Influence of Foliar Application of Microelements on Yield and Yield Components of Spring Malting Barley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Field Experiment
- Cultivars of spring two-rowed barley of the brewing type:
- Baryłka (Hodowla Roślin Strzelce Sp. z o.o. Grupa IHAR, Strzelce, Poland);
- KWS Irina (KWS Lochów Polska Sp. z o.o., Prusy, Poland);
- RGT Planet (R.A.G.T. Semences Polska Sp. z o.o., Toruń, Poland).
- Foliar fertilization with microelements:
- Control—without fertilization;
- Copper (Cu);
- Manganese (Mn);
- Molybdenum (Mo);
- Zinc (Zn).
2.2. Characteristics of Soil Conditions
2.3. Characteristics of Weather Conditions
- k—coefficient of Sielianinow;
- P—total monthly precipitation (mm);
- Σt—total of monthly daily temperatures (°C).
- Hydrothermal conditions were characterized according to Skowera et al. [46] depending on the value of k:
- k ≤ 0.4—extremely dry (ed);
- 0.4 < k ≤ 0.7—very dry (vd);
- 0.7 < k ≤ 1.0—dry (d);
- 1.0 < k ≤ 1.3—relatively dry (rd);
- 1.3 < k ≤ 1.6—optimal (o);
- 1.6 < k ≤ 2.0—relatively humid (rh);
- 2.0 < k ≤ 2.5—humid (h);
- 2.5 < k ≤ 3.0—very humid (vh);
- k > 3.0—extremely humid (eh).
Year | Month | Mean | |||||
---|---|---|---|---|---|---|---|
March | April | May | June | July | August | ||
2019 | 1.50 o | 1.49 o | 3.83 eh | 0.41 vd | 1.02 rd | 1.62 rh | 1.64 rh |
2020 | 3.83 eh | 0.84 d | 4.09 eh | 2.40 h | 1.53 o | 1.61 rh | 2.38 h |
2021 | 2.40 h | 3.20 eh | 1.39 o | 1.08 rd | 1.05 rd | 1.83 rh | 1.82 rh |
Long-term * 1991–2020 | 3.81 eh | 1.68 rh | 1.83 rh | 1.55 o | 1.51 o | 1.08 rd | 1.91 rh |
2.4. Laboratory Analyses of Yield
2.5. Statistical Analysis
3. Results
3.1. Plant Height, Spike Length, and Productive Tillers
3.2. Yield Components of Barley
3.3. Grain Yield, Harvest Index, and Uniformity
3.4. Correlation Coefficient Analysis
4. Discussion
4.1. Influence of Weather Conditions
4.2. Influence of Experimental Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 November 2023).
- Serrago, R.A.; García, G.A.; Savin, R.; Miralles, D.J.; Slafer, G.A. Determinants of grain number responding to environmental and genetic factors in two-and six-rowed barley types. Field Crops Res. 2023, 302, 109073. [Google Scholar] [CrossRef]
- Newton, A.C.; Flavell, A.J.; George, T.S.; Leat, P.; Mullholland, B.; Ramsay, L.; Revoredo-Giha, C.; Russell, J.; Steffenson, B.J.; Swanston, J.S.; et al. Crops that feed the world 4. Barley: A resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011, 3, 141–178. [Google Scholar] [CrossRef]
- Dawson, I.K.; Russell, J.; Powell, W.; Steffenson, B.; Thomas, W.T.; Waugh, R. Barley: A translational model for adaptation to climate change. New Phytol. 2015, 206, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Langridge, P. Economic and academic importance of barley. In The Barley Genome; Stein, N., Muehlbauer, G.J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Cammarano, D.; Hawes, C.; Squire, G.; Holland, J.; Rivington, M.; Murgia, T.; Roggero, P.P.; Fontana, F.; Casa, R.; Ronga, D. Rainfall and temperature impacts on barley (Hordeum vulgare L.) yield and malting quality in Scotland. Field Crops Res. 2019, 241, 107559. [Google Scholar] [CrossRef]
- Gong, L. Barley. In Bioactive Factors and Processing Technology for Cereal Foods; Wang, J., Sun, B., Tsao, R., Eds.; Springer: Singapore, 2019; pp. 55–64. [Google Scholar] [CrossRef]
- Zeng, Y.; Pu, X.; Du, J.; Yang, X.; Li, X.; Mandal, M.S.N.; Yang, T.; Yang, J. Molecular mechanism of functional ingredients in barley to combat human chronic diseases. Oxid. Med. Cell. Longev. 2020, 2020, 3836172. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Rasmussen, S.K.; Christensen, C.S.; Fan, W.; Torp, A.M. Molecular breeding of barley for quality traits and resilience to climate change. Front. Genet. 2023, 13, 1039996. [Google Scholar] [CrossRef]
- Prystupa, P.; Savin, R.; Slafer, G.A. Grain number and its relationship with dry matter, N and P in the spikes at heading in response to N×P fertilization in barley. Field Crops Res. 2004, 90, 245–254. [Google Scholar] [CrossRef]
- Jones, C.A.; Jacobsen, J.S.; Wraith, J.M. Response of malt barley to phosphorus fertilization under drought conditions. J. Plant Nutr. 2005, 28, 1605–1617. [Google Scholar] [CrossRef]
- Anbessa, Y.; Juskiw, P. Strategies to increase nitrogen use efficiency of spring barley. Can. J. Plant Sci. 2012, 92, 617–625. [Google Scholar] [CrossRef]
- Desalegn, T.; Alemu, G.; Adella, A.; Debele, T. Effect of lime and phosphorus fertilizer on acid soils and barley (Hordeum vulgare L.) performance in the central highlands of Ethiopia. Exp. Agric. 2017, 53, 432–444. [Google Scholar] [CrossRef]
- Bulman, P.; Smith, D.L. Yield and yield component response of spring barley to fertilizer nitrogen. Agron. J. 1993, 85, 226–231. [Google Scholar] [CrossRef]
- Cantero-Martinez, C.; Villar, J.M.; Romagosa, I.; Fereres, E. Nitrogen fertilization of barley under semi-arid rainfed conditions. Eur. J. Agron. 1995, 4, 309–316. [Google Scholar] [CrossRef]
- Singh, A.; Singh, H.; Kang, J.S.; Singh, J. Advancement of agronomic practices in malting barley–A review. Int. J. Curr. Res. 2014, 6, 4921–4935. [Google Scholar]
- Agegnehu, G.; Lakew, B.; Nelson, P.N. Cropping sequence and nitrogen fertilizer effects on the productivity and quality of malting barley and soil fertility in the Ethiopian highlands. Arch. Agron. Soil Sci. 2014, 60, 1261–1275. [Google Scholar] [CrossRef]
- Daverede, I.; Miguez, F.; Scalan, J. Malting barley quality parameters: Effect of fertilization and fungicide application in the argentine pampas. Int. J. Curr. Res. Biosci. Plantbiol. 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Terefe, D.; Desalegn, T.; Ashagre, H. Effect of nitrogen fertilizer levels on grain yield and quality of malt barley (Hordeum vulgare L.) varieties at Wolmera District, Central Highland of Ethiopia. Int. J. Res. Stud. Agric. Sci. 2018, 4, 29–43. [Google Scholar]
- Shrestha, R.K.; Lindsey, L.E. Agronomic management of malting barley and research needs to meet demand by the craft brew industry. Agron. J. 2019, 111, 1570–1580. [Google Scholar] [CrossRef]
- Tehulie, N.S.; Eskezia, H. Effects of nitrogen fertilizer rates on growth, yield components and yield of food Barley (Hordeum vulgare L.): A Review. J. Plant Sci. Agric. Res. 2021, 5, 46. [Google Scholar]
- Kaur, A.; Kaur, R. Effect of different nitrogen levels on growth, yield, quality and nutrient uptake in malt barley (Hordeum vulgare L.): A review. Pharma Innov. 2022, 11, 2467–2475. [Google Scholar]
- Ram, D.; Ali, T.; Mehraj, S.; Wani, S.A.; Jan, R.; Jan, R.; Bhat, M.A.; Bhat, S.J.A. Strategy for optimization of higher productivity and quality in field crops through micronutrients: A review. Econ. Aff. 2017, 62, 139–147. [Google Scholar]
- Welch, R.M.; Shuman, L. Micronutrient nutrition of plants. Crit. Rev. Plant Sci. 1995, 14, 49–82. [Google Scholar] [CrossRef]
- Michałojć, Z.; Szewczuk, C. Theoretical aspects of foliar nutrition. Acta Agrophys. 2003, 85, 9–17. (In Polish) [Google Scholar]
- Rahman, R.; Sofi, J.A.; Javeed, I.; Malik, T.H.; Nisar, S. Role of micronutrients in crop production. Int. J. Curr. Microbiol. Appl. Sci. 2020, 8, 2265–2287. [Google Scholar]
- Bashir, K.; Ahmad, Z.; Kobayashi, T.; Seki, M.; Nishizawa, N.K. Roles of subcellular metal homeostasis in crop improvement. J. Exp. Bot. 2021, 72, 2083–2098. [Google Scholar] [CrossRef]
- Alshaal, T.; El-Ramady, H. Foliar application: From plant nutrition to biofortification. Env. Biodivers. Soil Secur. 2017, 1, 71–83. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiol. Plant 2015, 37, 1–14. [Google Scholar] [CrossRef]
- Jatav, H.S.; Sharma, L.D.; Sadhukhan, R.; Singh, S.K.; Singh, S.; Rajput, V.D.; Parihar, M.; Jatav, S.S.; Jinger, D.; Kumar, S.; et al. An overview of micronutrients: Prospects and implication in crop production. In Plant Micronutrients: Deficiency and Toxicity Management; Aftab, T., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–30. [Google Scholar] [CrossRef]
- Boynton, D. Nutrition by foliar application. Annu. Rev. Plant Physiol. 1954, 5, 31–54. [Google Scholar] [CrossRef]
- Laane, H.M. The effects of foliar sprays with different silicon compounds. Plants 2018, 7, 45. [Google Scholar] [CrossRef]
- Patil, B.; Chetan, H.T. Foliar fertilization of nutrients. Marumegh 2018, 3, 49–53. [Google Scholar]
- Noreen, S.; Fatima, Z.; Ahmad, S.; Athar, H.U.R. Foliar application of micronutrients in mitigating abiotic stress in crop plants. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018; pp. 95–117. [Google Scholar] [CrossRef]
- Januszkiewicz, R.; Kulczycki, G.; Samoraj, M. Foliar fertilization of crop plants in polish agriculture. Agriculture 2023, 13, 1715. [Google Scholar] [CrossRef]
- Rawashdeh, H.M.; Florin, S. Foliar application with iron as a vital factor of wheat crop growth, yield quantity and quality: A Review. Int. J. Agric. Policy Res. 2015, 3, 368–376. [Google Scholar]
- Vasundhara, D.; Chhabra, V. Foliar nutrition in cereals: A review. Pharma Innov. J. 2021, 10, 1247–1254. [Google Scholar]
- Arabhanvi, F.; Pujar, A.M.; Hulihalli, U.K. Micronutrients and productivity of oilseed crops-A review. Agric. Rev. 2021, 36, 245–248. [Google Scholar] [CrossRef]
- Kumar, N.M.; Pandav, A.K.; Bhat, M.A. Growth and yield of solanaceous vegetables in response to application of micronutrients—A review. Int. J. Innov. Sci. Eng. Technol. 2016, 3, 611–626. [Google Scholar]
- Sidhu, M.K.; Raturi, H.C.; Kachwaya, D.S.; Sharma, A. Role of micronutrients in vegetable production: A review. J. Pharmacogn. Phytochem. 2019, 1, 332–340. [Google Scholar]
- Kannan, S. Foliar fertilization for sustainable crop production. In Genetic Engineering, Biofertilisation, Soil Quality And Organic Farming; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 371–402. [Google Scholar] [CrossRef]
- Singh, J.; Singh, M.; Jain, A.; Bhardwaj, S.; Singh, A.; Singh, D.K.; Bhushan, B.; Dubey, S.K. An introduction of plant nutrients and foliar fertilization: A review. In Precision Farming: A New Approach; Ram, T., Ed.; Daya Publish House: New Delhi, India, 2014; pp. 252–320. [Google Scholar] [CrossRef]
- Piwowar, A. Microelements in plant production and agricultural environment: Agricultural, chemical and market perspective. Przemysł Chem. 2021, 100, 53–56. (In Polish) [Google Scholar] [CrossRef]
- Saquee, F.S.; Diakite, S.; Kavhiza, N.J.; Pakina, E.; Zargar, M. The efficacy of micronutrient fertilizers on the yield formulation and quality of wheat grains. Agronomy 2023, 13, 566. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Van Den Boom, T.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 2014, 31, 74–87. (In Polish) [Google Scholar]
- Climate Standards 1991–2020. Available online: https://klimat.imgw.pl/pl/climate-normals/TSR_AVE# (accessed on 16 August 2023).
- PN-68/R-74017; Cereals and Pulses—Determinationa of the Mass Od 1000 Grains. Polish Committee for Standardization: Warsaw, Poland, 1968.
- BN-69 9131-02; Cereals Grain. Determination of Grain Uniformity. Polish Committee for Standardization: Warsaw, Poland, 1969.
- Stewart, B.A.; Lal, R. Increasing world average yields of cereal crops: It’s all about water. Adv. Agron. 2018, 151, 1–44. [Google Scholar] [CrossRef]
- Ahakpaz, F.; Abdi, H.; Neyestani, E.; Hesami, A.; Mohammadi, B.; Mahmoudi, K.N.; Abedi-Asl, G.; Noshabadi, M.R.J.; Ahakpaz, F.; Alipour, H. Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agric. Water Manag. 2021, 245, 106665. [Google Scholar] [CrossRef]
- Ben Mariem, S.; Soba, D.; Zhou, B.; Loladze, I.; Morales, F.; Aranjuelo, I. Climate change, crop yields, and grain quality of C3 cereals: A meta-analysis of [CO2], temperature, and drought effects. Plants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Lodhi, R.; Prasad, L.C.; Madakemohekar, A.H.; Bornare, S.; Prasad, R. Study of Genetic parameters for yield and yield contributing trait of elite genotypes of barley (Hordeum vulgare L.). Indian Res. J. Genet. Biotech. 2015, 7, 17–21. [Google Scholar]
- Kumar, V.; Verma, R.P.S.; Kumar, D.; Kharub, A.S.; Singh, G.P. Assessment of barley genotypes for malting quality: Genotype x environment interactions. Indian J. Genet. Plant Breed. 2018, 78, 523–526. [Google Scholar]
- Liliane, T.N.; Charles, M.S. Factors affecting yield of crops. In Agronomy-Climate Change & Food Security; Amanullah, Ed.; IntechOpen: London, UK, 2020; Volume 2, pp. 1–16. [Google Scholar] [CrossRef]
- Carrera, C.S.; Savin, R.; Slafer, G.A. Critical period for yield determination across grain crops. Trends Plant Sci. 2023, 29, 329–342. [Google Scholar] [CrossRef]
- Szempliński, W.; Budzyński, W.; Bielski, S. Jęczmień. In Uprawa Roślin Tom II, 2nd ed.; Kotecki, A., Ed.; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2020; pp. 157–189. (In Polish) [Google Scholar]
- Chmura, K.; Chylinska, E.; Dmowski, Z.; Nowak, L. Role of the water factor in yield formation of chosen field crops. Infrastrukt. I Ekol. Teren. Wiej. 2009, 9, 33–44. (In Polish) [Google Scholar]
- Liszewski, M.; Błażewicz, J. Brewing grain quality of new null-lox type barley cultivars. Fragm. Agron. 2019, 36, 55–64. (In Polish) [Google Scholar]
- Miralles, D.J.; Abeledo, L.G.; Prado, S.A.; Chenu, K.; Serrago, R.A.; Savin, R. Barley. In Crop Physiology Case Histories for Major Crops; Sadras, V.O., Calderini, D.F., Eds.; Elsevier: London, UK, 2021; pp. 164–195. [Google Scholar] [CrossRef]
- Pecio, A. Environmental and agrotechnical determinants of the size and quality of malting barley grain yield. Fragm. Agron. 2002, 19, 47–97. (In Polish) [Google Scholar]
- Sadras, V.O.; Slafer, G.A. Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities. Field Crops Res. 2012, 127, 215–224. [Google Scholar] [CrossRef]
- Hakala, K.; Jauhiainen, L.; Rajala, A.A.; Jalli, M.; Kujala, M.; Laine, A. Different responses to weather events may change the cultivation balance of spring barley and oats in the future. Field Crops Res. 2020, 259, 107956. [Google Scholar] [CrossRef]
- Rajasekar, M.; Nandhini, D.U.; Suganthi, S. Supplementation of mineral nutrients through foliar spray-A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2504–2513. [Google Scholar] [CrossRef]
- Gozdowski, D.; Mądry, W. Characteristics and empirical comparison of simple and complex path analysis in assessing the determination of plant yield by their yield-producing characteristics. Part I. Presentation of the methods used. Biul. IHAR 2008, 249, 109–124. (In Polish) [Google Scholar] [CrossRef]
- Hafeez, B.; Khanif, Y.M.; Saleem, M. Role of zinc in plant nutrition-a review. J. Exp. Agric. Int. 2013, 3, 374–391. [Google Scholar] [CrossRef]
- Manuel, T.J.; Alejandro, C.A.; Angel, L.; Aurora, G.; Emilio, F. Roles of molybdenum in plants and improvement of its acquisition and use efficiency. In Plant Micronutrient Use Efficiency; Hossain, M.A., Kamiya, T., Burritt, D.J., Tran, L.P., Fujiwara, T., Eds.; Elsevier: Berkeley, CA, USA, 2018; pp. 137–159. [Google Scholar] [CrossRef]
- Moghadam, M.J.; Sharifabad, H.H.; Noormohamadi, G.; Motahar, S.Y.S.; Siadat, S.A. The effect of zinc, boron and copper foliar application, on yield and yield components in wheat (Triticum aestivum). Ann. Biol. Res. 2012, 3, 3875–3884. [Google Scholar]
- Hussien, A.; Tavakol, E.; Horner, D.S.; Muñoz-Amatriaín, M.; Muehlbauer, G.J.; Rossini, L. Genetics of tillering in rice and barley. Plant Genome 2014, 7, 1–20. [Google Scholar] [CrossRef]
- Anjum, B.A.; Islam, M.; Ibrar, M.; Hussain, Z.; Shah, W.A. Improving the production of barley genotypes by foliar application of micronutrients. Pure Appl. Biol. 2017, 6, 278–285. [Google Scholar]
- Noreen, S.; Sultan, M.; Akhter, M.S.; Shah, K.H.; Ummara, U.; Manzoor, H.; Ulfat, M.; Alyemeni, M.N.; Ahmad, P. Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiol. Biochem. 2021, 158, 244–254. [Google Scholar] [CrossRef]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of foliar fertilization: A review of current status and future perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Muhammad Ishaq, M.I.; Manzoor Ahmad, M.A.; Zahid Hussain, Z.H.; Shah, W.A.; Subhan Uddin, S.U.; Muhammad Islam, M.I.; Roohul Amin, R.A.; Khan, S.N.; Muhammad Jawad, M.J.; Aamir Khan, A.K. Growth and yield of barley varieties response to micronutrients. Pure Appl. Biol. 2018, 7, 509–517. [Google Scholar] [CrossRef]
- Tobiasz-Salach, R.; Jańczak-Pieniążek, M.; Bobrecka-Jamro, D. Assessing the impact of foliar fertilization with manganese and copper on the yield and chemical composition of spring barley. Polish J. Agron. 2018, 35, 59–64. [Google Scholar] [CrossRef]
- Kozłowska, K.; Liszewski, M. Effect of foliar fertilization with selected microelements on the agricultural characteristics of malt barley grain. Zesz. Nauk. Uniw. Przyr. We Wrocławiu-Rol. 2012, 103, 157–168. (In Polish) [Google Scholar]
- Tobiasz-Salach, R.; Augustynska-Prejsnar, A. Response of spring barley to foliar fertilization with Cu and Mn. Acta Sci. Pol. Agric. 2020, 19, 29–39. [Google Scholar] [CrossRef]
- Liszewski, M.; Błażewicz, J. The effect of selected microelement fertilizers manufactured by ADOB company on yield and malting quality of spring barley. Pol. J. Agron. 2018, 35, 83–88. (In Polish) [Google Scholar] [CrossRef]
- El-Magid, A. Response of barley to foliar application of some micronutrients under different levels of soil salinity. J. Soil Sci. Agric. Eng. 2001, 26, 7411–7422. [Google Scholar] [CrossRef]
- Drissi, S.; Houssa, A.A.; Amlal, F.; Dhassi, K.; Lamghari, M.; Maataoui, A. Barley responses to copper foliar spray concentrations when grown in a calcareous soil. J. Plant Nutr. 2018, 41, 2266–2272. [Google Scholar] [CrossRef]
- Barczak, B.; Nowak, K.; Kozera, W.; Majcherczak, E. The effect of foliar fertilization with microelements on yield of barley grain. Fragm. Agron. 2005, 4, 5–17. (In Polish) [Google Scholar]
- Boorboori, M.; Asli, D.E.; Tehrani, M. The effect of dose and different methods of iron, zinc, manganese and copper application on yield components, morphological traits and grain protein percentage of barley plant (Hordeum vulgare L.) in greenhouse conditions. Adv. Environ. Biol. 2012, 6, 740–746. [Google Scholar]
- Kaiser, B.N.; Gridley, K.L.; Ngaire Brady, J.; Phillips, T.; Tyerman, S.D. The role of molybdenum in agricultural plant production. Ann. Bot. 2005, 96, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S. Can foliar molybdenum compensate for damage to barley because of draught stress? Biosci. Biotechnol. Res. Asia 2014, 11, 1403–1411. [Google Scholar] [CrossRef]
- Rana, M.; Bhantana, P.; Sun, X.C.; Imran, M.; Shaaban, M.; Moussa, M.; Saleem, M.H.; Elyamine, A.; Binyamin, R.; Alam, M.; et al. Molybdenum as an essential element for crops: An overview. Int. J. Sci. Res. Growth 2020, 24, 18535. [Google Scholar] [CrossRef]
- Hay, R.K. Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 1995, 126, 197–216. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Muurinen, S.; Rajala, A.; Jauhiainen, L. Variation in harvest index of modern spring barley, oat and wheat cultivars adapted to northern growing conditions. J. Agric. Sci. 2008, 146, 35–47. [Google Scholar] [CrossRef]
- Unkovich, M.; Baldock, J.; Forbes, M. Variability in harvest index of grain crops and potential significance for carbon accounting: Examples from Australian agriculture. Adv. Agron. 2010, 105, 173–219. [Google Scholar] [CrossRef]
- Hütsch, B.W.; Schubert, S. Harvest index of maize (Zea mays L.): Are there possibilities for improvement? Adv. Agron. 2017, 146, 37–82. [Google Scholar] [CrossRef]
- Asefa, G. The role of harvest index in improving crop productivity. J. Nat. Sci. 2019, 9, 24–28. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Edney, M. Barley: Grain-quality characteristics and management of quality requirements. In Cereal Grains Assessing and Managing Quality, 2nd ed.; Wrigley, W., Batey, I., Miskelly, D., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp. 195–234. [Google Scholar] [CrossRef]
- McMillan, T.; Tidemann, B.D.; OʼDonovan, J.T.; Izydorczyk, M.S. Effects of plant growth regulator application on the malting quality of barley. J. Sci. Food Agric. 2020, 100, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Janković, S.; Glamočlija, D.; Maletić, R.; Rakić, S.; Hristov, N.; Ikanović, J. Effects of nitrogen fertilization on yield and grain quality in malting barley. Afr. J. Biotechnol. 2011, 10, 19534–19541. [Google Scholar] [CrossRef]
- Kumar, D.; Narwal, S.; Verma, R.P.S.; Singh, G.P. Advances in malt and food quality research of barley. In New Horizons in Wheat and Barley Research: Global Trends, Breeding and Quality Enhancement; Kashyap, P.K., Gupta, V., Gupta, O.P., Sendhil, R., Gopalareddy, K., Jasrotia, P., Singh, G.P., Eds.; Springer: Singapore, 2022; pp. 697–728. [Google Scholar]
- Klockiewicz-Kamińska, E. Method of assessing the brewing value and qualitative classification of barley cultivars. Wiadomości Odmianozn. 2005, 80, 3–15. (In Polish) [Google Scholar]
- Martin, P. Grain Quality Criteria for Malting Barley. Project Report. Northern Periphery and Arctic Programme 2015. Available online: http://cereal.interrenpa.eu/resources/ (accessed on 26 February 2024).
- Sharma, R.; Verma, R. Effect of irrigation, nitrogen and varieties on the productivity and grain malting quality in barley. Cereal Res. Commun. 2010, 38, 419–428. [Google Scholar] [CrossRef]
- Gebeyaw, M. Impact of malt barley varieties on malt quality: A review. Agric. Rev. 2021, 42, 116–119. [Google Scholar] [CrossRef]
- Dhillon, B.S.; Ram, H.; Kaur, H. Yield enhancement and grain vis-à-vis malt quality of barley (Hordeum vulgare L.) genotypes as influenced by clipping and foliar application of zinc. J. Plant Nutr. 2023, 46, 4606–4626. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, Y.; Liu, W. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. Crop J. 2021, 9, 412–426. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; Turkington, T.K.; Edney, M.J.; Clayton, G.W.; McKenzie, R.H.; Juskiw, P.E.; Lafond, G.P.; Grant, C.A.; Brandt, S.; Harker, K.N.; et al. Seeding rate, nitrogen rate, and cultivar effects on malting barley production. Agron. J. 2011, 103, 709–716. [Google Scholar] [CrossRef]
- Vahamidis, P.; Stefopoulou, A.; Kotoulas, V.; Bresta, P.; Nikolopoulos, D.; Karabourniotis, G.; Mantonanakis, G.; Vlachos, C.; Dercas, N.; Economou, G. Grain size variation in two-rowed malt barley under Mediterranean conditions: Phenotypic plasticity and relevant trade-offs. Field Crops Res. 2022, 279, 108454. [Google Scholar] [CrossRef]
Fertilizer | Composition (g∙L−1) | Chemical Form | Dose (L∙ha−1) |
---|---|---|---|
MIKROVIT® MIEDŹ | 75 | Copper sulfate CuSO₄ | 2 |
MIKROVIT® MANGAN | 160 | Manganese sulfate MnSO₄ (65 g) and manganese nitrate Mn(NO₃)₂ (95 g) | 2 |
MIKROVIT® MOLIBDEN | 33 | Ammonium molybdate (NH4)6Mo7O24 | 1 |
MIKROVIT® CYNK | 112 | Zinc sulfate ZnSO₄ | 2 |
Preparation | Dose | BBCH Phase | ||
---|---|---|---|---|
Fungicide | Funaben Plus 02WS | 150 | g per 100 kg of seed | - |
Fandango 200EC | 1.0 | L∙ha−1 | 31–34 | |
Kier 450S | 1.0 | 51–55 | ||
Herbicide | Mocarz 75WG | 0.2 | kg∙ha−1 | 25–29 |
Herbistar 200EC | 0.5 | L∙ha−1 | 25–29 | |
Growth regulator | Moddus 250EC | 0.4 | 31–34 | |
Insecticide | Delmetros 100SC | 0.05 | 55 (only in 2019) |
Parameter | Year | ||
---|---|---|---|
2019 | 2020 | 2021 | |
pH in 1 mol·dm−3 KCl | 6.0 | 5.8 | 5.8 |
Soil Organic Carbon (%) | 1.3 | 1.1 | 1.1 |
Content of available forms mg·kg−1 soil | |||
Phosphorus (P2O5) | 59 | 66 | 69 |
Potassium (K2O) | 220 | 160 | 188 |
Magnesium (Mg) | 101 | 91 | 96 |
Copper (Cu) | 2.2 | 2.4 | 3.7 |
Manganese (Mn) | 164 | 396 | 225 |
Zinc (Zn) | 5.0 | 10.3 | 20.0 |
Iron (Fe) | 1080 | 1563 | 3824 |
Cultivar (C) | Fertilization (F) | Plant Height (cm) | Spike Length (cm) | Number of Productive Tillers per Plant |
---|---|---|---|---|
Baryłka | control | 63.5 ± 3.2 a–e | 6.73 ± 0.36 a | 2.94 ± 0.31 a |
Cu | 60.1 ± 9.7 a–c | 6.66 ± 0.46 a | 3.04 ± 0.42 a | |
Mn | 58.7 ± 10.5 ab | 7.01 ± 1.31 a | 3.57 ± 0.62 a | |
Mo | 60.5 ± 9.9 a–d | 6.65 ± 0.35 a | 3.51 ± 0.72 a | |
Zn | 59.1 ± 8.9 ab | 6.59 ± 0.36 a | 3.36 ± 0.51 a | |
KWS Irina | control | 64.5 ± 7.6 a–e | 6.83 ± 0.37 a | 2.78 ± 0.26 a |
Cu | 59.2 ± 7.1 ab | 6.78 ± 0.62 a | 3.50 ± 0.52 a | |
Mn | 57.1 ± 6.2 a | 6.73 ± 0.42 a | 3.70 ± 0.98 a | |
Mo | 57.2 ± 7.5 a | 7.04 ± 0.27 a | 3.92 ± 0.62 a | |
Zn | 57.9 ± 7.4 a | 6.88 ± 0.39 a | 3.76 ± 0.73 a | |
RGT Planet | control | 70.9 ± 3.7 e | 7.02 ± 0.48 a | 3.41 ± 0.62 a |
Cu | 68.6 ± 5.3 de | 7.21 ± 0.23 a | 3.90 ± 0.78 a | |
Mn | 67.9 ± 7.1 c–e | 7.18 ± 0.35 a | 4.03 ± 0.83 a | |
Mo | 66.3 ± 6.7 b–e | 7.65 ± 2.03 a | 3.71 ± 0.91 a | |
Zn | 69.6 ± 6.9 e | 7.24 ± 0.50 a | 3.81 ± 0.55 a | |
HSDp < 0.05 C × F | n.s. (0.9598) | n.s. (0.6871) | n.s. (0.4410) | |
Mean | Baryłka | 60.4 ± 8.7 A | 6.73 ± 0.67 A | 3.28 ± 0.58 A |
KWS Irina | 59.2 ± 7.4 A | 6.85 ± 0.43 A | 3.53 ± 0.76 B | |
RGT Planet | 68.7 ± 6.1 B | 7.26 ± 0.97 B | 3.77 ± 0.75 C | |
HSDp < 0.05 C | *** (0.0000) | ** (0.0049) | *** (0.0004) | |
Mean | control | 66.3 ± 6.0 B | 6.86 ± 0.42 A | 3.05 ± 0.50 A |
Cu | 62.6 ± 8.5 A | 6.89 ± 0.51 A | 3.48 ± 0.68 B | |
Mn | 61.2 ± 9.3 A | 6.97 ± 0.82 A | 3.71 ± 0.82 B | |
Mo | 61.3 ± 8.8 A | 7.11 ± 1.24 A | 3.77 ± 0.76 B | |
Zn | 62.2 ± 9.2 A | 6.90 ± 0.49 A | 3.64 ± 0.62 B | |
HSDp < 0.05 F | *** (0.0003) | n.s. (0.5224) | *** (0.0009) | |
Year (Y) | 2019 | 54.8 ± 7.8 A | 6.87 ± 0.36 A | 3.13 ± 0.42 A |
2020 | 68.8 ± 6.3 C | 6.72 ± 0.70 A | 3.56 ± 0.73 B | |
2021 | 64.6 ± 4.2 B | 7.25 ± 0.98 B | 3.90 ± 0.76 C | |
HSDp < 0.05 Y | *** (0.0000) | *** (0.0002) | *** (0.0000) | |
Mean | 62.7 ± 8.6 | 6.95 ± 0.76 | 3.53 ± 0.73 |
Cultivar (C) | Fertilization (F) | Number of Spikes per m2 | Grain Weight per Spike (g) | Number of Grains per Spike | TGW (g) |
---|---|---|---|---|---|
Baryłka | Control | 679 ± 58 a | 0.68 ± 0.11 a | 18.0 ± 1.2 ab | 49.0 ± 1.8 ab |
Cu | 678 ± 38 a | 0.68 ± 0.18 a | 16.8 ± 2.9 ab | 49.6 ± 2.0 bc | |
Mn | 673 ± 61 a | 0.67 ± 0.15 a | 17.7 ± 1.5 ab | 49.5 ± 1.4 b | |
Mo | 694 ± 75 a | 0.64 ± 0.12 a | 17.3 ± 1.4 ab | 49.8 ± 2.1 bc | |
Zn | 713 ± 97 a | 0.65 ± 0.11 a | 17.3 ± 1.2 ab | 49.5 ± 1.3 b | |
KWS Irina | Control | 686 ± 76 a | 0.58 ± 0.06 a | 15.8 ± 2.3 a | 48.6 ± 1.6 b |
Cu | 688 ± 64 a | 0.67 ± 0.20 a | 17.7 ± 1.9 ab | 49.8 ± 1.6 bc | |
Mn | 719 ± 56 a | 0.68 ± 0.15 a | 17.9 ± 1.2 ab | 48.2 ± 2.1 ab | |
Mo | 711 ± 71 a | 0.68 ± 0.17 a | 18.1 ± 1.6 ab | 49.2 ± 1.6 b | |
Zn | 719 ± 70 a | 0.70 ± 0.17 a | 18.0 ± 2.0 ab | 48.1 ± 2.6 a | |
RGT Planet | Control | 693 ± 52 a | 0.67 ± 0.15 a | 18.0 ± 1.8 ab | 48.9 ± 2.0 ab |
Cu | 722 ± 62 a | 0.76 ± 0.11 a | 18.6 ± 1.0 bc | 48.4 ± 2.4 ab | |
Mn | 713 ± 51 a | 0.76 ± 0.16 a | 18.7 ± 1.5 bc | 50.6 ± 1.9 c | |
Mo | 737 ± 81 a | 0.73 ± 0.14 a | 18.0 ± 1.3 ab | 49.4 ± 2.9 b | |
Zn | 737 ± 89 a | 0.76 ± 0.17 a | 18.6 ± 1.8 bc | 50.4 ± 2.1 c | |
HSDp < 0.05 C × F | n.s. (0.9748) | n.s. (0.8700) | * (0.0458) | ** (0.0048) | |
Mean | Baryłka | 687 ± 68 A | 0.66 ± 0.13 A | 17.4 ± 1.7 A | 49.5 ± 1.7 B |
KWS Irina | 705 ± 67 B | 0.66 ± 0.16 A | 17.5 ± 2.0 A | 48.8 ± 2.0 A | |
RGT Planet | 720 ± 68 C | 0.74 ± 0.15 B | 18.4 ± 1.5 B | 49.5 ± 2.4 B | |
HSDp < 0.05 C | *** (0.0006) | ** (0.0057) | * (0.0145) | * (0.0220) | |
Mean | Control | 686 ± 61 A | 0.64 ± 0.12 A | 17.3 ± 2.1 A | 48.8 ± 1.8 A |
Cu | 696 ± 58 AB | 0.70 ± 0.17 B | 17.7 ± 2.1 A | 49.3 ± 2.1 AB | |
Mn | 701 ± 58 A–C | 0.70 ± 0.16 B | 18.1 ± 1.4 A | 49.5 ± 2.0 B | |
Mo | 714 ± 76 BC | 0.68 ± 0.14 AB | 17.8 ± 1.4 A | 49.5 ± 2.2 B | |
Zn | 723 ± 84 C | 0.70 ± 0.16 B | 18.0 ± 1.7 A | 49.4 ± 2.2 AB | |
HSDp < 0.05 F | ** (0.0013) | ** (0.0049) | n.s. (0.3189) | * (0.0257) | |
Year (Y) | 2019 | 697 ± 66 B | 0.58 ± 0.07 A | 18.4 ± 1.3 B | 49.5 ± 1.7 B |
2020 | 648 ± 29 A | 0.62 ± 0.07 B | 16.6 ± 1.1 A | 47.8 ± 2.0 A | |
2021 | 767 ± 43 C | 0.86 ± 0.12 C | 18.3 ± 2.2 B | 50.5 ± 1.5 C | |
HSDp < 0.05 Y | *** (0.0000) | *** (0.0000) | *** (0.0000) | *** (0.0000) | |
Mean | 704 ± 69 | 0.69 ± 0.15 | 17.8 ± 1.8 | 49.3 ± 2.1 |
Cultivar (C) | Fertilization (F) | Grain Yield (GY) (t∙ha−1) | Harvest Index (HI) | Uniformity (%) |
---|---|---|---|---|
Baryłka | Control | 5.16 ± 0.97 a | 0.49 ± 0.05 ab | 92.7 ± 2.4 a |
Cu | 5.45 ± 0.64 ab | 0.51 ± 0.04 ab | 91.0 ± 4.6 a | |
Mn | 5.31 ± 0.86 ab | 0.53 ± 0.02 b | 93.0 ± 4.4 a | |
Mo | 5.50 ± 0.80 ab | 0.51 ± 0.04 ab | 92.1 ± 3.7 a | |
Zn | 5.52 ± 0.95 ab | 0.52 ± 0.04 b | 93.5 ± 2.9 a | |
KWS Irina | Control | 5.12 ± 0.90 a | 0.45 ± 0.06 a | 90.8 ± 5.9 a |
Cu | 5.53 ± 0.66 ab | 0.51 ± 0.03 ab | 92.8 ± 3.6 a | |
Mn | 5.87 ± 0.57 d | 0.50 ± 0.03 ab | 90.4 ± 5.7 a | |
Mo | 5.68 ± 0.94 b | 0.51 ± 0.05 ab | 91.1 ± 5.5 a | |
Zn | 5.76 ± 0.90 c | 0.51 ± 0.03 ab | 90.8 ± 5.6 a | |
RGT Planet | Control | 5.61 ± 0.62 b | 0.50 ± 0.05 ab | 93.0 ± 4.1 a |
Cu | 5.81 ± 0.68 cd | 0.54 ± 0.04 b | 91.2 ± 4.5 a | |
Mn | 5.76 ± 0.90 c | 0.54 ± 0.02 b | 93.0 ± 4.7 a | |
Mo | 6.05 ± 0.92 e | 0.53 ± 0.04 b | 93.2 ± 4.1 a | |
Zn | 5.85 ± 1.03 cd | 0.52 ± 0.03 b | 93.2 ± 4.3 a | |
HSDp < 0.05 CxF | ** (0.0096) | n.s. (0.6146) | n.s. (0.2931) | |
Mean | Baryłka | 5.39 ± 0.83 A | 0.51 ± 0.04 B | 92.5 ± 3.7 B |
KWS Irina | 5.59 ± 0.82 B | 0.50 ± 0.05 A | 91.2 ± 5.2 A | |
RGT Planet | 5.81 ± 0.78 C | 0.53 ± 0.04 B | 92.7 ± 4.3 B | |
HSDp < 0.05 C | *** (0.0000) | ** (0.0020) | * (0.0291) | |
Mean | Control | 5.30 ± 0.85 A | 0.48 ± 0.05 A | 92.2 ± 4.4 A |
Cu | 5.59 ± 0.66 B | 0.52 ± 0.04 B | 91.7 ± 4.2 A | |
Mn | 5.65 ± 0.73 B | 0.52 ± 0.03 B | 92.2 ± 5.0 A | |
Mo | 5.74 ± 0.89 B | 0.52 ± 0.04 B | 92.1 ± 4.5 A | |
Zn | 5.71 ± 0.95 B | 0.52 ± 0.03 B | 92.5 ± 4.4 A | |
HSDp < 0.05 F | *** (0.0000) | *** (0.0000) | n.s. (0.7156) | |
Year (Y) | 2019 | 5.39 ± 0.75 B | 0.50 ± 0.04 A | 91.9 ± 2.7 B |
2020 | 4.94 ± 0.35 A | 0.50 ± 0.03 A | 87.8 ± 3.3 A | |
2021 | 6.47 ± 0.36 C | 0.53 ± 0.05 B | 96.8 ± 1.0 C | |
HSDp < 0.05 Y | *** (0.0000) | *** (0.0000) | *** (0.0000) | |
Mean | 5.60 ± 0.83 | 0.51 ± 0.04 | 92.1 ± 5.0 |
Parameters | Plant Height | Spike Length | Number of Productive Tillers per Plant | Number of Spikes per m−2 | Grain Weight per Spike | Number of Grains per Spike | TGW | GY | HI | Uniformity |
---|---|---|---|---|---|---|---|---|---|---|
Plant height | 1.00 | |||||||||
Spike length | 0.13 | 1.00 | ||||||||
Number of productive tillers per plant | −0.08 | 0.06 | 1.00 | |||||||
Number of spikes per m-2 | 0.00 | 0.22 | 0.06 | 1.00 | ||||||
Grain weight per spike | 0.35 | 0.38 | −0.27 | 0.53 | 1.00 | |||||
Number of grains per spike | −0.09 | 0.21 | 0.04 | 0.25 | 0.51 | 1.00 | ||||
TGW | −0.05 | 0.24 | 0.00 | 0.44 | 0.37 | 0.32 | 1.00 | |||
GY | 0.08 | 0.27 | 0.01 | 0.88 | 0.66 | 0.30 | 0.51 | 1.00 | ||
HI | 0.07 | 0.17 | 0.08 | 0.33 | 0.55 | 0.49 | 0.33 | 0.39 | 1.00 | |
Uniformity | −0.01 | 0.31 | −0.19 | 0.60 | 0.56 | 0.35 | 0.68 | 0.65 | 0.33 | 1.00 |
|r| = 1 full correlation | ||||||||||
0.9 < |r|< 1.0 almost full correlation | ||||||||||
0.7< |r| ≤ 0.9 very high correlation | ||||||||||
0.5 < |r| ≤ 0.7 high correlation | ||||||||||
0.3 < |r| ≤ 0.5 medium correlation | ||||||||||
0.1 < |r| ≤ 0.3 weak correlation | ||||||||||
0.0 < |r| ≤ 0.1 slight correlation | ||||||||||
0.0 < |r| ≤ −0.1 slight correlation | ||||||||||
−0.1 < |r| ≤ −0.3 weak correlation | ||||||||||
−0.3 < |r| ≤ −0.5 medium correlation | ||||||||||
−0.5 < |r|≤ −0.7 high correlation | ||||||||||
−0.7< |r| ≤ −0.9 very high correlation | ||||||||||
−0.9 < |r| < −1.0 almost full correlation | ||||||||||
|r| = 1 full correlation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stadnik, B.; Tobiasz-Salach, R.; Migut, D. Influence of Foliar Application of Microelements on Yield and Yield Components of Spring Malting Barley. Agriculture 2024, 14, 505. https://doi.org/10.3390/agriculture14030505
Stadnik B, Tobiasz-Salach R, Migut D. Influence of Foliar Application of Microelements on Yield and Yield Components of Spring Malting Barley. Agriculture. 2024; 14(3):505. https://doi.org/10.3390/agriculture14030505
Chicago/Turabian StyleStadnik, Barbara, Renata Tobiasz-Salach, and Dagmara Migut. 2024. "Influence of Foliar Application of Microelements on Yield and Yield Components of Spring Malting Barley" Agriculture 14, no. 3: 505. https://doi.org/10.3390/agriculture14030505
APA StyleStadnik, B., Tobiasz-Salach, R., & Migut, D. (2024). Influence of Foliar Application of Microelements on Yield and Yield Components of Spring Malting Barley. Agriculture, 14(3), 505. https://doi.org/10.3390/agriculture14030505