The Impact of Calf Rearing with Foster Cows on Calf Health, Welfare, and Veal Quality in Dairy Farms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fatty Acid Analysis
2.2. Meat Oxidative Stability
2.3. Myoglobin Analysis
2.4. Statistical Model
3. Results
3.1. Animal Behavior
3.2. Animal Health
3.3. Animal Body Weight
3.4. Analysis of Veal
3.4.1. Quality of Veal
3.4.2. Oxidative Stability
4. Discussion
4.1. Animal Behavior
4.2. Animal Health
4.3. Body Weight
4.4. Quality of Veal
4.5. Oxidative Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diskin, M. Semen handling, time of insemination and insemination technique in cattle. Animal 2018, 12, s75–s84. [Google Scholar] [CrossRef]
- Oikawa, K.; Yamazaki, T.; Yamaguchi, S.; Abe, H.; Bai, H.; Takahashi, M.; Kawahara, M. Effects of use of conventional and sexed semen on the conception rate in heifers: A comparison study. Theriogenology 2019, 135, 33–37. [Google Scholar] [CrossRef]
- Balzani, A.; Aparacida Vaz do Amaral, C.; Hanlon, A. A perspective on the use of sexed semen to reduce the number of surplus male dairy calves in Ireland: A pilot study. Front. Vet. Sci. 2021, 7, 623128. [Google Scholar] [CrossRef] [PubMed]
- Seidel, G., Jr.; DeJarnette, J. Applications and world-wide use of sexed semen in cattle. Anim. Reprod. Sci. 2022, 246, 106841. [Google Scholar] [CrossRef]
- Solarczyk, P.; Slósarz, J.; Gołębiewski, M.; Puppel, K. A comparison between Polish Holstein-Friesian and F1 hybrid Polish Holstein Friesian× Swedish Red cows in terms of milk yield traits. Mljekarstvo J. Dairy Prod. Process. Improv. 2021, 71, 141–150. [Google Scholar] [CrossRef]
- Croquet, C.; Mayeres, P.; Gillon, A.; Vanderick, S.; Gengler, N. Inbreeding depression for global and partial economic indexes, production, type, and functional traits. J. Dairy Sci. 2006, 89, 2257–2267. [Google Scholar] [CrossRef]
- Martikainen, K.; Sironen, A.; Uimari, P. Estimation of intrachromosomal inbreeding depression on female fertility using runs of homozygosity in Finnish Ayrshire cattle. J. Dairy Sci. 2018, 101, 11097–11107. [Google Scholar] [CrossRef]
- Doekes, H.P.; Veerkamp, R.F.; Bijma, P.; de Jong, G.; Hiemstra, S.J.; Windig, J.J. Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein–Friesian dairy cattle. Genet. Sel. Evol. 2019, 51, 54. [Google Scholar] [CrossRef]
- Eriksson, S.; Strandberg, E.; Johansson, A.M. Changes in genomic inbreeding and diversity over half a century in Swedish Red and Swedish Holstein dairy cattle. J. Anim. Breed. Genet. 2023, 140, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Heise, J.; Tetens, J.; Thaller, G.; Wellmann, R.; Bennewitz, J. Genomic dominance variance analysis of health and milk production traits in German Holstein cattle. J. Anim. Breed. Genet. 2023, 140, 390–399. [Google Scholar] [CrossRef]
- Tohidi, R.; Cue, R.I.; Nazari, B.M.; Pahlavan, R. The effect of new and ancestral inbreeding on milk production traits in Iranian Holstein cattle. J. Anim. Breed. Genet. 2023, 140, 276–286. [Google Scholar] [CrossRef]
- Otwinowska-Mindur, A.; Ptak, E.; Jagusiak, W.; Zarnecki, A. Estimation of Genetic Parameters for Female Fertility Traits in the Polish Holstein-Friesian Population. Animals 2022, 12, 1485. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bermúdez, R.; Miranda, M.; Baudracco, J.; Fouz, R.; Pereira, V.; López-Alonso, M. Breeding for organic dairy farming: What types of cows are needed? J. Dairy Res. 2019, 86, 3–12. [Google Scholar] [CrossRef]
- Weigel, K.; VanRaden, P.; Norman, H.; Grosu, H. A 100-Year Review: Methods and impact of genetic selection in dairy cattle—From daughter–dam comparisons to deep learning algorithms. J. Dairy Sci. 2017, 100, 10234–10250. [Google Scholar] [CrossRef]
- Cardoso Consentini, C.E.; Wiltbank, M.C.; Sartori, R. Factors that optimize reproductive efficiency in dairy herds with an emphasis on timed artificial insemination programs. Animals 2021, 11, 301. [Google Scholar] [CrossRef] [PubMed]
- Guner, B.; Erturk, M.; Dursun, M.; Ozturk, B.; Yilmazbas-Mecitoglu, G.; Keskin, A.; Dikmen, S.; Gumen, A. Effect of oestrous expression prior to timed artificial insemination with sexed semen on pregnancy rate in dairy cows. Reprod. Domest. Anim. 2023, 58, 342–348. [Google Scholar] [CrossRef]
- Frijters, A.; Mullaart, E.; Roelofs, R.; Van Hoorne, R.; Moreno, J.; Moreno, O.; Merton, J. What affects fertility of sexed bull semen more, low sperm dosage or the sorting process? Theriogenology 2009, 71, 64–67. [Google Scholar] [CrossRef]
- Diskin, M.G.; Lonergan, P.; Kenny, D.A.; Fair, S. International Bull Fertility Conference–Theory to Practice, Westport, Ireland, 2018. Animal 2018, 12, s1–s3. [Google Scholar] [CrossRef]
- O’Callaghan, E.; Sánchez, J.; McDonald, M.; Kelly, A.; Hamdi, M.; Maicas, C.; Fair, S.; Kenny, D.; Lonergan, P. Sire contribution to fertilization failure and early embryo survival in cattle. J. Dairy Sci. 2021, 104, 7262–7271. [Google Scholar] [CrossRef]
- Januś, E.; Sablik, P.; Święciło, A. Analysis of the effectiveness of sexed semen in a selected herd of dairy cows. Acta Sci. Pol. Zootech. 2023, 21, 9–18. [Google Scholar] [CrossRef]
- De Vries, A.; Overton, M.; Fetrow, J.; Leslie, K.; Eicker, S.; Rogers, G. Exploring the impact of sexed semen on the structure of the dairy industry. J. Dairy Sci. 2008, 91, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Haskell, M.J. What to do with surplus dairy calves? Welfare, economic and ethical considerations. J. Sustain. Org. Agric. Syst. 2020, 70, 45–48. [Google Scholar] [CrossRef]
- GUS. Rocznik Statystyczny Rolnictwa; GUS: Warszawa, Poland, 2023. [Google Scholar]
- Solarczyk, P.; Gołębiewski, M.; Slósarz, J.; Łukasiewicz, M.; Przysucha, T.; Puppel, K. Effect of breed on the level of the nutritional and health-promoting quality of semimembranosus muscle in purebred and crossbred bulls. Animals 2020, 10, 1822. [Google Scholar] [CrossRef]
- Sakowski, T.; Grodkowski, G.; Gołebiewski, M.; Slósarz, J.; Kostusiak, P.; Solarczyk, P.; Puppel, K. Genetic and environmental determinants of beef quality—A Review. Front. Vet. Sci. 2022, 9, 819605. [Google Scholar] [CrossRef] [PubMed]
- Ngapo, T.M.; Gariépy, C. Factors affecting the meat quality of veal. J. Sci. Food Agric. 2006, 86, 1412–1431. [Google Scholar] [CrossRef]
- Resano, H.; Olaizola, A.; Dominguez-Torreiro, M. Exploring the influence of consumer characteristics on veal credence and experience guarantee purchasing motivators. Meat Sci. 2018, 141, 1–8. [Google Scholar] [CrossRef]
- Domaradzki, P.; Stanek, P.; Litwińczuk, Z.; Skałecki, P.; Florek, M. Slaughter value and meat quality of suckler calves: A review. Meat Sci. 2017, 134, 135–149. [Google Scholar] [CrossRef]
- Council Regulation. No 1254/1999 of May 1999 on the organization of the market in beef and veal. Off. J. Eur. Communities 1999, 160, 21–47. [Google Scholar]
- Veal. Production and Consumption in Europe. Available online: https://www.vealthebook.com/process/production-and-consumption-in-europe (accessed on 5 July 2023).
- Sans, P.; Fontguyon, G.d. Veal calf industry economics. Rev. Méd. Vét. 2009, 160, 420–424. [Google Scholar]
- Hötzel, M.J.; Longo, C.; Balcao, L.F.; Cardoso, C.S.; Costa, J.H. A survey of management practices that influence performance and welfare of dairy calves reared in southern Brazil. PLoS ONE 2014, 9, e114995. [Google Scholar] [CrossRef] [PubMed]
- Hammon, H.; Liermann, W.; Frieten, D.; Koch, C. Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal 2020, 14, s133–s143. [Google Scholar] [CrossRef]
- Sumner, C.; Von Keyserlingk, M. Canadian dairy cattle veterinarian perspectives on calf welfare. J. Dairy Sci. 2018, 101, 10303–10316. [Google Scholar] [CrossRef] [PubMed]
- Bórawski, P.; Bórawski, M.B.; Parzonko, A.; Wicki, L.; Rokicki, T.; Perkowska, A.; Dunn, J.W. Development of Organic Milk Production in Poland on the Background of the EU. Agriculture 2021, 11, 323. [Google Scholar] [CrossRef]
- Wagenaar, J.; Langhout, J. Practical implications of increasing ‘natural living’ through suckling systems in organic dairy calf rearing. NJAS Wagening. J. Life Sci. 2007, 54, 375–386. [Google Scholar] [CrossRef]
- Ventura, B.; Von Keyserlingk, M.A.; Schuppli, C.; Weary, D.M. Views on contentious practices in dairy farming: The case of early cow-calf separation. J. Dairy Sci. 2013, 96, 6105–6116. [Google Scholar] [CrossRef]
- Busch, G.; Weary, D.M.; Spiller, A.; von Keyserlingk, M.A. American and German attitudes towards cow-calf separation on dairy farms. PLoS ONE 2017, 12, e0174013. [Google Scholar] [CrossRef]
- Hötzel, M.J.; Cardoso, C.S.; Roslindo, A.; von Keyserlingk, M.A. Citizens’ views on the practices of zero-grazing and cow-calf separation in the dairy industry: Does providing information increase acceptability? J. Dairy Sci. 2017, 100, 4150–4160. [Google Scholar] [CrossRef]
- Beaver, A.; Meagher, R.K.; von Keyserlingk, M.A.; Weary, D.M. Invited review: A systematic review of the effects of early separation on dairy cow and calf health. J. Dairy Sci. 2019, 102, 5784–5810. [Google Scholar] [CrossRef]
- Meagher, R.K.; Beaver, A.; Weary, D.M.; von Keyserlingk, M.A. Invited review: A systematic review of the effects of prolonged cow–calf contact on behavior, welfare, and productivity. J. Dairy Sci. 2019, 102, 5765–5783. [Google Scholar] [CrossRef] [PubMed]
- Osawe, O.W.; Läpple, D.; Hanlon, A.; Boyle, L. Exploring farmers’ attitudes and determinants of dairy calf welfare in an expanding dairy sector. J. Dairy Sci. 2021, 104, 9967–9980. [Google Scholar] [CrossRef]
- Renaud, D.L.; Overton, M.W.; Kelton, D.F.; LeBlanc, S.J.; Dhuyvetter, K.C.; Duffield, T.F. Effect of health status evaluated at arrival on growth in milk-fed veal calves: A prospective single cohort study. J. Dairy Sci. 2018, 101, 10383–10390. [Google Scholar] [CrossRef]
- Zobel, G.; Proudfoot, K.; Cave, V.; Huddart, F.; Webster, J. The use of hides during and after calving in New Zealand dairy cows. Animals 2020, 10, 2255. [Google Scholar] [CrossRef]
- Johnsen, J.F.; Zipp, K.A.; Kälber, T.; Passillé, A.M.d.; Knierim, U.; Barth, K.; Mejdell, C.M. Is rearing calves with the dam a feasible option for dairy farms?—Current and future research. Appl. Anim. Behav. Sci. 2016, 181, 1–11. [Google Scholar] [CrossRef]
- Shivley, C.; Lombard, J.; Urie, N.; Weary, D.M.; von Keyserlingk, M.A. Management of preweaned bull calves on dairy operations in the United States. J. Dairy Sci. 2019, 102, 4489–4497. [Google Scholar] [CrossRef]
- Renaud, D.; Duffield, T.; LeBlanc, S.; Haley, D.; Kelton, D. Management practices for male calves on Canadian dairy farms. J. Dairy Sci. 2017, 100, 6862–6871. [Google Scholar] [CrossRef]
- Wagner, K.; Barth, K.; Hillmann, E.; Palme, R.; Futschik, A.; Waiblinger, S. Mother rearing of dairy calves: Reactions to isolation and to confrontation with an unfamiliar conspecific in a new environment. Appl. Anim. Behav. Sci. 2013, 147, 43–54. [Google Scholar] [CrossRef]
- Johnsen, J.F.; de Passille, A.M.; Mejdell, C.M.; Bøe, K.E.; Grøndahl, A.M.; Beaver, A.; Rushen, J.; Weary, D.M. The effect of nursing on the cow–calf bond. Appl. Anim. Behav. Sci. 2015, 163, 50–57. [Google Scholar] [CrossRef]
- Waiblinger, S.; Wagner, K.; Hillmann, E.; Barth, K. Short-and long-term effects of rearing dairy calves with contact to their mother on their reactions towards humans. J. Dairy Res. 2020, 87, 148–153. [Google Scholar] [CrossRef]
- Neave, H.W.; Sumner, C.L.; Henwood, R.J.T.; Zobel, G.; Saunders, K.; Thoday, H.; Watson, T.; Webster, J.R. Dairy farmers’ perspectives on providing cow-calf contact in the pasture-based systems of New Zealand. J. Dairy Sci. 2022, 105, 453–467. [Google Scholar] [CrossRef]
- Valente, T.S.; Ruiz, L.R.B.; Macitelli, F.; Paranhos da Costa, M.J.R. Nose-Flap Devices Used for Two-Stage Weaning Produce Wounds in the Nostrils of Beef Calves: Case Report. Animals 2022, 12, 1452. [Google Scholar] [CrossRef]
- Council Regulation. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2007, 150, 1–92. [Google Scholar]
- Natalello, A.; Luciano, G.; Morbidini, L.; Valenti, B.; Pauselli, M.; Frutos, P.; Biondi, L.; Rufino-Moya, P.J.; Lanza, M.; Priolo, A. Effect of feeding pomegranate byproduct on fatty acid composition of ruminal digesta, liver, and muscle in lambs. J. Agric. Food Chem. 2019, 67, 4472–4482. [Google Scholar] [CrossRef] [PubMed]
- Natalello, A.; Priolo, A.; Valenti, B.; Codini, M.; Mattioli, S.; Pauselli, M.; Puccio, M.; Lanza, M.; Stergiadis, S.; Luciano, G. Dietary pomegranate by-product improves oxidative stability of lamb meat. Meat Sci. 2020, 162, 108037. [Google Scholar] [CrossRef] [PubMed]
- Krzywicki, K. The determination of haem pigments in meat. Meat Sci. 1982, 7, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Corporation, I. Released IBM SPSS for Windows, 25.0; Armonk: New York, NY, USA, 2023. [Google Scholar]
- Johnson, K.; Burn, C.C.; Wathes, D.C. Rates and risk factors for contagious disease and mortality in young dairy heifers. CABI Rev. 2012, 2011, 1–10. [Google Scholar] [CrossRef]
- Johnson, K.F.; Chancellor, N.; Burn, C.C.; Wathes, D.C. Prospective cohort study to assess rates of contagious disease in pre-weaned UK dairy heifers: Management practices, passive transfer of immunity and associated calf health. Vet. Rec. Open 2017, 4, e000226. [Google Scholar] [CrossRef]
- Baxter-Smith, K.; Simpson, R. Insights into UK farmers’ attitudes towards cattle youngstock rearing and disease. Livestock 2020, 25, 274–281. [Google Scholar] [CrossRef]
- Reinhardt, V.; Reinhardt, A. Natural sucking performance and age of weaning in zebu cattle (Bos indicus). J. Agric. Sci. 1981, 96, 309–312. [Google Scholar] [CrossRef]
- Palczynski, L.; Bleach, E.; Brennan, M.; Robinson, P. Giving calves ‘the best start’: Perceptions of colostrum management on dairy farms in England. Anim. Welf. 2020, 29, 45–58. [Google Scholar] [CrossRef]
- Kiezebrink, D.; Edwards, A.; Wright, T.; Cant, J.; Osborne, V. Effect of enhanced whole-milk feeding in calves on subsequent first-lactation performance. J. Dairy Sci. 2015, 98, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Devant, M.; Marti, S. Strategies for feeding unweaned dairy beef cattle to improve their health. Animals 2020, 10, 1908. [Google Scholar] [CrossRef]
- Margerison, J.; Preston, T.; Berry, N.; Phillips, C. Cross-sucking and other oral behaviours in calves, and their relation to cow suckling and food provision. Appl. Anim. Behav. Sci. 2003, 80, 277–286. [Google Scholar] [CrossRef]
- Rosenberger, K.; Costa, J.H.C.; Neave, H.W.; von Keyserlingk, M.A.G.; Weary, D.M. The effect of milk allowance on behavior and weight gains in dairy calves. J. Dairy Sci. 2017, 100, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B. The early behaviour of cow and calf in an individual calving pen. Appl. Anim. Behav. Sci. 2011, 134, 92–99. [Google Scholar] [CrossRef]
- Appleby, M.C.; Weary, D.M.; Chua, B. Performance and feeding behaviour of calves on ad libitum milk from artificial teats. Appl. Anim. Behav. Sci. 2001, 74, 191–201. [Google Scholar] [CrossRef]
- Hammell, K.L.; Metz, J.; Mekking, P. Sucking behaviour of dairy calves fed milk ad libitum by bucket or teat. Appl. Anim. Behav. Sci. 1988, 20, 275–285. [Google Scholar] [CrossRef]
- Jensen, M.B. The effects of feeding method, milk allowance and social factors on milk feeding behaviour and cross-sucking in group housed dairy calves. Appl. Anim. Behav. Sci. 2003, 80, 191–206. [Google Scholar] [CrossRef]
- De Passillé, A.; Borderas, T.; Rushen, J. Weaning age of calves fed a high milk allowance by automated feeders: Effects on feed, water, and energy intake, behavioral signs of hunger, and weight gains. J. Dairy Sci. 2011, 94, 1401–1408. [Google Scholar] [CrossRef]
- Duve, L.; Jensen, M. Social behavior of young dairy calves housed with limited or full social contact with a peer. J. Dairy Sci. 2012, 95, 5936–5945. [Google Scholar] [CrossRef]
- Whalin, L.; Weary, D.M.; von Keyserlingk, M.A.G. Understanding Behavioural Development of Calves in Natural Settings to Inform Calf Management. Animals 2021, 11, 2446. [Google Scholar] [CrossRef]
- Palczynski, L.J.; Bleach, E.C.L.; Brennan, M.L.; Robinson, P.A. Appropriate Dairy Calf Feeding from Birth to Weaning: “It’s an Investment for the Future”. Animals 2020, 10, 116. [Google Scholar] [CrossRef]
- Hammon, H.M.; Schiessler, G.; Nussbaum, A.; Blum, J.W. Feed intake patterns, growth performance, and metabolic and endocrine traits in calves fed unlimited amounts of colostrum and milk by automate, starting in the neonatal period. J. Dairy Sci. 2002, 85, 3352–3362. [Google Scholar] [CrossRef] [PubMed]
- Ollivett, T.L.; Nydam, D.V.; Linden, T.C.; Bowman, D.D.; Van Amburgh, M.E. Effect of nutritional plane on health and performance in dairy calves after experimental infection with Cryptosporidium parvum. J. Am. Vet. Med. Assoc. 2012, 241, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.H.C.; von Keyserlingk, M.A.G.; Weary, D.M. Invited review: Effects of group housing of dairy calves on behavior, cognition, performance, and health. J. Dairy Sci. 2016, 99, 2453–2467. [Google Scholar] [CrossRef]
- Palczynski, L.J.; Bleach, E.C.L.; Brennan, M.L.; Robinson, P.A. Stakeholder Perceptions of Disease Management for Dairy Calves: “It’s Just Little Things That Make Such a Big Difference”. Animals 2021, 11, 2829. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.J.; Song, Y.; He, Z.; Haines, D.M.; Guan, L.L.; Steele, M.A. Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. J. Dairy Sci. 2018, 101, 3099–3109. [Google Scholar] [CrossRef]
- Borderas, T.F.; de Passillé, A.M.B.; Rushen, J. Feeding behavior of calves fed small or large amounts of milk. J. Dairy Sci. 2009, 92, 2843–2852. [Google Scholar] [CrossRef]
- Pestana, J.M.; Costa, A.S.H.; Alves, S.P.; Martins, S.V.; Alfaia, C.M.; Bessa, R.J.B.; Prates, J.A.M. Seasonal changes and muscle type effect on the nutritional quality of intramuscular fat in Mirandesa-PDO veal. Meat Sci. 2012, 90, 819–827. [Google Scholar] [CrossRef]
- Khan, M.A.; Weary, D.M.; von Keyserlingk, M.A. Hay intake improves performance and rumen development of calves fed higher quantities of milk. J. Dairy Sci. 2011, 94, 3547–3553. [Google Scholar] [CrossRef]
- Chapman, C.E.; Erickson, P.S.; Quigley, J.D.; Hill, T.M.; Bateman, H.G.; Suarez-Mena, F.X.; Schlotterbeck, R.L. Effect of milk replacer program on calf performance and digestion of nutrients with age of the dairy calf. J. Dairy Sci. 2016, 99, 2740–2747. [Google Scholar] [CrossRef]
- Khan, M.; Bach, A.; Weary, D.; Von Keyserlingk, M. Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci. 2016, 99, 885–902. [Google Scholar] [CrossRef] [PubMed]
- Stanton, A.L.; Kelton, D.F.; LeBlanc, S.J.; Wormuth, J.; Leslie, K.E. The effect of respiratory disease and a preventative antibiotic treatment on growth, survival, age at first calving, and milk production of dairy heifers. J. Dairy Sci. 2012, 95, 4950–4960. [Google Scholar] [CrossRef] [PubMed]
- Windeyer, M.C.; Leslie, K.E.; Godden, S.M.; Hodgins, D.C.; Lissemore, K.D.; LeBlanc, S.J. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev. Vet. Med. 2014, 113, 231–240. [Google Scholar] [CrossRef]
- Bittante, G.; Bergamaschi, M.; Qianlin, N.; Patel, N.; Toledo-Alvarado, H.; Cecchinato, A. Veal and beef meat quality of crossbred calves from dairy herds using sexed semen and semen from double-muscled sires. Ital. J. Anim. Sci. 2023, 22, 169–180. [Google Scholar] [CrossRef]
- Hocquette, J.-F.; Botreau, R.; Picard, B.; Jacquet, A.; Pethick, D.W.; Scollan, N.D. Opportunities for predicting and manipulating beef quality. Meat Sci. 2012, 92, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Scollan, N.D.; Dannenberger, D.; Nuernberg, K.; Richardson, I.; MacKintosh, S.; Hocquette, J.-F.; Moloney, A.P. Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2014, 97, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Florek, M.; Domaradzki, P.; Stanek, P.; Litwińczuk, Z.; Skałecki, P. Longissimus lumborum quality of Limousin suckler beef in relation to age and postmortem vacuum ageing. Ann. Anim. Sci. 2015, 15, 785–798. [Google Scholar] [CrossRef]
- Aldai, N.; Lavín, P.; Kramer, J.K.G.; Jaroso, R.; Mantecón, A.R. Breed effect on quality veal production in mountain areas: Emphasis on meat fatty acid composition. Meat Sci. 2012, 92, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Albertí, P.; Casasús, I.; Blanco, M. Instrumental meat quality of veal calves reared under three management systems and color evolution of meat stored in three packaging systems. Meat Sci. 2013, 93, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Lušnic Polak, M.; Kuhar, M.; Zahija, I.; Demšar, L.; Polak, T. Oxidative Stability and Quality Parameters of Veal During Ageing. Pol. J. Food Nutr. Sci. 2023, 73, 24–31. [Google Scholar] [CrossRef]
- Henriott, M.L.; Herrera, N.J.; Ribeiro, F.A.; Hart, K.B.; Bland, N.A.; Calkins, C.R. Impact of myoglobin oxygenation level on color stability of frozen beef steaks. J. Anim. Sci. 2020, 98, skaa193. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.; Pérez-Juan, M.; Lloret, E.; Arnau, J.; Realini, C. Effect of aging time in vacuum on tenderness, and color and lipid stability of beef from mature cows during display in high oxygen atmosphere package. Meat Sci. 2014, 96, 270–277. [Google Scholar] [CrossRef]
- Penko, A.; Polak, T.; Polak, M.L.; Požrl, T.; Kakovič, D.; Žlender, B.; Demšar, L. Oxidative stability of n-3-enriched chicken patties under different package-atmosphere conditions. Food Chem. 2015, 168, 372–382. [Google Scholar] [CrossRef]
- Clausen, I.; Jakobsen, M.; Ertbjerg, P.; Madsen, N.T. Modified atmosphere packaging affects lipid oxidation, myofibrillar fragmentation index and eating quality of beef. Packag. Technol. Sci. 2009, 22, 85–96. [Google Scholar] [CrossRef]
Category | Behavior | Description |
---|---|---|
Active behaviors: behaviors involving movement | Locomotion | Walking or running. |
Play (alone) | Manipulating non-food object. | |
Smell | Smelling the ground or an object. | |
Resting behaviors: behaviors involving little to no movement | Lying down | Lying down with very little movement, whether asleep or awake. |
Defecate/Urinate | Categorized as resting because movement behavior must be paused. | |
Groom | Scratching, gnawing, or licking oneself. | |
Social rest | Lying while in physical contact with at least one other calf. | |
Abnormal Behavior | Sucking or licking | Sucking or licking other calf’s (mouth, ears, navel, tail, and scrotal). |
Sucking or licking objects in pens. |
Calves in Pen | Calves with Foster Cows | p-Value | |||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
Protein | 31.24 | 0.127 | 33.4 | 0.225 | 0.01 |
Fat | 2.01 | 0.042 | 1.88 | 0.099 | 0.05 |
IMF | 1.84 | 0.741 | 1.47 | 0.740 | 0.01 |
Component (g/100 g of Fat) | Calves in Pen | Calves with Foster Cows | p-Value | ||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
C10:0 | 0.04 | 0.010 | 0.05 | 0.014 | 0.000 |
C12:0 | 0.13 | 0.040 | 0.20 | 0.067 | 0.000 |
C13:0 | 0.03 | 0.013 | 0.04 | 0.014 | 0.009 |
C14:0 iso | 0.04 | 0.010 | 0.06 | 0.018 | 0.000 |
C14:0 | 3.26 | 0.725 | 3.96 | 1.131 | 0.001 |
C15:0 iso | 0.11 | 0.023 | 0.15 | 0.043 | 0.000 |
C15:0 anteiso | 0.16 | 0.059 | 0.23 | 0.062 | 0.000 |
C15:0 | 0.41 | 0.125 | 0.61 | 0.142 | 0.000 |
C16:0 iso | 0.18 | 0.035 | 0.20 | 0.046 | 0.010 |
C16:0 | 21.86 | 1.779 | 24.66 | 3.129 | 0.000 |
C17:0 iso | 0.29 | 0.049 | 0.34 | 0.051 | 0.000 |
C17:0 anteiso | 0.39 | 0.076 | 0.44 | 0.094 | 0.003 |
C17:0 | 0.84 | 0.120 | 0.94 | 0.197 | 0.002 |
C18:0 | 11.27 | 1.748 | 12.58 | 2.242 | 0.001 |
C20:0 | 0.10 | 0.025 | 0.13 | 0.036 | 0.000 |
C22:0 | 0.01 | 0.015 | 0.04 | 0.034 | 0.000 |
C24:0 | 0.53 | 0.205 | 0.78 | 0.428 | 0.000 |
SFA | 37.15 | 3.614 | 42.39 | 5.142 | 0.000 |
Component (g/100 g of Fat) | Calves in Pen | Calves with Foster Cows | p-Value | ||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
C14:1 cis9 | 0.79 | 0.227 | 0.72 | 0.161 | 0.025 |
C16:1 trans9 | 0.05 | 0.012 | 0.05 | 0.009 | 0.508 |
C16:1 cis7 | 0.26 | 0.042 | 0.27 | 0.065 | 0.617 |
C16:1 cis9 | 3.17 | 0.613 | 2.85 | 0.599 | 0.010 |
C18:1 t6+t7+t8 | 0.07 | 0.033 | 0.06 | 0.026 | 0.122 |
C18:1 trans9 | 0.20 | 0.036 | 0.19 | 0.036 | 0.030 |
C18:1 trans10 | 0.20 | 0.183 | 0.08 | 0.030 | <0.001 |
C18:1 trans11 | 0.40 | 0.134 | 0.48 | 0.162 | 0.014 |
C18:1 cis6 | 0.35 | 0.103 | 0.37 | 0.089 | 0.361 |
C18:1 cis9 | 28.69 | 3.671 | 24.04 | 2.811 | <0.001 |
C18:1 cis12 | 0.20 | 0.013 | 0.20 | 0.069 | 0.007 |
C18:1 cis13 | 0.16 | 0.039 | 0.16 | 0.041 | 0.057 |
C20:1 cis11 | 0.13 | 0.023 | 0.14 | 0.024 | 0.013 |
C24:1 cis9 | 0.12 | 0.041 | 0.15 | 0.075 | 0.002 |
MUFA | 36.35 | 4.378 | 31.15 | 3.047 | <0.001 |
Component (g/100 g of Fat) | Calves in Pen | Calves with Foster Cows | p-Value | ||
---|---|---|---|---|---|
LSM | SEM | LSM | SEM | ||
C18:2 cis9cis12 | 5.23 | 1.601 | 5.75 | 2.742 | 0.822 |
C18:3 cis6.9.12 | 0.03 | 0.018 | 0.04 | 0.0271 | 0.166 |
C18:3 cis9,12,15 | 0.72 | 0.162 | 0.91 | 0.298 | 0.269 |
C18:2 cis9 trans11 | 0.24 | 0.054 | 0.19 | 0.037 | 0.006 |
C20:2 cis11,14 | 0.05 | 0.025 | 0.06 | 0.037 | 0.006 |
C20:3 n-6 | 0.44 | 0.164 | 0.56 | 0.301 | 0.010 |
C20:4 n-6 | 2.07 | 0.752 | 2.65 | 1.478 | 0.008 |
C22:4 n-6 | 0.02 | 0.017 | 0.03 | 0.025 | 0.002 |
C22:5 n-3 | 0.16 | 0.082 | 0.17 | 0.093 | 0.512 |
PUFA | 9.67 | 2.989 | 11.32 | 5.371 | 0.033 |
n-6 PUFA | 8.55 | 2.798 | 10.06 | 5.030 | 0.037 |
n-3 PUFA | 0.88 | 0.227 | 1.07 | 0.384 | 0.001 |
n-6/n-3 | 9.52 | 1.070 | 8.95 | 1.876 | 0.029 |
Day | Calves in Pen | Calves with Foster Cows | p-Value | |||
---|---|---|---|---|---|---|
LSM | SEM | LSM | SEM | |||
L* | 1 | 46.25 | 4.551 | 46.13 | 5.487 | 0.830 |
4 | 57.56 | 4.081 | 57.30 | 3.737 | 0.470 | |
7 | 45.87 | 4.900 | 44.46 | 2.246 | 0.080 | |
a* | 1 | 18.35 | 3.189 | 18.02 | 2.150 | 0.777 |
4 | 7.41 | 2.969 | 7.82 | 3.750 | 0.293 | |
7 | 9.31 | 1.889 | 11.13 | 2.406 | <0.001 | |
b* | 1 | 16.14 | 4.835 | 12.60 | 2.516 | 0.528 |
4 | −4.85 | 2.997 | −4.25 | 5.368 | 0.191 | |
7 | 13.10 | 1.856 | 12.72 | 2.249 | 0.545 | |
C* | 1 | 24.53 | 5.401 | 23.86 | 3.104 | 0.571 |
4 | 9.90 | 1.417 | 11.25 | 1.451 | <0.001 | |
7 | 16.16 | 2.183 | 16.98 | 2.949 | 0.096 | |
h° | 1 | 40.61 | 4.462 | 40.66 | 2.768 | 0.848 |
4 | 286.96 | 66.749 | 228.29 | 104.858 | <0.001 | |
7 | 54.79 | 5.341 | 48.84 | 4.872 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solarczyk, P.; Sakowski, T.; Gołębiewski, M.; Slósarz, J.; Grodkowski, G.; Grodkowska, K.; Biondi, L.; Lanza, M.; Natalello, A.; Puppel, K. The Impact of Calf Rearing with Foster Cows on Calf Health, Welfare, and Veal Quality in Dairy Farms. Agriculture 2023, 13, 1829. https://doi.org/10.3390/agriculture13091829
Solarczyk P, Sakowski T, Gołębiewski M, Slósarz J, Grodkowski G, Grodkowska K, Biondi L, Lanza M, Natalello A, Puppel K. The Impact of Calf Rearing with Foster Cows on Calf Health, Welfare, and Veal Quality in Dairy Farms. Agriculture. 2023; 13(9):1829. https://doi.org/10.3390/agriculture13091829
Chicago/Turabian StyleSolarczyk, Paweł, Tomasz Sakowski, Marcin Gołębiewski, Jan Slósarz, Grzegorz Grodkowski, Kinga Grodkowska, Luisa Biondi, Massimiliano Lanza, Antonio Natalello, and Kamila Puppel. 2023. "The Impact of Calf Rearing with Foster Cows on Calf Health, Welfare, and Veal Quality in Dairy Farms" Agriculture 13, no. 9: 1829. https://doi.org/10.3390/agriculture13091829
APA StyleSolarczyk, P., Sakowski, T., Gołębiewski, M., Slósarz, J., Grodkowski, G., Grodkowska, K., Biondi, L., Lanza, M., Natalello, A., & Puppel, K. (2023). The Impact of Calf Rearing with Foster Cows on Calf Health, Welfare, and Veal Quality in Dairy Farms. Agriculture, 13(9), 1829. https://doi.org/10.3390/agriculture13091829