Effect of Genotype and Sex on Chemical Composition, Physicochemical Properties, Texture and Microstructure of Spent Broiler Breeder Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carcass Analysis
2.2. Physicochemical Analysis
2.3. Chemical Analyses
2.4. Meat Texture
2.5. Microstructure Analysis
2.6. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- KRD-IG. Number of Breeding Meat Hen Chicks (Parental Flocks—Females) Accepted for Breeding in 2015–2022 along with the Dynamics of Changes in the Size of the Facilities (%). 2023. Available online: https://krd-ig.com.pl/dzial-hodowli-i-oceny-drobiu//wstawienia/ (accessed on 9 June 2023).
- Wegner, M.; Kokoszyński, D.; Biegniewska, M. Effect of litter system and nest box type on egg production and performance of Ross 308 broiler breeders. Anim. Prod. Sci. 2022, 62, 1600–1606. [Google Scholar] [CrossRef]
- Wencek, E.; Grzelak, M.; Kałużna, I.; Koźlecka, M.; Miszkiel, I.; Pałyszka, M.; Prokopiak, H.; Radziszewska, J.; Suchocki, W.; Winiarski, K.; et al. Results of the Evaluation Usability Value of Poultry in 2020; Wiadomości Drobiarskie: Poznan, Poland, 2021. [Google Scholar]
- Fan, H.; Wu, J. Conventional use and sustainable valorization of spent egg-laying hens as functional foods and biomaterials: A review. Bioresour. Bioprocess. 2022, 9, 43. [Google Scholar] [CrossRef]
- Mitchell, A. Ross Celebrates 60 Years of Success. The Poultry Site, 4 January 2016. [Google Scholar]
- Coneglian, J.L.B.; Vieira, S.L.; Berres, J.; de Freitas, D.M. Responses of fast and slow growth broilers fed all vegetable diets with variable ideal protein profiles. R. Bras. Zootec. 2010, 39, 327–334. [Google Scholar] [CrossRef]
- Aviagen, European Parents Stock, Performance Objectives. 2016, pp. 1–10. Available online: https://www.coursehero.com/file/39101161/Ross308-PS-PO-EN-2016pdf/ (accessed on 9 June 2023).
- Cobb-Vantress, Cobb Breeder Management Guide. 2017, pp. 1–160. Available online: https://www.cobb-vantress.com/assets/Cobb-Files/management-guides/ca1b2a76ed/Cobb-Breeder-Management-Guide.pdf. (accessed on 9 June 2023).
- Kokoszyński, D.; Bernacki, Z.; Stęczny, K.; Saleh, M.; Wasilewski, P.D.; Kotowicz, M.; Wasilewski, R.; Biegniewska, M.; Grzonkowska, K. Comparison of carcass composition, physicochemical and sensory traits of meat from spent broiler breeders with broilers. Europ. Poult. Sci. 2016, 80, 1–11. [Google Scholar] [CrossRef]
- Semwogerere, F.; Neethling, J.; Muchenje, V.; Hoffman, L.C. Meat quality, fatty acid profile, and sensory attributes of spent laying hens fed expeller press canola meal or a conventional diet. Poult. Sci. 2019, 98, 3557–3570. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Mahmoudi, N.; Benamirouche, K.; Estevez, M.; Mustapha, M.A.; Bougoutaia, K.; El Houda, N.; Djoudi, B. Effect of feeding carob (Ceratonia siliqua L.) pulp powder to broiler chicken on growth performance, intestinal microbiota, carcass traits, and meat quality. Poult. Sci. 2022, 101, 102186. [Google Scholar] [CrossRef] [PubMed]
- Maynard, C.J.; Jackson, A.R.; Caldas-Cueva, J.P.; Mauromoustakos, A.; Kidd, M.T.; Rochell, S.J.; Owens, C.M. Meat quality attributes of male and female broilers from four commercial strains processed for two market programs. Poult. Sci. 2023, 102, 102570. [Google Scholar] [CrossRef]
- Maynard, C.J.; Maynard, C.W.; Jackson, A.R.; Kidd, M.T.; Rochell, S.J.; Owens, C.M. Characterization of growth patterns and carcass characteristics of male and female broilers from four commercial strains fed high or low density diets. Poult. Sci. 2022, 102, 102435. [Google Scholar] [CrossRef] [PubMed]
- Orlowski, S.K. Characterization of Broiler Lines Divergently Selected for Breast Muscle Color. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2016. Available online: https://scholarworks.uark.edu/etd/1669 (accessed on 9 June 2023).
- Trocino, A.; Piccirillo, A.; Birolo, M.; Radaelli, G.; Bertotto, D.; Filiou, E.; Petracci, M. Effect of genotype, gender and feed restriction on growth, meat quality and the occurrence of white striping and wooden breast in broiler chickens. Poult. Sci. 2015, 94, 2996–3004. [Google Scholar] [CrossRef]
- Weng, K.; Huo, W.; Li, Y.; Zhang, Y.; Zhang, Y.; Chen, G.; Xu, Q. Fiber characteristics and meat quality of different muscular tissues from slow and fast-growing broiler. Poult. Sci. 2022, 101, 101537. [Google Scholar] [CrossRef]
- Janocha, A.; Milczarek, A.; Łaski, K.; Głuchowska, J. Slaughter value and meat quality of broiler chickens fed with rations containing a different share of pea seed meal. Acta Sci. Pol. Technol. Aliment. 2021, 20, 265–276. [Google Scholar]
- Połtowicz, K.; Doktor, J. Effect of slaughter age on performance and meat quality of slow-growing broiler chickens. Ann. Anim. Sci. 2012, 12, 621–631. [Google Scholar] [CrossRef]
- Zdanowska-Sąsiadek, Ż.; Michalczuk, M.; Marcinkowska-Lesiak, M.; Damiziak, K. Czynniki kształtujące cechy sensoryczne mięsa drobiowego [Factors determining thesensory quality of poultry meat]. Bromat. Chem. Toksykol. 2013, 46, 344–353. [Google Scholar]
- Kokoszyński, D.; Żochowska-Kujawska, J.; Kotowicz, M.; Sobczak, M.; Piwczyński, D.; Stęczny, K.; Majrowska, M.; Saleh, M. Carcass characteristics and selected meat quality traits from commercial broiler chickens of different origin. J. Anim. Sci. 2022, 93, 13709. [Google Scholar] [CrossRef]
- Nowak, M.; Trziszka, T. Zachowania konsumentów na rynku mięsa drobiowego [Consumer behaviour on the poultry meat market]. Żywn. Nauk. Technol. Jakość. 2010, 1, 114–120. [Google Scholar]
- Osek, M.; Milczarek, A.; Klocek, B.; Turyk, Z.; Jakubowska, K. Effectiveness of mixtures with the fabaceae seeds in broiler chicken feeding. Ann. Univ. Mariae Curie-Skłod. Sec. EE Zootech. 2013, 31, 77–86. [Google Scholar]
- Grigore, D.; Mironeasa, M.; Ciurescu, S.; Ungureanu-Iuga, G.; Batariuc, A.; Babeanu, N.E. Carcass Yield and Meat Quality of Broiler Chicks Supplemented with Yeasts Bioproducts. Appl. Sci. 2023, 13, 1607. [Google Scholar] [CrossRef]
- Hidayat, M.N. Improving the Quality of Poultry Meat Through Balanced Regulation of Protein and Energy Rations. Technosci. Sci. Technol. Inf. Media 2016, 10, 59–68. [Google Scholar]
- Jianga, H.; Yoonb, S.C.; Zhuangb, H.; Wanga, W.; Lawrenceb, K.C.; Yang, Y. Tenderness classification of fresh broiler breast fillets using visible and nearinfrared hyperspectral imaging. Meat Sci. 2018, 139, 82–90. [Google Scholar] [CrossRef]
- Sari, A.; Hatta, W.; Maruddin, F. Application of Bay Leves (Syzygium Polyanthum) on Broiler Meat, the Physiochemical Quality of Meat and the Sensory Effect of the Nugget Product. J. Pharm. Negat. 2023, 14, 1123–1128. [Google Scholar]
- Ziołecki, J.; Doruchowski, W. Evaluation Methods of Poultry Slaughter Values, 1st ed.; Poultry Research Center: Poznań, Poland, 1989; pp. 1–23. [Google Scholar]
- Walczak, Z. Laboratoryjna metoda oznaczania zawartości galarety w konserwach mięsnych [Laboratory method for determining the content of jelly in canned meat]. Rocz.Nauk. Rol. 1959, 74, 619–621. (In Polish) [Google Scholar]
- Bourne, M.C. Food Texture and Viscosity Concept Andmeasurement; Academic Press Inc.: New York, NY, USA, 1982. [Google Scholar]
- Burck, H.C. Technologie Histochemiczne; PZWL: Warsaw, Poland, 1975. [Google Scholar]
- Biegniewska, M.; Kokoszynski, D.; Bernacki, Z.; Saleh, M. Carcass composition, physico-chemical and sensory proper-ties of meat of cockerels and broiler breeder hens after reproductive cycle. Acta Sci. Pol. Zootech. 2017, 16, 31–38. [Google Scholar] [CrossRef]
- Robinson, F.E.; Zuidhof, M.J.; Renema, R.A. Reproductive Efficiency and Metabolism of Female Broiler Breeds as Affected by Genotype, Feed Allocation, and Photostimulation Age; Project #2002 A162R, Final Report; Alberta Agricultural Research Institute: Calgary, AB, Canada, 2005. [Google Scholar]
- Sokoya, O.O.; Babajide, J.M.; Shittu, T.A.; Sanwo, K.A.; Adegbite, J.A. Chemical and color characterization of breast meat from FUNAAB indigenous and marshal broiler chickens. Trop. Anim. Health Prod. 2019, 51, 2575–2582. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.; Kim, H.Y. Physicochemical characteristics of breast and thigh meats from old broiler breeder hen and old laying hen and their effects onquality properties of pressed ham. Poult. Sci. 2020, 99, 2230–2235. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, A.; Fitri, C.A.; Koesmara, H.; Mudatsir Ardatami, S. Analysis of pH and cooking losses of chicken meat due to the use of different percentages of turmeric flour. IOP Conf. Ser. Earth Environ. Sci. 2021, 667, 012042. [Google Scholar] [CrossRef]
- Stęczny, K.; Kokoszynski, D. Effects of probiotics and sex on physicochemical, sensory and microstructural characteristics of broiler chicken meat. Ital. J. Anim. Sci. 2019, 18, 1385–1393. [Google Scholar] [CrossRef]
- Brunel, V.; Jehl, N.; Drouet, L.; Portheau, M.C. Viande de volailles sa valeur nutritionnelle presente bien des atouts. Viandes Prod. Carnes 2010, 25, 18. [Google Scholar]
- Abdulla, N.R.; Zamri, A.N.M.; Sabow, A.B.; Kareem, K.Y.; Nurhazirah, S.; Ling, F.H.; Sazili, A.Q.; Loh, T.C. Physicochemical properties of breast muscle in broiler chickens fed probiotics, antibiotics or antibiotic-probiotic mix. J. Appl. Anim. Res. 2017, 45, 64–70. [Google Scholar] [CrossRef]
- Milczarek, A.; Osek, M.; Horoszewicz, E.; Niedziółka, R. Effect of different shares of protein feeds in diets and of cold storage time on the physical properties of broiler chicken’s meat. J. Cent. Eur. Agric. 2020, 21, 7–13. [Google Scholar] [CrossRef]
- Kozioł, K.; Pałka, S.; Migdał, Ł.; Derewicka, O.; Kmiecik, M.; Maj, D.; Bieniek, J. Analiza tekstury mięsa królików w zależności od sposobu obróbki termicznej. Rocz. Nauk. Pol. Tow. Zootech. 2016, 12, 25–32. [Google Scholar]
- Lyon, C.E.; Lyon, B.G.; Savage, E.M. Effect of postchill deboning time on the texture profile of broiler breeder hen breast meat. J. Appl. Poult. Res. 2003, 12, 348–355. [Google Scholar] [CrossRef]
- Popova, T.; Petkov, E.; Ignatova, M.; Vlahova-Vangelova, D.; Balev, D.; Dragoev, S.; Kolev, N. Male layer-type chickens–an alternative source for high quality poultry meat: A review on the carcass composition, sensory characteristics and nutritional profile. Braz. J. Poult. Sci. 2022, 24, 1–10. [Google Scholar] [CrossRef]
- Smith, D.P.; Fletcher, D.L. Chicken breast muscle fiber type and diameter as influenced by age and Intramuscular Location. Poult. Sci. 1988, 67, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Nishimura, T.; Takahashi, K. Relationship between structural properties of intramuscular connective tissue and toughness of various chicken skeletal muscles. Meat Sci. 1996, 43, 43–49. [Google Scholar] [CrossRef]
Trait | Genotype (G)—Sex (S) | SEM | p Values | |||||
---|---|---|---|---|---|---|---|---|
Cobb 500 | Ross 308 | Male | Female | G | S | G × S | ||
Carcass weight (g) | 4300.6 a | 3642.4 b | 4599.3 | 3364.9 * | 166.7 | <0.001 | <0.001 | 0.099 |
Breast muscle (%) | 27.0 | 28.0 | 26.5 | 28.5 * | 0.5 | 0.294 | 0.001 | <0.001 |
Leg muscles (%) | 29.3 a | 26.1 b | 29.0 | 26.4 * | 0.6 | <0.001 | 0.001 | 0.003 |
Skin with fat (%) | 7.9 b | 9.0 a | 8.1 | 8.8 * | 0.2 | 0.002 | 0.025 | 0.067 |
Abdominal fat (%) | 1.0 | 1.0 | - | 2.0 * | 0.2 | 0.928 | <0.001 | 0.928 |
Neck (%) | 3.7 a | 3.2 b | 3.9 | 3.0 * | 0.1 | 0.004 | <0.001 | 0.398 |
Wings (%) | 8.7 b | 9.4 a | 9.1 | 9.0 | 0.1 | <0.001 | 0.445 | 0.015 |
Remainders (%) | 22.4 | 23.3 | 23.4 | 22.3 * | 0.3 | 0.262 | 0.016 | 0.251 |
Trait | Genotype (G)—Sex (S) | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|---|
Cobb 500 | Ross 308 | Male | Female | G | S | G × S | |||
pH24 | BM | 5.90 b | 6.21 a | 6.12 | 5.99 *x | 0.1 | <0.001 | 0.024 | 0.357 |
LM | 6.16 | 6.37 | 6.32 | 6.22 | 0.1 | 0.163 | 0.612 | 0.102 | |
EC24 (mS/cm) | BM | 11.4 | 10.4 | 10.9 | 10.9 x | 0.4 | 0.149 | 0.911 | 0.219 |
LM | 8.9 b | 9.7 a | 9.4 | 9.1 | 0.3 | 0.041 | 0.661 | 0.154 | |
Cooking loss (%) | BM | 23.6 b | 30.1 a | 29.5 | 24.6 *x | 1.4 | 0.006 | 0.047 | 0.230 |
LM | 38.6 a | 26.5 b | 32.6 | 32.1 | 1.6 | <0.001 | 0.589 | 0.487 |
Trait | Genotype (G)—Sex (S) | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|---|
Cobb 500 | Ross 308 | Male | Female | G | S | G × S | |||
L*—lightness | BM | 46.9 | 45.1 | 46.4 | 45.6 x | 0.5 | 0.081 | 0.413 | 0.924 |
LM | 42.4 a | 36.4 b | 37.2 | 41.3 * | 1.1 | 0.001 | 0.020 | 0.069 | |
a*—redness | BM | 2.0 b | 5.8 a | 3.8 | 4.1 x | 0.5 | <0.001 | 0.514 | 0.157 |
LM | 14.6 | 16.3 | 16.4 | 14.7 | 0.8 | 0.259 | 0.269 | 0.515 | |
b*—yellowness | BM | 1.4 b | 3.8 a | 2.1 | 3.2 *x | 0.4 | <0.001 | 0.010 | 0.021 |
LM | 5.9 | 6.4 | 6.6 | 5.8 | 0.8 | 0.559 | 0.465 | 0.236 |
Trait | Genotype (G)—Sex (S) | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|---|
Cobb 500 | Ross 308 | Male | Female | G | S | G × S | |||
Water (%) | BM | 70.5 a | 67.5 b | 70.8 | 67.2 * | 1.0 | 0.029 | <0.001 | 0.175 |
LM | 73.3 | 73.0 | 74.0 | 72.2 | 0.7 | 0.644 | 0.169 | 0.396 | |
Protein (%) | BM | 23.1 b | 23.8 a | 23.7 | 23.2 *x | 0.2 | 0.001 | 0.002 | <0.001 |
LM | 20.8 b | 21.7 a | 21.7 | 20.8 * | 0.2 | <0.001 | <0.001 | 0.468 | |
Fat (%) | BM | 2.3 a | 1.4 b | 1.7 | 2.0 *x | 0.2 | <0.001 | 0.043 | <0.001 |
LM | 3.2 a | 2.9 b | 1.8 | 4.3 * | 0.3 | 0.005 | <0.001 | 0.001 | |
Collagen (%) | BM | 1.5 | 1.6 | 1.5 | 1.6 x | 0.1 | 0.092 | 0.206 | 0.017 |
LM | 1.9 | 2.0 | 1.9 | 2.0 | 0.1 | 0.088 | 0.538 | 0.638 |
Trait | Genotype (G)—Sex (S) | SEM | p Values | |||||
---|---|---|---|---|---|---|---|---|
Cobb 500 | Ross 308 | Male | Female | G | S | G × S | ||
Hardness (N) | 28.2 b | 33.3 a | 34.0 | 27.9 * | 1.1 | 0.005 | 0.001 | 0.950 |
Cohesiveness | 0.4 | 0.4 | 0.4 | 0.4 | 0.1 | 0.618 | 0.142 | 0.556 |
Springiness (cm) | 1.6 | 1.6 | 1.6 | 1.6 | 0.1 | 0.117 | 0.658 | 0.038 |
Chewiness (N × cm) | 15.9 b | 19.7 a | 20.4 | 15.5 * | 0.9 | 0.015 | 0.003 | 0.386 |
Gumminess (N) | 10.1 b | 12.1 a | 12.5 | 9.8 * | 0.5 | 0.013 | 0.001 | 0.590 |
WB shear force (N) | 48.1 b | 60.2 a | 62.8 | 46.5 * | 2.9 | 0.006 | 0.001 | 0.351 |
Trait | Genotype (G)—Sex (S) | SEM | p Values | |||||
---|---|---|---|---|---|---|---|---|
Cobb 500 | Ross 308 | Male | Female | G | S | G × S | ||
Fiber cross-sectional area (μm2) | 1403.2 b | 1620.4 a | 1441.6 | 1584.8 | 68.4 | 0.007 | 0.206 | 0.214 |
Fiber perimeter (μm) | 155.0 | 169.4 | 158.0 | 166.6 | 3.9 | 0.040 | 0.185 | 0.310 |
Fiber diameter H (μm) | 41.8 b | 43.8 a | 41.3 | 44.4 | 1.1 | 0.263 | 0.108 | 0.117 |
Fiber diameter V (μm) | 44.2 b | 48.7 a | 45.3 | 47.7 | 1.2 | 0.046 | 0.241 | 0.614 |
Perimysium thickness (μm) | 16.5 | 19.4 | 20.1 | 16.1 * | 1.0 | 0.105 | 0.033 | 0.138 |
Endomysium thickness (μm) | 1.4 | 1.6 | 1.6 | 1.3 * | 0.1 | 0.104 | 0.010 | 0.479 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wegner, M.; Kokoszyński, D.; Żochowska-Kujawska, J.; Kotowicz, M. Effect of Genotype and Sex on Chemical Composition, Physicochemical Properties, Texture and Microstructure of Spent Broiler Breeder Meat. Agriculture 2023, 13, 1848. https://doi.org/10.3390/agriculture13091848
Wegner M, Kokoszyński D, Żochowska-Kujawska J, Kotowicz M. Effect of Genotype and Sex on Chemical Composition, Physicochemical Properties, Texture and Microstructure of Spent Broiler Breeder Meat. Agriculture. 2023; 13(9):1848. https://doi.org/10.3390/agriculture13091848
Chicago/Turabian StyleWegner, Marcin, Dariusz Kokoszyński, Joanna Żochowska-Kujawska, and Marek Kotowicz. 2023. "Effect of Genotype and Sex on Chemical Composition, Physicochemical Properties, Texture and Microstructure of Spent Broiler Breeder Meat" Agriculture 13, no. 9: 1848. https://doi.org/10.3390/agriculture13091848
APA StyleWegner, M., Kokoszyński, D., Żochowska-Kujawska, J., & Kotowicz, M. (2023). Effect of Genotype and Sex on Chemical Composition, Physicochemical Properties, Texture and Microstructure of Spent Broiler Breeder Meat. Agriculture, 13(9), 1848. https://doi.org/10.3390/agriculture13091848