The Influence of Applying Foliar Micronutrients at Nodulation and the Physiological Properties of Common Soybean Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Pot Experiment Scheme
- MIKROVIT® Zinc—112 g∙L−1 Zn,
- MIKROVIT® Iron—75 g∙L−1 Fe,
- MIKROVIT® Copper—75 g∙L−1 Cu,
- MIKROVIT® Manganese—160 g∙L−1 Mn,
- MIKROVIT® Molybdenum—33 g∙L−1 Mo,
- BORMAX® Boron150 g∙L−1 B.
2.2. Soil Plant Analysis Development
2.3. Chlorophyll Fluorescence
2.4. The Measurement of Gas Exchange
2.5. Statistical Analyses
3. Results
3.1. The Effect of Fertilisation on Fresh Plant Weight and the Plant Health of Soybean Plants
3.2. Nodulation
3.3. The Relative Chlorophyll Content of Soybean Leaves
3.4. Chlorophyll Fluorescence in Soybean Leaves
3.5. Gas Exchange in Soybean Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.Y.; Ha, J.S.; Kim, P.J.; Das, S.; Gutierreze-Suson, J.; Kim, G.W. A new approach for improving the nutritional quality of soybean (Glycine max L.) with iron slag coating. Agronomy 2022, 12, 3126. [Google Scholar] [CrossRef]
- Niwińska, B.; Witaszek, K.; Niedbała, G.; Pilarski, K. Seeds of n-GM Soybean Varieties Cultivated in Poland and Their Processing Products as High-Protein Feeds in Cattle Nutrition. Agriculture 2020, 10, 174. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Li, Y.C. The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Lawrence, D.; Coe, M.; Walker, W.; Verchot, L.; Vandecar, K. The unseen effects of deforestation: Biophysical effects on climate. Front. For. Glob. Chang. 2022, 5, 756115. [Google Scholar] [CrossRef]
- Silver, W.L.; Perez, T.; Mayer, A.; Jones, A.R. The role of soil in the contribution of food and feed. Philos. Trans. R Soc. 2021, 376, 20200181. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef]
- Pradhan, P.; Fischer, G.; van Velthuizen, H.; Reusser, D.E.; Kropp, J.P. Closing Yield Gaps: How Sustainable Can We Be? PLoS ONE 2015, 10, e0129487. [Google Scholar] [CrossRef]
- Lima, J.D.P.; Torino, A.B.; Silva, L.M.d.; Nascimento Júnior, L.F.d.; Brito, M.F.d.; Costa, K.A.d.P.; Silva, B.M.; Severiano, E.d.C. Crop-Livestock Integration Improves Physical Soil, Agronomic and Environmental Aspects in Soybean Cultivation. Plants 2023, 12, 3746. [Google Scholar] [CrossRef]
- Grzebisz, W.; Diatta, J.; Barłóg, P.; Biber, M.; Potarzycki, J.; Łukowiak, R.; Przygocka-Cyna, K.; Szczepaniak, W. Soil Fertility Clock—Crop Rotation as a Paradigm in Nitrogen Fertilizer Productivity Control. Plants 2022, 11, 2841. [Google Scholar] [CrossRef]
- Hansch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Campo, R.J.; Araujo, R.S.; Hungria, M. Molybdenum-enriched soybean seeds enhance N accumulation, seed yield, and seed protein content in Brazil. Field Crops Res. 2009, 110, 219–224. [Google Scholar] [CrossRef]
- Jarecki, W. Soybean response to seed inoculation or coating with Bradyrhizobium japonicum and foliar fertilization with molybdenum. Plants 2023, 12, 2431. [Google Scholar] [CrossRef]
- Bruns, H.A. Effects of boron foliar fertilization on irrigated soybean (Glycine max L. Merr.) in the Mississippi River Valley Delta of the midsouth, USA. Arch. Agric. Environ. Sci. 2017, 2, 167–169. [Google Scholar]
- Khoshgoftarmanesh, A.H.; Schulin, R.; Chaney, R.L.; Daneshbakhsh, B.; Afyuni, M. Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 83–107. [Google Scholar] [CrossRef]
- Van Roekel, R.J.; Purcell, L.C.; Salmerón, M. Physiological and management factors contributing to soybean potential yield. Field Crops Res. 2015, 182, 86–97. [Google Scholar] [CrossRef]
- Banerjee, P.; Kumari, V.; Nath, R.; Bandyopadhyay, P. Seed priming and foliar nutrition studies on relay grass pea after winter rice in lower Gangetic plain. J. Crop Weed 2019, 15, 72–78. [Google Scholar] [CrossRef]
- Sulewska, H.; Niewiadomska, A.; Ratajczak, K.; Budka, A.; Panasiewicz, K.; Faligowska, A.; Wolna-Maruwka, A.; Dryjański, L. Changes in Pisum sativum L. Plants and in Soil as a Result of Application of Selected Foliar Fertilizers and Biostimulators. Agronomy 2020, 10, 1558. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Ratajczak, K.; Waraczewska, Z.; Budka, A. The Influence of Bio-Stimulants and Foliar Fertilizers on Yield, Plant Features, and the Level of Soil Biochemical Activity in White Lupine (Lupinus albus L.) Cultivation. Agronomy 2020, 10, 150. [Google Scholar] [CrossRef]
- Fernández, V.; Sotiropoulos, T.; Brown, P. Foliar Fertilization. Scientific, Principles and Field Practices; International Fertilizer Industry Association (IFA): Paris, France, 2013; p. 140. [Google Scholar] [CrossRef]
- Bacilieri, F.S.; Oliveira, R.C.D.; Santos, L.C.M.; Magela, M.L.M.; Lana, R.M.Q.; Lemes, E.M. Soybean cultivars under the foliar application of a compounded biofertilizer in different plant phenological stages and doses. Int. J. Recycl. Org. Waste Agric. 2023, 12, 141–154. [Google Scholar] [CrossRef]
- Di Mauro, G.; Schwalbert, R.; Prado, S.A.; Saks, M.G.; Ramirez, H.; Costanzi, J.; Parra, G. Exploring practical nutrition options for maximizing seed yield and protein concentration in soybean. Eur. J. Agron. 2023, 146, 126794. [Google Scholar] [CrossRef]
- Domingos, C.d.S.; Besen, M.R.; Neto, M.E.; Costa, E.J.O.; Scapim, C.A.; Inoue, T.T.; Batista, M.A.; Braccini, A.L. Can calcium and boron leaf application increase soybean yield and seed quality? Acta Agric. Scand. Sect. B Soil Plant Sci. 2021, 71, 171–181. [Google Scholar] [CrossRef]
- Nyoki, D.; Ndakidemi, P.A. Selected chemical properties of soybean rhizosphere soil as influenced by cropping systems, Rhizobium inoculation, and the supply of phosphorus and potassium after two consecutive cropping seasons. Int. J. Agron. 2018, 2018, 3426571. [Google Scholar] [CrossRef]
- Novytska, N.; Gadzovskiy, G.; Mazurenko, B.; Kalenska, S.; Svistunova, I.; Martynov, O. Effect of seed inoculation and foliar fertilizing on structure of soybean yield and yield structure in Western Polissya of Ukraine. Agron. Res. 2020, 18, 2512–2519. [Google Scholar] [CrossRef]
- IUSS Working Group WRB World Reference Base for Soil Resources 2014, First Update. 2015. Available online: https://icdc.cen.unihamburg.de/fileadmin/user_upload/icdc_Dokumente/WorldSoilResources_a-i3794e.pdf (accessed on 15 July 2023).
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants; BBCH Monograph; Federal Biological Research Centre for Agriculture and Forestry: Berlin/Braunschweig, Germany, 2018; p. 158. [Google Scholar]
- Prusiński, J.; Baturo-Cieśniewska, A.; Borowska, M. Response of Soybean (Glycine max (L.) Merrill) to Mineral Nitrogen Fertilization and Bradyrhizobium japonicum Seed Inoculation. Agronomy 2020, 10, 1300. [Google Scholar] [CrossRef]
- Adeyeye, A.S.; Togun, A.O.; Olaniyan, A.B.; Akanbi, W.B. Effect of fertilizer and rhizobium inoculation on growth and yield of soyabean variety (Glycine max L. Merrill). Adv. Crop Sci. Techol. 2017, 5, 225. [Google Scholar] [CrossRef]
- Adjetey, J.A.; Mbotho, K. Evaluation of Bradyrhizobium formulations on performance of soybean grown on soil without a long-term history of the crop. Botsw. J. Agric. Appl. Sci. 2019, 13, 66–70. [Google Scholar] [CrossRef]
- Kim, I.-S.; Kim, C.-H.; Yang, W.-S. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health—A Current Perspective. Int. J. Mol. Sci. 2021, 22, 4054. [Google Scholar] [CrossRef]
- Sajedi, N.; Madani, H.; Naderi, A. Effect of microelements and selenium on superoxide dismutase enzyme, malondialdehyde activity and grain yield maize (Zea mays L.) under water deficit stress. Not. Bot. Horti. Agrobot. Cluj Napoca 2011, 39, 153–159. [Google Scholar] [CrossRef]
- Karim, M.R.; Zhang, Y.Q.; Zhao, R.R.; Chen, X.P.; Zhang, F.S.; Zou, C.Q. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 2012, 175, 142–151. [Google Scholar] [CrossRef]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of foliar fertilization: A review of current status and future perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Sutradhar, A.K.; Kaiser, D.E.; Behnken, L.M. Soybean response to broadcast application of boron, chlorine, manganese, and zinc. Agron. J. 2017, 109, 1048–1059. [Google Scholar] [CrossRef]
- Gonçalves, G.C.; Ferbonink, G.F.; Hemkemeier, C.; Caione, G.; Yamashita, O.M.; Luiz, S.A.R.; Camillo de Carvalho, M.A. Vegetative and productive characteristics of soybean under doses of boron and inoculation of Trichoderma atroviride. Chil. J. Agric. Res. 2023, 83, 159–167. [Google Scholar] [CrossRef]
- Hamurcu, M.; Arslan, D.; Hakki, E.E.; Özcan, M.M.; Pandey, A.; Khan, M.K.; Gezgin, S. Boron application affecting the yield and fatty acid composition of soybean genotypes. Plant Soil Environ. 2019, 65, 238–243. [Google Scholar] [CrossRef]
- Sharma, S.; Anand, N.; Bindraban, P.S.; Pandey, R. Foliar application of humic acid with Fe supplement improved rice, soybean, and lettuce iron fortification. Agriculture 2023, 13, 132. [Google Scholar] [CrossRef]
- Aksoy, E.; Maqbool, A.; Tindas, İ.; Caliskan, S. Soybean: A new frontier in understanding the iron deficiency tolerance mechanisms in plants. Plant Soil 2017, 418, 37–44. [Google Scholar] [CrossRef]
- Almeida, R.E.M.; Custódio, D.P.; Oliveira, S.M.; Lima, L.S.; Costa, R.V.; Campos, L.J.M. Recommendation of soil fertilization with copper and zinc for soybean crops grown in Petric Plinthosol. Ciênc. Rural 2023, 53, e20210722. [Google Scholar] [CrossRef]
- Yasari, E.; Vahedi, A. Micronutrients impact on soybean (Glycine max (Merrill)) qualitative and quantitative traits. Int. J. Biol. 2012, 4, 112–118. [Google Scholar] [CrossRef]
- Gheshlaghi, M.Z.; Pasari, B.; Shams, K.; Rokhzadi, A.; Mohammadi, K. The effect of micronutrient foliar application on yield, seed quality and some biochemical traits of soybean cultivars under drought stress. J. Plant Nutr. 2019, 42, 2715–2730. [Google Scholar] [CrossRef]
- Oliveira, N.T.; Rezende, P.M.; Fatima Piccolo Barcelos, M.; Bruzi, A.T. Zinc biofortification strategies in food-type soybean cultivars. Aust. J. Crop Sci. 2019, 13, 11–16. [Google Scholar] [CrossRef]
- Heidarian, A.R.; Kord, H.; Mostafavi, K.; Lak, A.P.; Mashhadi, F.A. Investigating Fe and Zn foliar application on yield and its components of soybean (Glycine max (L) Merr.) at different growth stages. J. Agric. Biotechnol. Sustain. Dev. 2011, 3, 189. [Google Scholar]
- Joorabi, S.; Eisvand, H.R.; Ismaili, A.; Nasrolahi, A. ZnO affects soybean grain yield, oil quantity and quality and leaf antioxidant activity in drought stress conditions. J. Plant Proc. Funct. 2020, 8, 61–70. [Google Scholar]
- Moreira, A.; Moraes, L.A.C. Soybean response to copper applied to two soils with different levels of organic matter and clay. J. Plant Nutr. 2019, 42, 2247–2258. [Google Scholar] [CrossRef]
- Gul, R.; Akhtar, M.J.; Zahir, Z.A.; Jamil, A. Copper toxicity affects seed emergence, stand establishment and copper accumulation of soybean and its mitigation through biogas slurry. Int. J. Agric. Biol. 2018, 20, 769–776. [Google Scholar]
- Li, Z.; Pan, X.; Guo, X.; Fan, K.; Lin, W. Physiological and Transcriptome Analyses of Early Leaf Senescence for ospls1 Mutant Rice (Oryza sativa L.) during the Grain-Filling Stage. Int. J. Mol. Sci. 2019, 20, 1098. [Google Scholar] [CrossRef]
- Xiang, S.; Ma, X.; Liao, S.; Shi, H.; Liu, C.; Shen, Y.; Lv, X.; Yuan, M.; Fan, G.; Huang, J.; et al. Cellulose Nanocrystal Surface Cationization: A New Fungicide with High Activity against Phycomycetes capsici. Molecules 2019, 24, 2467. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Wang, F.; Xie, Y. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Appl. Soil Ecol. 2019, 142, 147–154. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Li, J.; Ren, Y.; Wang, Z.; Xin, Z.; Lin, T. Identification of Two Novel Wheat Drought Tolerance-Related Proteins by Comparative Proteomic Analysis Combined with Virus-Induced Gene Silencing. Int. J. Mol. Sci. 2018, 19, 4020. [Google Scholar] [CrossRef]
- Fu, W.; Wang, Y.; Ye, Y.; Zhen, S.; Zhou, B.; Wang, Y.; Hu, Y.; Zhao, Y.; Huang, Y. Grain Yields and Nitrogen Use Efficiencies in Different Types of Stay-Green Maize in Response to Nitrogen Fertilizer. Plants 2020, 9, 474. [Google Scholar] [CrossRef]
- Robson, P.R.H.; Farrar, K.; Gay, A.P.; Jense, E.F.; Clifton-Brown, J.C.; Donnison, L.S. Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. J. Exp. Bot. 2013, 64, 2373–2383. [Google Scholar] [CrossRef]
- Jarecki, W.; Buczek, J.; Bobrecka-Jamro, D. Response of soybean (Glycine max (L.) Merr.) to bacterial soil inoculants and foliar fertilization. Plant Soil Environ. 2016, 62, 422–427. [Google Scholar] [CrossRef]
- Heitholt, J.J.; Sloan, J.J.; MacKown, C.T. Copper, manganese, and zinc fertilization effects on growth of soybean on a calcareous soil. J. Plant Nutr. 2002, 25, 1727–1740. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Zhao, P.T.; Li, J.M.; Zhao, X.G.; Shang, Y.; Zhang, Z.L.; Zhao, Z.P.; Li, L.H. Changes in photosynthetic characteristics of black wheat and their effects on yield. Chin. Agron. Bull. 2022, 38, 7–16. [Google Scholar] [CrossRef]
- Fu, L.; Bai, X.M.; Yang, X.H.; Wu, Y.X.; Ai, X.Z. Photosynthetic characteristics of grafted peppers and their effects on yield and quality. J. Hortic. 2013, 40, 449–457. [Google Scholar] [CrossRef]
- Stadnik, B.; Tobiasz-Salach, R.; Mazurek, M. Effect of Silicon on Oat Salinity Tolerance: Analysis of the Epigenetic and Physiological Response of Plants. Agriculture 2023, 13, 81. [Google Scholar] [CrossRef]
- Mukarram, M.; Khan, M.M.A.; Zehra, A.; Petrik, P.; Kurjak, D. Suffer or survive: Decoding salt-sensitivity of lemongrass and its implication on essential oil productivity. Front. Plant Sci. 2022, 13, 903954. [Google Scholar] [CrossRef]
- Geng, D.; Shan, L.; Li, Y. Effect of soil water stress on chlorophyll fluorescence and antioxidant enzyme activity in Reaumuria soongorica seedling. Chin. Bull. Bot. 2014, 49, 282–291. (In Chinese) [Google Scholar] [CrossRef]
- Mauro, R.P.; Agnello, M.; Distefano, M.; Sabatino, L.; San Bautista Primo, A.; Leonardi, C.; Giuffrida, F. Chlorophyll Fluorescence, Photosynthesis and Growth of Tomato Plants as Affected by Long-Term Oxygen Root Zone Deprivation and Grafting. Agronomy 2020, 10, 137. [Google Scholar] [CrossRef]
- Groher, T.; Schmittgen, S.; Fiebig, A.; Noga, G.; Hunsche, M. Suitability of fluorescence indices for the estimation of fruit maturity compounds in tomato fruits. J. Sci. Food Agric. 2018, 98, 5656–5665. [Google Scholar] [CrossRef]
- Bărdas, M.; Rusu, T.; Russu, F.; Simon, A.; Chetan, F.; Ceclan, O.A.; Rezi, R.; Popa, A.; Cărbunar, M.M. The impact of foliar fertilization on the physiological parameters, yield, and quality indices of the soybean crop. Agronomy 2023, 13, 1287. [Google Scholar] [CrossRef]
- Kobraee, S. Effect of zinc, iron and manganese fertilization on concentrations of these metals in the stem and leaves of soybean and on the chlorophyll content in leaves during the reproductive development stages. J. Elem. 2016, 21, 395–412. [Google Scholar] [CrossRef]
- Liu, P.; Yang, Y.S.; Xu, G.D.; Fang, Y.H.; Yang, Y.A.; Kalin, R.M. The effect of molybdenum and boron in soil on the growth and photosynthesis of three soybean varieties. Plant Soil Environ. 2005, 51, 197–205. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, P.S.; Berlyn, P.G. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A.; Kościk, B. Possible use of the chlorophyll meter (SPAD-502) for evaluating nitrogen nutrition of the Virginia Tobacco. Elektron. J. Pol. Agric. Univ. 2002, 5, 1–10. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarecki, W.; Lachowski, T.; Migut, D. The Influence of Applying Foliar Micronutrients at Nodulation and the Physiological Properties of Common Soybean Plants. Agriculture 2024, 14, 154. https://doi.org/10.3390/agriculture14010154
Jarecki W, Lachowski T, Migut D. The Influence of Applying Foliar Micronutrients at Nodulation and the Physiological Properties of Common Soybean Plants. Agriculture. 2024; 14(1):154. https://doi.org/10.3390/agriculture14010154
Chicago/Turabian StyleJarecki, Wacław, Tomasz Lachowski, and Dagmara Migut. 2024. "The Influence of Applying Foliar Micronutrients at Nodulation and the Physiological Properties of Common Soybean Plants" Agriculture 14, no. 1: 154. https://doi.org/10.3390/agriculture14010154
APA StyleJarecki, W., Lachowski, T., & Migut, D. (2024). The Influence of Applying Foliar Micronutrients at Nodulation and the Physiological Properties of Common Soybean Plants. Agriculture, 14(1), 154. https://doi.org/10.3390/agriculture14010154