Effects of an Organic Amendment on Cassava Growth and Rhizosphere Microbial Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Description and Sampling
2.2. Soil Treatments and Sample Collection
2.3. Measurement of Physiological Indexes of Cassava
2.4. Measurement of Soil Parameters
2.5. DNA Extraction and Illumina MiSeq Sequencing
2.6. Bioinformatics and Statistical Analysis
3. Results
3.1. Effects of Different Amendment Concentrations on Basic Physiological Indexes
3.1.1. Effects of Different Amendment Concentrations on Cassava Plant Height
3.1.2. Effects of Different Amendment Concentrations on Plant Base Stem Diameter
3.1.3. Effects of Different Amendment Concentrations on Yield Parameters
3.1.4. Effects of Different Concentration Treatments on the Quality of Cassava Tuber Blocks
3.1.5. Influence of Different Concentration Treatments on Starch Content of Root Tubers
3.2. Effects of Different Amendment Concentrations on Soil Physicochemical Indexes of Cassava
3.3. Effects of Different Amendment Concentrations on Rhizosphere Microbial Diversity of Cassava
3.3.1. Sequencing and Microbial Community Alpha Diversity
3.3.2. The Composition of Bacterial and Fungal Communities
3.3.3. The Community Structure of Bacterial and Fungal Communities
4. Discussion
4.1. Growth-Promoting Effect of the Amendment on Cassava
4.2. Effects of the Amendment on Microbial Diversity of Cassava
4.3. Effects of the Amendment on Soil Property
4.4. Necessity of Cassava Topdressing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Latif, S.; Müller, J. Potential of cassava leaves in human nutrition: A review. Trends Food Sci. Technol. 2015, 44, 147–158. [Google Scholar] [CrossRef]
- Saithong, T.; Rongsirikul, O.; Kalapanulak, S.; Chiewchankaset, P.; Siriwat, W.; Netrphan, S.; Suksangpanomrung, M.; Meechai, A.; Cheevadhanarak, S. Starch biosynthesis in cassava: A genome-based pathway reconstruction and its exploitation in data integration. BMC Syst. Biol. 2013, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Feng, B.; Xiao, J.; Xia, Z.; Zhou, X.; Li, P.; Zhang, W.; Wang, Y.; Møller, B.L.; Zhang, P.; et al. Cassava genome from a wild ancestor to cultivated varieties. Nat. Commun. 2014, 5, 5110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, J.; Zhang, Y. Decoupling agricultural nonpoint source pollution from crop production: A case study of Heilongjiang land reclamation area, China. Sustainability 2017, 9, 1024. [Google Scholar] [CrossRef]
- Xie, H. Towards sustainable land use in China: A collection of empirical studies. Sustainability 2017, 9, 2129. [Google Scholar] [CrossRef]
- Urra, J.; Mijangos, I.; Lanzén, A.; Lloveras, J.; Garbisu, C. Effects of corn stover management on soil quality. Eur. J. Soil Biol. 2018, 88, 57–64. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, J.B.; Yin, S.M. Effect of soil conditioner on the growth of Lolium multiflorum. ACTA Prataculturae Sin. 2015, 24, 206–213. [Google Scholar]
- Singh, S.; Swami, S.; Gogoi, J.; Dwivedi, D.K.; Turkar, G.P.; Tamang, B.; Borah, S.K. Effect of biochar-mediated treatments on the enhancement of soil acidity, crop performance and soil properties. Ama.-Agr. Mech. Asia Af. 2023, 54, 13575–13603. [Google Scholar]
- Albalasmeh, A.; Mohawesh, O.; Alqudah, A.; Unami, K.; Al-Ajlouni, Z.; Klaib, A. The potential of biochar application to enhance soil quality, yield, and growth of wheat and barley under rainfed conditions. Water Air Soil Pollut. 2023, 234, 463. [Google Scholar] [CrossRef]
- Kwizera, E.; Opiyo, A.M.; Mungai, N.W. Effects of biochar and inorganic fertiliser on the growth and yield of beetroot (Beta vulgaris L.) in Kenya. Int. J. Hortic. Sci. 2023, 29, 37–45. [Google Scholar]
- Zhao, R.; Liu, Y.; Gundale, M.J. Soil amendment with biochar and manure alters wood stake decomposition and fungal community composition. GCB Bioenergy 2023, 15, 1166–1185. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Shen, J.; Li, Y.; Chen, D.; Bolan, N.; Li, Y.; Wu, J. Biochar amendment increases the abundance and alters the community composition of diazotrophs in a double rice cropping system. Biol. Fertil. Soils 2023, 59, 1–14. [Google Scholar] [CrossRef]
- Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Zak, D.R.; Holmes, W.E.; White, D.C.; Peacock, A.D.; Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 2003, 84, 2042. [Google Scholar] [CrossRef]
- Mondini, C.; Sequi, P. Implication of soil C sequestration on sustainable agriculture and environment. Waste Manag. 2008, 28, 678–684. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Chojnacka, K.; Gorazda, K.; Witek-Krowiak, A.; Moustakas, K. Recovery of fertilizer nutrients from materials—Contradictions, mistakes and future trends. Renew. Sustain. Energy Rev. 2019, 110, 485–498. [Google Scholar] [CrossRef]
- Urraa, J.; Alkortab, I.; Lanzéna, A.; Mijangosa, I.; Garbisu, C. The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance. Appl. Soil Ecol. 2019, 135, 73–84. [Google Scholar] [CrossRef]
- Lyden, J.; Teasdale, J.R.; Chen, P.K. Allelopathic activity of annul wormwood: Artemisia annua and the role of artemisinin. Weed Sci. 1997, 45, 807–811. [Google Scholar] [CrossRef]
- Chen, P.K.; Leather, G.R. Plant growth regulatory activities of artemisinin and its related compounds. J. Chem. Ecol. 1990, 16, 1867. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wang, S.G.; Ding, W. Study on allelopathic effects of alcohol extracts from artemisia annual. J. Southwest Agric. Univ. (Nat. Sci.) 2004, 3, 281–284, 288. [Google Scholar]
- Wang, R.; Wang, S.; Pan, W.; Li, Q.; Xia, Z.; Guan, E.; Zheng, M.; Pang, G.; Yang, Y.; Yi, Z. Strategy of tobacco plant against black shank and tobacco mosaic virus infection via induction of PR-1, PR-4 and PR-5 proteins assisted by medicinal plant extracts. Physiol. Mol. Plant Pathol. 2018, 101, 127–145. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Issue 939; US Department of Agriculture: Washington, DC, USA, 1954.
- Knudsen, D.; Peterson, G.A.; Pratt, P. Lithium, sodium and potassium. In Methods of Soil Analysis; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar]
- Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4554–4561. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Cole, J.R.; Chai, B.; Farris, R.J.; Wang, Q.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M. The ribosomal database project (RDP-II): Introducing my RDP space and quality controlled public data. Nucleic Acids Res. 2007, 35, D169–D172. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xiong, Z.; Wu, G.; Bai, W.; Zhu, Z.; Gao, Y.; Parmar, S.; Sharma, V.K.; Li, H. Fungal endophytic communities of two wild Rosa varieties with different powdery mildew susceptibilities. Front. Microbiol. 2018, 9, 2462. [Google Scholar] [CrossRef] [PubMed]
- Shade, A.; Handelsman, J. Beyond the Venn diagram: The hunt for a core microbiome. Environ. Microbiol. 2012, 14, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Okogbenin, E.; Setter, T.L.; Ferguson, M.E.; Mutegi, R.; Ceballos, H.; Olasanmi, B.; Fregene, M. Phenotypic approaches to drought in cassava: Review. Front. Physiol. 2013, 4, 93. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, Y.M.; Teng, Y. Rhizosphere growth-promoting bacteria and their application in phytoremediation of contaminated soil. ACTA Pedol. Sin. 2013, 5, 1021–1031. [Google Scholar]
- Penrose, D.M.; Glick, B.R. Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can. J. Microbiol. 2001, 47, 368–372. [Google Scholar] [CrossRef]
- Zheng, W.B.; Shen, F.; Yan, X.M. Screening and identification of growth promoting bacteria with indole acetic acid and phosphorolytic effect in red soil and their growth promoting effect. Soils 2015, 47, 361–368. [Google Scholar]
- Rippin, M.; Borchhardt, N.; Karsten, U.; Becker, B. Cold Acclimation Improves the Desiccation Stress Resilience of Polar Strains of Klebsormidium (Streptophyta). Front. Microbiol. 2019, 10, 1730. [Google Scholar] [CrossRef]
- Shen, Z.; Ruan, Y.; Wang, B.; Zhong, S.; Su, L.; Li, R.; Shen, Q. Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Appl. Soil Ecol. 2015, 93, 111–119. [Google Scholar] [CrossRef]
- Chen, M.; Xu, J.; Li, Z.; Zhao, B.; Zhang, J. Soil physicochemical properties and bacterial community composition jointly affect crop yield. Agron. J. 2020, 112, 4358–4372. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Deng, J.Q.; Wang, Z.K.; Shen, Y.Y.; Wang, X.Z. Differences in soil bacterial community composition among three forage-crop rotations on the Longdong Loess Plateau. ACTA Prataculturae Sin. 2017, 26, 180–191. [Google Scholar]
- Xu, L.; Yi, H.; Zhang, A.; Guo, E. Rhizosphere soil microbial communities under foxtail millet continuous and rotational cropping systems and their feedback effects on foxtail millet downy mildew suppression. Plant Growth Regul. 2023, 99, 161–175. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Li, J.; Liu, Z.; Gu, X.; Shi, L. Cow manure compost promotes maize growth and ameliorates soil quality in saline-alkali soil: Role of fertilizer addition rate and application depth. Sustainability 2022, 14, 10088. [Google Scholar] [CrossRef]
- Pan, X.; Shi, M.; Chen, X.; Kuang, S.; Ullah, H.; Lu, H.; Riaz, L. An investigation into biochar, acid-modified biochar, and wood vinegar on the remediation of saline−alkali soil and the growth of strawberries. Front. Environ. Sci. 2022, 10, 1057384. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Yang, J.-S.; Yao, R.-J.; Chen, X.-B.; Wang, X.-P. Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three year field trial. Sci. Rep. 2020, 10, 8946. [Google Scholar] [CrossRef]
- Siedt, M.; Schäffer, A.; Smith, K.E.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total. Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.X.; Yuan, Z.Q.; Liu, R.G.; Xiao, Y.P.; Wang, R.Q. Advance in high-yielding cultivation of cassava and disposal of plant waste after its harvest. Acta Agric. Jiangxi 2011, 23, 30–32. [Google Scholar]
- Fermont, A.M.; Tittonell, P.A.; Baguma, Y.; Ntawuruhunga, P.; Giller, K.E. Towards understanding factors that govern fertilizer response in cassava: Lessons from East Africa. Nutr. Cycl. Agroecosys. 2010, 86, 133–151. [Google Scholar] [CrossRef]
- Putthacharoen, S.; Howeler, R.H.; Jantawat, S.; Vichukit, V. Nutrient uptake and soil erosion losses in cassava and six other crops in a Psamment in eastern Thailand. Field Crop Res. 1998, 57, 113–126. [Google Scholar] [CrossRef]
- Luo, X.L.; Cen, Z.Y.; Xie, H.X.; Pan, Y.H.; Liao, C.; Shao, Z.F.; Chen, H.L. Effects of Bio-Organic Fertilizer on the Growth of Cassava and the Physical and Chemical Biological Character of Soil. ACTA Agric. Borealioccidentalis Sin. 2008, 17, 167–173. [Google Scholar]
- Sangakkara, U.R.; Wijesinghe, D.B. Nitrogen fertilizer affects growth, yield, and N recovery in cassava (Manihot esculenta L. Crantz). Commun. Soil Sci. Plan 2014, 45, 1446–1452. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, M.L.; Wang, Y.H. Research progress on the effect of N, P and K application rate on cassava yield and quality. Crops 2012, 4, 124–127. [Google Scholar]
Treatment | Plant Height (m) | Diameter of Stem Base (cm) | Maximum Perimeter of Cassava (cm) | Cassava Number | Weight of Cassava per Plant (kg) | Yield per Hectare (kg) |
---|---|---|---|---|---|---|
T1 | 2.58 ± 0.09 b | 2.38 ± 0.15 b | 20.55 ± 2.00 c | 9.30 ± 1.34 b | 3.42 ± 0.74 b | 30,827.64 ± 4131.66 ab |
T2 | 2.77 ± 0.12 a | 2.60 ± 0.14 a | 24.90 ± 3.68 a | 9.82 ± 2.09 a | 4.57 ± 0.95 a | 34,158.90 ± 4717.86 a |
T3 | 2.51 ± 0.13 b | 2.27 ± 0.16 b | 22.62 ± 2.26 b | 8.20 ± 2.10 b | 3.34 ± 0.61 b | 26,895.60 ± 1470.01 b |
T4 | 2.23 ± 0.15 c | 2.17 ± 0.29 b | 19.10 ± 1.88 c | 7.70 ± 1.06 b | 2.01 ± 0.26 c | 25,169.68 ± 2698.92 b |
Treatment | Water Content (%) | Dry Matter (%) | Starch Content (%) |
---|---|---|---|
T1 | 71.70 ± 1.49 a | 28.30 ± 1.49 b | 65.66 ± 14.93 a |
T2 | 64.64 ± 2.72 b | 35.36 ± 2.72 a | 63.51 ± 18.28 a |
T3 | 68.93 ± 0.72 ab | 31.07 ± 0.72 ab | 59.06 ± 7.21 a |
T4 | 70.60 ± 3.43 a | 29.40 ± 3.43 b | 76.12 ± 26.56 a |
Treatments | pH | Organic Matter (g/kg) | Alkaline Hydrolysis Nitrogen | Available P | Available K |
---|---|---|---|---|---|
T1 | 7.87 | 38.64 | 84.65 | 38.14 | 249.53 |
T2 | 7.96 | 66.84 | 90.96 | 44.96 | 262.18 |
T3 | 7.86 | 65.12 | 89.52 | 31.22 | 194.51 |
T4 | 8.10 | 38.88 | 100.41 | 28.74 | 272.51 |
Sample | Barcode | Seq Num | OTU Num |
---|---|---|---|
S-T1A | CGCATA | 70,369 | 1911 |
S-T1B | CTTGTA | 53,037 | 1691 |
S-T1C | GTTTCG | 57,834 | 1812 |
S-T2A | CTCCTG | 67,933 | 1959 |
S-T2B | GTCGGA | 76,894 | 1909 |
S-T2C | ATCGTT | 81,898 | 1769 |
S-T3A | AATATC | 80,327 | 1792 |
S-T3B | AAGCTC | 83,767 | 1864 |
S-T3C | TTCCAT | 72,515 | 1962 |
S-T4A | TCTAGG | 78,135 | 1773 |
S-T4B | CTATAC | 71,972 | 1767 |
S-T4C | GTCCCA | 64,237 | 1701 |
Sample | Barcode | Seq Num | OTU Num |
---|---|---|---|
S-T1A | TACGACA | 66,379 | 780 |
S-T1B | TGTGCTA | 53,308 | 745 |
S-T1C | TCACTCG | 62,442 | 795 |
S-T2A | AGTCGTC | 57,529 | 799 |
S-T2B | AGAGCAG | 71,977 | 725 |
S-T2C | AGCTCTA | 67,898 | 768 |
S-T3A | AGTATAC | 61,032 | 623 |
S-T3B | AGTGCGA | 58,757 | 797 |
S-T3C | ACACACG | 65,459 | 760 |
S-T4A | ACAGCGA | 71,252 | 533 |
S-T4B | ACATACT | 69,428 | 565 |
S-T4C | ACTCTCA | 50,622 | 733 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Feng, Y.; Gao, Y.; Wu, J.; Tan, L.; Wang, H.; Wang, R.; Niu, X.; Chen, Y. Effects of an Organic Amendment on Cassava Growth and Rhizosphere Microbial Diversity. Agriculture 2023, 13, 1830. https://doi.org/10.3390/agriculture13091830
Zhang Y, Feng Y, Gao Y, Wu J, Tan L, Wang H, Wang R, Niu X, Chen Y. Effects of an Organic Amendment on Cassava Growth and Rhizosphere Microbial Diversity. Agriculture. 2023; 13(9):1830. https://doi.org/10.3390/agriculture13091830
Chicago/Turabian StyleZhang, Yijie, Yating Feng, Yu Gao, Jinshan Wu, Longyan Tan, Honggang Wang, Ruoyan Wang, Xiaolei Niu, and Yinhua Chen. 2023. "Effects of an Organic Amendment on Cassava Growth and Rhizosphere Microbial Diversity" Agriculture 13, no. 9: 1830. https://doi.org/10.3390/agriculture13091830
APA StyleZhang, Y., Feng, Y., Gao, Y., Wu, J., Tan, L., Wang, H., Wang, R., Niu, X., & Chen, Y. (2023). Effects of an Organic Amendment on Cassava Growth and Rhizosphere Microbial Diversity. Agriculture, 13(9), 1830. https://doi.org/10.3390/agriculture13091830