 ± 0.41 a | 74.93 ± 1.01 a | 63.43 ± 1.06 a |
NT6 | 1.97 ± 0.19 c | 14.43 ± 0.41 a | 6.30 ± 0.29 a | 22.67 ± 0.58 a | 1.32 ± 0.07 a | 19.30 ± 1.10 a | 78.35 ± 0.85 a | 64.68 ± 0.99 a |
NT7 | 2.10 ± 0.14 c | 15.13 ± 0.43 a | 6.00 ± 0.32 a | 23.23 ± 0.27 a | 1.35 ± 0.05 a | 20.63 ± 0.94 a | 81.47 ± 0.71 a | 63.78 ± 1.78 a |
F | 30.38 | 57.01 | 27.61 | 51.68 | 22.81 | 54.53 | 64.52 | 55.82 |
df | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
p | <0.001 | <0.001 | <0.001 | <0.001 | 0.614 | 0.248 | 0.044 | 0.541 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thao, N.T.P.; Thuy, N.T. Effects of Certain Pesticides on the Predatory Mite Typhlodromus ndibu Pritchard and Baker (Acari: Phytoseiidae). Agriculture 2023, 13, 1776. https://doi.org/10.3390/agriculture13091776
Thao NTP, Thuy NT. Effects of Certain Pesticides on the Predatory Mite Typhlodromus ndibu Pritchard and Baker (Acari: Phytoseiidae). Agriculture. 2023; 13(9):1776. https://doi.org/10.3390/agriculture13091776
Chicago/Turabian StyleThao, Nguyen T. P., and Nguyen T. Thuy. 2023. "Effects of Certain Pesticides on the Predatory Mite Typhlodromus ndibu Pritchard and Baker (Acari: Phytoseiidae)" Agriculture 13, no. 9: 1776. https://doi.org/10.3390/agriculture13091776
APA StyleThao, N. T. P., & Thuy, N. T. (2023). Effects of Certain Pesticides on the Predatory Mite Typhlodromus ndibu Pritchard and Baker (Acari: Phytoseiidae). Agriculture, 13(9), 1776. https://doi.org/10.3390/agriculture13091776