Calibration of Simulation Parameters for Fresh Tea Leaves Based on the Discrete Element Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometric Measurement of Fresh Tea Leaves
2.2. Density Measurement of Fresh Tea Leaves
2.3. Modulus of Elasticity and Shear Modulus
2.4. Measurement of Physical Angle of Repose
2.5. Discrete Element Model of Machine-Picked Fresh Tea Leaves Based on 3D Scanning
2.5.1. Contour Model
2.5.2. Discrete Element Model
2.6. DEM Simulation Test
3. Results and Discussion
3.1. Analysis of the Simulation Results of the Plackett–Burman Test
3.2. Analysis of the Steepest-Ascent Test Simulation Results
3.3. Analysis of the Calibration Results of Fresh Tea Leaf Contact Parameters
3.4. Determination of Optimal Parameter Combinations and Experimental Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mei, Y.; Zhang, S. Analysis of tea production and domestic sales situation in China in 2022. China Tea 2023, 45, 25–30. [Google Scholar]
- Lu, H.W.; Wu, C.Y.; Tu, Z.; Chen, J.N.; Jia, J.M.; Chen, Z.W.; Ye, Y. Optimization of grading parameters of vibratory grader for fresh leaves of machine-picked tea based on EDEM. Tea Sci. 2022, 42, 120–130. [Google Scholar]
- Zhang, J.; Xia, M.; Chen, W.; Yuan, D.; Wu, C.; Zhu, J. Simulation analysis and experiments for blade-soil-straw interaction under deep ploughing based on the discrete element method. Agriculture 2023, 13, 136. [Google Scholar] [CrossRef]
- Weerasekara, N.S.; Powell, M.S.; Cleary, P.W.; Tavares, L.; Evertsson, M.; Morrison, R.; Quist, J.; de Carvalho, R. The contribution of DEM to the science of comminution. Powder Technol. 2013, 248, 3–24. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, L.; Wang, X.; Shi, Y.; Yang, Z. Parameter calibration of cabbages (Brassica oleracea L.) based on the discrete element method. Agriculture 2023, 13, 555. [Google Scholar] [CrossRef]
- Horabik, J.; Molenda, M. Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosyst. Eng. 2016, 147, 206–225. [Google Scholar] [CrossRef]
- Rackl, M.; Hanley, K.J. A methodical calibration procedure for discrete element models. Powder Technol. 2017, 307, 73–83. [Google Scholar] [CrossRef]
- Marczewska, I.; Rojek, J.; Kačianauskas, R. Investigation of the effective elastic parameters in the discrete element model of granular material by the triaxial compression test. Arch. Civ. Mech. Eng. 2016, 16, 64–75. [Google Scholar] [CrossRef]
- Qiu, Y.; Guo, Z.; Jin, X.; Zhang, P.; Si, S.; Guo, F. Calibration and verification test of cinnamon soil simulation parameters based on discrete element method. Agriculture 2022, 12, 1082. [Google Scholar] [CrossRef]
- Hou, Z.F.; Dai, N.Z.; Chen, Z.; Chou, Y.; Zhang, X.W. Determination and evaluation of physical parameters of Wheatgrass seeds leave calibration of discrete element simulation parameters. Trans. CSAE 2020, 36, 46–54. (In Chinese) [Google Scholar]
- Wang, Y.; Zhang, Y.; Yang, Y.; Zhao, H.; Yang, C.; He, Y.; Xu, H. Discrete element modelling of citrus fruit stalks and its verification. Biosyst. Eng. 2020, 200, 400–414. [Google Scholar] [CrossRef]
- Liao, Y.; Liao, Q.; Zhou, Y.; Wang, Z.; Jiang, Y.; Liang, F. Parameters calibration of discrete element model of fodder rape crop harvest in bolting stage. Trans. CSAE 2020, 51, 73–82. [Google Scholar]
- Kattenstroth, R.; Harms, H.H.; Lang, T. Systematic alignment of straw to optimise the cutting process in a combine’s straw chopper. In Proceedings of the 69th International Conference on Agricultural Engineering Land Technik AgEng, Hannover, Germany, 11–12 November 2011. [Google Scholar]
- Fang, M.; Yu, Z.; Zhang, W.; Cao, J.; Liu, W. Friction coefficient calibration of corn stalk particle mixtures using Plackett–Burman design and response surface methodology. Powder Technol. 2022, 396, 731–742. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, J.; Chen, J. Modeling of flexible wheat straw by discrete element method and its parameter calibration. Int. J. Agric. Biol. Eng. 2018, 11, 42–46. [Google Scholar] [CrossRef]
- Lenaerts, B.; Aertsen, T.; Tijskens, E.; De Ketelaere, B.; Ramon, H.; De Baerdemaeker, J.; Saeys, W. Simulation of grain–straw separation by discrete element modeling with bendable straw particles. Comput. Electron. Agric. 2014, 101, 24–33. [Google Scholar] [CrossRef]
- Du, C.; Han, D.; Song, Z.; Chen, Y.; Chen, X.; Wang, X. Calibration of contact parameters for complex shaped fruits based on discrete element method: The case of pod pepper (Capsicum annuum). Biosyst. Eng. 2023, 226, 43–54. [Google Scholar] [CrossRef]
- Fan, G.; Wang, S.; Shi, W.; Gong, Z.; Gao, M. Simulation parameter calibration and test of typical pear varieties based on discrete element method. Agronomy 2022, 12, 1720. [Google Scholar] [CrossRef]
- Ren, J.H.; Wu, T.; Mo, W.Y.J.; Li, K.; Hu, P.; Xu, F.Y.; Liu, Q.T. Discrete element simulation modeling method and parameters calibration of sugarcane leaves. Agronomy 2022, 12, 1796. [Google Scholar] [CrossRef]
- Zhu, J.; Zou, M.; Liu, Y.; Gao, K.; Su, B.; Qi, Y. Measurement and calibration of DEM parameters of lunar soil simulant. Acta Astronaut. 2022, 191, 169–177. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, F.; Dong, J.; Chen, X.; Liu, Y.; Mi, G.; Wang, T.; Jia, X.; Huang, Y.; Wang, X. Calibration of discrete element parameters of maize root and its mixture with soil. Processes 2022, 10, 2433. [Google Scholar] [CrossRef]
- Yu, Y.; Ren, S.; Li, J.; Chang, J.; Yu, S.; Sun, C.; Chen, T. Calibration and testing of discrete element modeling parameters for fresh Goji berries. Appl. Sci. 2022, 12, 11629. [Google Scholar] [CrossRef]
- Gou, F.Q.; Yi, Z.H.; Niu, X.W.; Yan, I.B. Discrete element parameter calibration of edible rose petals based on virtual stacking test. Food Mach. 2022, 38, 106–110+130. [Google Scholar]
- Sun, X.; Li, B.; Liu, Y.; Gao, X. Parameter measurement of edible sunflower exudates and calibration of discrete element simulation parameters. Processes 2022, 10, 185. [Google Scholar] [CrossRef]
- Liu, M.; Hou, Z.F.; Ma, X.J.; Dai, N.Z.; Zhang, X.W. Discrete element-based calibration and testing of alfalfa seed simulation parameters. Jiangsu Agric. Sci. 2022, 50, 168–175. [Google Scholar]
- Han, D.-D.; Xu, Y.; Huang, Y.-X.; He, B.; Dai, J.-W.; Lv, X.-R.; Zhang, L.-H. DEM parameters calibration and verification for coated maize particles. Comput. Part. Mech. 2023, 10, 1931–1941. [Google Scholar] [CrossRef]
- Xie, Z.B.; Yi, Z.H.; Niu, X.W.; Yao, Z. Analysis of petal throwing motion trajectory in petal color sorter. Softw. Guide 2020, 19, 117–121. [Google Scholar]
- Li, B.; Li, W.N.; Xuan, B.B.; Zhang, Z.Z. Study on the sieving rate of tea fresh leaf classifier based on EDEM. Tea Sci. 2019, 39, 484–494. [Google Scholar]
- Xia, R.; Li, B.; Wang, X.; Li, T.; Yang, Z. Measurement and calibration of the discrete element parameters of wet bulk coal. Measurement 2019, 142, 84–95. [Google Scholar] [CrossRef]
Leaf Type | Leaf Length/mm | Leaf Width/mm | Leaf Thickness/mm |
---|---|---|---|
Single bud | 15~25 | 3~6 | 0.15~0.17 |
One bud and one leaf | 25~35 | 10~20 | 0.18~0.23 |
One bud and two leaves | 35~60 | 20~40 | 0.24~0.30 |
Parameter | Value |
---|---|
Poisson’s ratio of tea leaves | 0.4 |
Density of tea leaves (kg·m−3) | 851.4 |
Shear modulus of tea leaves (Pa) | 3.3 × 106 |
Poisson’s ratio of PVC | 0.45 |
Density of PVC (kg·m−3) | 1200 |
Shear modulus of PVC (Pa) | 1.8 × 1010 |
Tea leaves–tea leaves restitution coefficient | 0.01~0.09 |
Tea leaves–tea leaves static friction coefficient | 0.8~1.0 |
Tea leaves–tea leaves rolling friction coefficient | 0.01~0.2 |
Tea leaves–PVC restitution coefficient | 0.01~0.2 |
Tea leaves–PVC static friction coefficient | 0.6~0.8 |
Tea leaves–PVC rolling friction coefficient | 0.01~0.05 |
Bonded Parameter | Value |
---|---|
Normal stiffness coefficient (N·m−1) | 5 × 109 |
Tangential stiffness coefficient (N·m−1) | 3 × 109 |
Normal critical stress (MPa) | 1.6 × 103 |
Shear critical stress (MPa) | 1.2 × 103 |
Parameters | Symbol | Low Level (−1) | High Level (+1) |
---|---|---|---|
Tea leaves–tea leaves restitution coefficient | X1 | 0.01 | 0.09 |
Tea leaves–tea leaves static friction coefficient | X2 | 0.8 | 1.0 |
Tea leaves–tea leaves rolling friction coefficient | X3 | 0.01 | 0.2 |
Tea leaves–PVC restitution coefficient | X4 | 0.01 | 0.2 |
Tea leaves–PVC static friction coefficient | X5 | 0.6 | 0.8 |
Tea leaves–PVC rolling friction coefficient | X6 | 0.01 | 0.05 |
Tests | X1 | X2 | X3 | X4 | X5 | X6 | Repose Angle (°) |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | −1 | 1 | 1 | 1 | 31.95 |
2 | −1 | 1 | 1 | −1 | 1 | 1 | 32.07 |
3 | 1 | −1 | 1 | 1 | −1 | 1 | 30.08 |
4 | −1 | 1 | −1 | 1 | 1 | −1 | 30.96 |
5 | −1 | −1 | 1 | −1 | 1 | 1 | 30.12 |
6 | −1 | −1 | −1 | 1 | −1 | 1 | 28.26 |
7 | 1 | −1 | −1 | −1 | 1 | −1 | 28.82 |
8 | 1 | 1 | −1 | −1 | −1 | 1 | 29.74 |
9 | 1 | 1 | 1 | −1 | −1 | −1 | 32.47 |
10 | −1 | 1 | 1 | 1 | −1 | −1 | 31.51 |
11 | 1 | −1 | 1 | 1 | 1 | −1 | 31.48 |
12 | −1 | −1 | −1 | −1 | −1 | −1 | 28.45 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 31.76 |
Parameters | Standardization Effects | Sum of Squares | Contribution Rate/% | F Values | p Values |
---|---|---|---|---|---|
Model | — | 22.16 | — | 13.02 | 0.0064 ** |
X1 | 0.53 | 0.84 | 3.45 | 2.95 | 0.1464 |
X2 | 1.92 | 11.00 | 45.33 | 38.79 | 0.0016 ** |
X3 | 1.59 | 7.60 | 31.32 | 26.80 | 0.0035 ** |
X4 | 0.43 | 0.55 | 2.27 | 1.94 | 0.2224 |
X5 | 0.82 | 1.99 | 8.21 | 7.03 | 0.0454 * |
X6 | −0.24 | 0.18 | 0.74 | 0.63 | 0.4617 |
Tests | X2 | X3 | X5 | Repose Angle (°) | Relative Error Y/% |
---|---|---|---|---|---|
1 | 0.80 | 0.01 | 0.60 | 31.21 | 4.32 |
2 | 0.85 | 0.05 | 0.65 | 32.26 | 1.10 |
3 | 0.90 | 0.10 | 0.70 | 32.87 | 0.77 |
4 | 0.95 | 0.15 | 0.75 | 33.32 | 2.15 |
5 | 1.00 | 0.20 | 0.80 | 35.42 | 8.58 |
Level | X2 | X3 | X5 |
---|---|---|---|
−1 | 0.85 | 0.05 | 0.65 |
0 | 0.90 | 0.10 | 0.70 |
1 | 0.95 | 0.15 | 0.75 |
Tests | X2 | X3 | X5 | Repose Angle (°) |
---|---|---|---|---|
1 | −1 | −1 | 0 | 32.35 |
2 | 1 | −1 | 0 | 32.98 |
3 | −1 | 1 | 0 | 32.56 |
4 | 1 | 1 | 0 | 34.56 |
5 | −1 | 0 | −1 | 32.25 |
6 | 1 | 0 | −1 | 33.25 |
7 | −1 | 0 | 1 | 32.72 |
8 | 1 | 0 | 1 | 33.38 |
9 | 0 | −1 | −1 | 32.28 |
10 | 0 | 1 | −1 | 32.45 |
11 | 0 | −1 | 1 | 32.38 |
12 | 0 | 1 | 1 | 33.78 |
13 | 0 | 0 | 0 | 33.51 |
14 | 0 | 0 | 0 | 33.13 |
15 | 0 | 0 | 0 | 33.62 |
16 | 0 | 0 | 0 | 33.21 |
17 | 0 | 0 | 0 | 33.69 |
Source of Variation | Sum of Squares | Freedom | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Model | 6.36 | 9 | 0.71 | 10.80 | 0.0024 |
X2 | 2.30 | 1 | 2.30 | 35.14 | 0.0006 |
X3 | 1.41 | 1 | 1.41 | 21.56 | 0.0024 |
X5 | 0.52 | 1 | 0.52 | 7.87 | 0.0263 |
X2X3 | 0.47 | 1 | 0.47 | 7.17 | 0.0317 |
X2X5 | 0.029 | 1 | 0.029 | 0.44 | 0.5277 |
X3X5 | 0.38 | 1 | 0.38 | 5.78 | 0.0472 |
X22 | 0.021 | 1 | 0.021 | 0.32 | 0.5869 |
X32 | 0.26 | 1 | 0.26 | 3.97 | 0.0865 |
X52 | 0.89 | 1 | 0.89 | 13.67 | 0.0077 |
Residual | 0.46 | 7 | 0.065 | ||
Lack of fit | 0.21 | 3 | 0.070 | 1.13 | 0.4384 |
Pure error | 0.25 | 4 | 0.062 | ||
Sum | 6.82 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wang, R.; Zhu, Y.; Chen, J.; Zhang, G.; Wu, C. Calibration of Simulation Parameters for Fresh Tea Leaves Based on the Discrete Element Method. Agriculture 2024, 14, 148. https://doi.org/10.3390/agriculture14010148
Li D, Wang R, Zhu Y, Chen J, Zhang G, Wu C. Calibration of Simulation Parameters for Fresh Tea Leaves Based on the Discrete Element Method. Agriculture. 2024; 14(1):148. https://doi.org/10.3390/agriculture14010148
Chicago/Turabian StyleLi, Dongdong, Rongyang Wang, Yingpeng Zhu, Jianneng Chen, Guofeng Zhang, and Chuanyu Wu. 2024. "Calibration of Simulation Parameters for Fresh Tea Leaves Based on the Discrete Element Method" Agriculture 14, no. 1: 148. https://doi.org/10.3390/agriculture14010148
APA StyleLi, D., Wang, R., Zhu, Y., Chen, J., Zhang, G., & Wu, C. (2024). Calibration of Simulation Parameters for Fresh Tea Leaves Based on the Discrete Element Method. Agriculture, 14(1), 148. https://doi.org/10.3390/agriculture14010148