Linear and Nonlinear Mixed Models to Determine the Growth Curves of Weaned Piglets and the Effect of Sex on Growth
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
- Linear models:
- Quadratic model:
- b.
- Exponential model:
- 2.
- Nonlinear models
- Gompertz model [25]:
- b.
- Logistic model [26]:
- c.
- Richards model [19]:
- d.
- Von-Bertalanffy model [27]:
3. Results
3.1. Mixed Modelling of Growth Performance
3.2. Environment Quality
4. Discussion
4.1. Effect of Sex on Growth
4.2. Use of Mixed Models to Model Piglet Growth in the Postweaning Phase
4.3. Characterization of Growth Rates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Boe, K. The process of weaning in pigs: When the sow decides. Appl. Anim. Behav. Sci. 1991, 30, 47–59. [Google Scholar] [CrossRef]
- Jensen, P. Observations on the maternal behaviour of free-ranging domestic pigs. Appl. Anim. Behav. Sci. 1986, 16, 131–142. [Google Scholar] [CrossRef]
- Newberry, R.C.; Wood-Gush, D.G.M.; Hall, J.W. Playful behaviour of piglets. Behav. Process. 1988, 17, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Stolba, A.; Wood-Gush, D.G.M. The behaviour of pigs in a semi-natural environment. Anim. Sci. 1989, 48, 419–425. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.V.; Rodriguez Zas, S.L.; Sloter, N.L.; McNamara, K.A.; Gall, T.J.; Levis, D.G.; Safranski, T.J.; Singleton, W.L. An Analysis of Survey Data by Size of the Breeding Herd for the Reproductive Management Practices of North American Sow Farms. J. Anim. Sci. 2013, 91, 433–445. [Google Scholar] [CrossRef] [PubMed]
- European Council Directive 2008/120/EC of 18 December 2008, Laying down Minimum Standards for the Protection of Pigs. Available online: http://data.europa.eu/eli/dir/2008/120/oj (accessed on 26 December 2023).
- Faccin, J.E.G.; Laskoski, F.; Cemin, H.S.; Mellagi, A.P.G.; Bernardi, M.L.; Dvm, R.R.U.; Bortolozzo, F.P.; Tokach, M.D. Evaluating the impact of weaning weight and growth rate during the first week post weaning on overall nursery performance. J. Swine Health Prod. 2020, 28, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Moeser, A.J.; Pohl, C.S.; Rajput, M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim. Nutr. 2017, 3, 313–321. [Google Scholar] [CrossRef]
- Ming, D.; Wang, W.; Huang, C.; Wang, Z.; Shi, C.; Ding, J.; Liu, H.; Wang, F. Effects of Weaning Age at 21 and 28 Days on Growth Performance, Intestinal Morphology and Redox Status in Piglets. Animals 2021, 11, 2169. [Google Scholar] [CrossRef]
- Leliveld, L.M.C.; Riemensperger, A.V.; Gardiner, G.E.; O’Doherty, J.V.; Lynch, P.B.; Lawlor, P.G. Effect of Weaning Age and Postweaning Feeding Programme on the Growth Performance of Pigs to 10 Weeks of Age. Livest. Sci. 2013, 157, 225–233. [Google Scholar] [CrossRef]
- Moeser, A.J.; Ryan, K.A.; Nighot, P.K.; Blikslager, A.T. Gastrointestinal Dysfunction Induced by Early Weaning Is Attenuated by Delayed Weaning and Mast Cell Blockade in Pigs. Am. J. Physiol.-Gastrointest. Liver Physiol. 2007, 293, G413–G421. [Google Scholar] [CrossRef] [PubMed]
- Marquer, P. Pig farming in the EU, a changing sector. In Eurostat. Statistics in Focus; Agriculture and Fisheries; European Commision: Brussels, Belgium, 2010; pp. 1–11. [Google Scholar]
- Elbert, K.; Matthews, N.; Wassmuth, R.; Tetens, J. Effects of Sire Line, Birth Weight and Sex on Growth Performance and Carcass Traits of Crossbred Pigs under Standardized Environmental Conditions. Arch. Anim. Breed. 2020, 63, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Gómez, M.; García-Contreras, C.; Astiz, S.; Torres-Rovira, L.; Fernández-Moya, E.; Olivares, Á.; Daza, A.; Óvilo, C.; González-Bulnes, A.; Isabel, B. Piglet Birthweight and Sex Affect Growth Performance and Fatty Acid Composition in Fatty Pigs. Anim. Prod. Sci. 2020, 60, 573. [Google Scholar] [CrossRef]
- Cassar, G.; King, W.A.; King, J.C. Influence of sex on early growth of pig conceptuses. Reproduction 1994, 101, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, G.G.; Baghel, R.P.S.; Nayak, S.; Ganie, A.A. Effect of sex on growth performance, nutrient utilization and carcass characteristics in croos bred pigs. Indian J. Anim. Res. 2017, 51, 175–178. [Google Scholar]
- Boedeker, P. Nonlinear mixed-effects growth models: A tutorial using “saemix” in R. Methodology 2021, 17, 250–270. [Google Scholar] [CrossRef]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–301. [Google Scholar] [CrossRef]
- Janoschek, A. Das Reaktionskinetische Grundgesetz Und Seine Beziehungen Zum Wachstums-Und Ertragsgesetz. Stat. Vierteljahresschr. 1957, 10, 25–37. [Google Scholar]
- Whittemore, C.T.; Tullis, J.B.; Emmans, G.C. Protein growth in Pigs. Anim. Prod. 1988, 46, 437–445. [Google Scholar] [CrossRef]
- Das, P.; Paul, A.K.; Paul, R.K. Evaluation of Alternative Nonlinear Mixed Effects Models for Estimating Pig Growth Parameters. Indian J. Anim. Sci. 2017, 87, 219–226. [Google Scholar] [CrossRef]
- Besteiro, R.; Arango, T.; Rodríguez, M.R.; Fernández, M.D.; Velo, R. Estimation of Patterns in Weaned Piglets’ Activity Using Spectral Analysis. Biosyst. Eng. 2018, 173, 85–92. [Google Scholar] [CrossRef]
- Arnqvist, G. Mixed models offer no freedom from degrees of freedom. Trends Ecol. Evol. 2020, 35, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Winsor, C.P. The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Robertson, T.B. The Chemical Basis of Growth and Senescence; Monograpgs on Experimental Biology; J.B. Lippincott Company: London, UK, 1923. [Google Scholar]
- von Bertalanffy, L. Quantitative laws in metabolism and growth. Q. Rev. Biol. 1957, 32, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Fialho, F.B. Interpretação da curva de crescimento de Gompertz. Comun. Técnico 1999, 237, 1–4. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- R Studio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2021. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Comets, E.; Lavenu, A.; Lavielle, M. Parameter Estimation in Nonlinear Mixed Effect Models Using Saemix, an R Implementation of the SAEM algorithm. J. Stat. Softw. 2017, 80, 1–41. [Google Scholar] [CrossRef]
- Do, C.H. Estimation of Weaning Age Effects on Growth Performance in Berkshire pigs. Asian-Australas. J. Anim. Sci. 2011, 25, 151–162. [Google Scholar] [CrossRef]
- Main, R.G.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L. Increasing Weaning Age Improves Pig Performance in a Multisite Production System1. J. Anim. Sci. 2004, 82, 1499–1507. [Google Scholar] [CrossRef]
- Colson, V.; Orgeur, P.; Foury, A.; Mormède, P. Consequences of weaning piglets at 21 and 28 days on growth, behaviour and hormonal responses. Appl. Anim. Behav. Sci. 2006, 98, 70–88. [Google Scholar] [CrossRef]
- Milligan, B.N.; Fraser, D.; Kramer, D.L. Within-Litter Birth Weight Variation in the Domestic Pig and Its Relation to Pre-Weaning Survival, Weight Gain, and Variation in Weaning Weights. Livest. Prod. Sci. 2002, 76, 181–191. [Google Scholar] [CrossRef]
- Wiegert, J.G.; Garrison, C.; Knauer, M.T. Characterization of Birth Weight and Colostrum Intake on Piglet Survival and Piglet Quality. J. Anim. Sci. 2017, 85, 32. [Google Scholar] [CrossRef]
- Craig, B.A.; Schinckel, A.P. Nonlinear mixed effects model for swine growth. Prof. Anim. Sci. 2001, 17, 256–260. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Kerton, D.K.; Cranwell, P.D.; Campbell, R.G.; Mullan, B.P.; King, R.H.; Power, G.N.; Pluske, J.R. Lifetime and Post-Weaning Determinants of Performance Indices of Pigs. Aust. J. Agric. Res. 2003, 54, 363. [Google Scholar] [CrossRef]
- Škorjanc, D.; Brus, M.; Čandek Potokar, M. Effect of birth weight and sex on pre-weaning growth rate of piglets. Arch. Anim. Breed. 2007, 50, 476–486. [Google Scholar] [CrossRef]
- Collins, C.L.; Pluske, J.R.; Morrison, R.S.; McDonald, T.N.; Smits, R.J.; Henman, D.J.; Stensland, I.; Dunshea, F.R. Post-Weaning and Whole-of-Life Performance of Pigs Is Determined by Live Weight at Weaning and the Complexity of the Diet Fed after Weaning. Anim. Nutr. 2017, 3, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Coyne, J.M.; Berry, D.P.; Mäntysaari, E.A.; Juga, J.; McHugh, N. Comparison of Fixed Effects and Mixed Model Growth Functions in Modelling and Predicting Live Weight in Pigs. Livest. Sci. 2015, 177, 8–14. [Google Scholar] [CrossRef]
- Araujo Neto, F.R.; Oliveira, D.P.; Aspilcueta-Borquis, R.R.; Vieira, D.A.; Guimarães, K.C.; Oliveira, H.N.; Tonhati, H. Selection of Nonlinear Mixed Models for Growth Curves of Dairy Buffaloes (Bubalus bubalis). J. Agric. Sci. 2020, 158, 218–224. [Google Scholar] [CrossRef]
- Júnior, R.N.C.C.; de Araújo, C.V.; da Silva, W.C.; de Araújo, S.I.; Lôbo, R.B.; Nakabashi, L.R.M.; de Castro, L.M.; Menezes, F.L.; Maciel e Silva, A.G.; Silva, L.K.X.; et al. Mixed Models in Nonlinear Regression for Description of the Growth of Nelore Cattle. Animals 2022, 13, 101. [Google Scholar] [CrossRef]
- Santos, H.B.; Vieira, D.A.; Souza, L.P.; Santos, A.L.; Santos, F.R.; Araujo Neto, F.R. Application of Non-Linear Mixed Models for Modelling the Quail Growth Curve for Meat and Laying. J. Agric. Sci. 2018, 156, 1216–1221. [Google Scholar] [CrossRef]
- de Barboza, R.C.O.; de Silva, F.L.; Hongyu, K. Cluster Analysis of the Estimates from Growth Curves. Biodiversity 2018, 17, 39–47. [Google Scholar]
- Lambe, N.R.; Navajas, E.A.; Simm, G.; Bünger, L. A Genetic Investigation of Various Growth Models to Describe Growth of Lambs of Two Contrasting Breeds. J. Anim. Sci. 2006, 84, 2642–2654. [Google Scholar] [CrossRef] [PubMed]
- Strathe, A.B.; Danfær, A.; Sørensen, H.; Kebreab, E. A Multilevel Nonlinear Mixed-Effects Approach to Model Growth in Pigs. J. Anim. Sci. 2010, 88, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Brisbin, I.L.; Collins, C.T.; White, G.C.; McCallum, D.A. A New Paradigm for the Analysis and Interpretation of Growth Data: The Shape of Things to Come. Auk 1987, 104, 552–554. [Google Scholar] [CrossRef]
- Nielsen, C.L.; Krogh, M.A.; Sørensen, J.T.; Kongsted, H. A Field Trial on the Effect of Cross-Fostering and Weaning Age on Daily Gain and Disease Resilience in Weaned Pigs. Prev. Vet. Med. 2022, 208, 105762. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.X.; Li, C.J.; Li, S.H.; Fan, X.Y.; Xu, W.; Cui, Y.; Li, D. Ultra-Early Weaning Alters Growth Performance, Hematology Parameters, and Fecal Microbiota in Piglets with Same Genetic Background. Front. Microbiol. 2022, 13, 990905. [Google Scholar] [CrossRef] [PubMed]
- Winters, J.F.M.; Foldager, L.; Pedersen, L.J. Postweaning Growth and Feeding Behaviour in Pigs: Effect of Heavier Hybrid and Weaning Intact Litters in Farrowing Pens for Loose-Housed Sows. Animal 2023, 17, 100688. [Google Scholar] [CrossRef] [PubMed]
- Archer, C.; Garcia, A.; Henderson, M.; McGlone, J.J. Olfactory Enrichment Using a Maternal Pheromone Improved Post-Weaning Pig Performance and Behavior. Front. Vet. Sci. 2022, 9, 965370. [Google Scholar] [CrossRef]
- DeDecker, J.M.; Ellis, M.; Wolter, B.F.; Corrigan, B.P.; Curtis, S.E.; Hollis, G.R. Effect of Stocking Rate on Pig Performance in a Wean-to-Finish Production System. Can. J. Anim. Sci. 2005, 85, 1–5. [Google Scholar] [CrossRef]
- Le Dividich, J.; Herpin, P. Effects of Climatic Conditions on the Performance, Metabolism and Health Status of Weaned Piglets: A review. Livest. Prod. Sci. 1994, 38, 79–90. [Google Scholar] [CrossRef]
- Forcada, F.; Babot, D.; Vidal, A.; Buxadé, C. Ganado Porcino. Diseño de Alojamientos e Instalaciones, 1st ed.; Servet: Zaragoza, Spain, 2009. [Google Scholar]
- Riskowski, G.L. The Effect of Air Velocity and Temperature on Growth Performance and Stress Indicators of Weanling Pigs. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1986. [Google Scholar]
- Sällvik, K.; Walberg, K. The Effects of Air Velocity and Temperature on the Behaviour and Growth of Pigs. J. Agric. Eng. Res. 1984, 30, 305–312. [Google Scholar] [CrossRef]
- Wolter, B.F.; Ellis, M.; Corrigan, B.P.; DeDecker, J.M.; Curtis, S.E.; Parr, E.N.; Webel, D.M. Impact of Early Postweaning Growth Rate as Affected by Diet Complexity and Space Allocation on Subsequent Growth Performance of Pigsin a Wean-to-Finish Production System. J. Anim. Sci. 2003, 81, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Gonyou, H.W.; Brumm, M.C.; Bush, E.; Deen, J.; Edwards, S.A.; Fangman, T.; McGlone, J.J.; Meunier-Salaun, M.; Morrison, R.B.; Spoolder, H.; et al. Application of Broken-Line Analysis to Assess Floor Space Requirements of Nursery and Grower-Finisher Pigs Expressed on an Allometric Basis. J. Anim. Sci. 2006, 84, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Laskoski, F.; Faccin, J.; Vier, C.; Goncalves, M.; Orlando, U.; Kummer, R.; Mellagi, A.; Bernardi, M.; Wentz, I.; Bortolozzo, F. Effects of Pigs per Feeder Hole and Group Size on Feed Intake Onset, Growth Performance, and Ear and Tail Lesions in Nursery Pigs with Consistent Space Allowance. J. Swine Health Prod. 2019, 27, 12–18. [Google Scholar] [CrossRef]
Lacto-Initiator | Pre-Starter | Starter | |
---|---|---|---|
Crude protein | 19.90% | 20.11% | 18.41% |
Crude fat content | 6.30% | 7.11% | 5.87% |
Crude ash | 5.56% | 5.35% | 5.18% |
Crude fibre | 2.54% | 2.58% | 3.02% |
Lysine | 1.55% | 1.48% | 1.33% |
Methionine | 0.59% | 0.63% | 0.49% |
Calcium | 0.57% | 0.80% | 0.70% |
Phosphorus | 0.56% | 0.54% | 0.50% |
Sodium | 0.34% | 0.25% | 0.20% |
Main ingredients | Corn heat-treated, Whey powder, Wheat, Rice heat-treated, Extruded full-fat soybean. | GM Corn, Wheat, Extruded GM soybean meal, Barley, Whey powder. | GM Corn, Wheat, Extruded soybean meal heat-treated, Barley, Butter. |
Postweaning Week 0 | Postweaning Week 6 | |||||
---|---|---|---|---|---|---|
Mean (SD) | Min | Max | Mean (SD) | Min | Max | |
CM–C1 | 6.71 (0.454) | 6.17 | 7.21 | 19.90 (0.737) | 17.80 | 21.00 |
FM–C1 | 6.53 (0.362) | 6.20 | 6.95 | 19.41 (1.058) | 17.80 | 21.20 |
CM–C2 | 7.38 (0.691) | 6.65 | 8.25 | 19.44 (1.030) | 18.00 | 21.30 |
FM–C2 | 6.72 (0.557) | 6.05 | 7.30 | 19.11 (1.162) | 16.80 | 20.40 |
Cycle | Week Postweaning | p-Value | CIlow | CIupp | t Value | df |
---|---|---|---|---|---|---|
1 | 0 | 0.517 | −1.00 | 0.63 | −0.733 | 3 |
1 | 1 | 0.598 | −0.40 | 0.26 | −0.571 | 4 |
1 | 2 | 0.850 | −1.02 | 1.18 | 0.202 | 4 |
1 | 3 | 0.868 | −0.79 | 0.90 | 0.177 | 4 |
1 | 4 | 0.826 | −1.35 | 1.13 | −0.231 | 5 |
1 | 5 | 0.744 | −0.78 | 1.04 | 0.342 | 6 |
1 | 6 | 0.294 | −1.49 | 0.51 | −1.122 | 8 |
2 | 0 | 0.005 | −0.99 | −0.33 | −5.510 | 4 |
2 | 1 | 0.044 | −0.92 | −0.02 | −2.906 | 4 |
2 | 2 | 0.100 | −0.92 | 0.12 | −2.130 | 4 |
2 | 3 | 0.644 | −1.36 | 0.95 | −0.499 | 4 |
2 | 4 | 0.524 | −1.67 | 0.97 | −0.684 | 5 |
2 | 5 | 0.517 | −1.53 | 0.85 | −0.682 | 7 |
2 | 6 | 0.625 | −1.80 | 1.15 | −0.509 | 8 |
Quadratic | Exponential | Gompertz | Richards | Logistic | Von-Bertalanffy | |
---|---|---|---|---|---|---|
RMSE | 0.402 | 0.547 | 0.296 | 0.300 | 0.346 | 0.288 |
r | 0.996 | 0.994 | 0.998 | 0.998 | 0.997 | 0.998 |
R2 | 0.996 | 0.987 | 0.996 | 0.996 | 0.995 | 0.996 |
AIC | 27.362 | 26.055 | 32.022 | 25.757 | ||
BIC | 22.452 | 21.759 | 28.339 | 20.847 |
Gompertz | Richards | Logistic | Von-Bertalanffy | |
---|---|---|---|---|
L | 6.86 (0.141) | 6.48 (0.372) | 6.48 (0.212) | 6.83 (0.165) |
A | 19.74 (1.706) | 17.18 (2.418) | 14.72 (0.781) | 23.34 (2.792) |
K | 0.07 (0.007) | 0.10 (0.040) | 0.14 (0.012) | 0.05 (0.006) |
T | 27.66 (1.319) | 27.35 (1.032) | 26.83 (0.687) | 2.56 (1.629) |
s | 0.47 (0.634) |
Mean (SD) | Min | Max | Week of Maximum * | |
---|---|---|---|---|
TA C1 (°C) | 27.7 (1.73) | 22.0 | 34.3 | 6th week |
TA C2 (°C) | 25.1 (1.19) | 20.0 | 29.2 | 5th week |
HA C1 (%) | 59.9 (6.05) | 36.4 | 88.4 | 3rd week |
HA C2 (%) | 64.7 (6.52) | 38.8 | 93.8 | 3rd week |
AVA C1 (m/s) | 0.09 (0.052) | 0.05 | 0.46 | 6th week |
AVA C2 (m/s) | 0.09 (0.060) | 0.05 | 0.53 | 5th week |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besteiro, R.; Arango, T.; Rodríguez, M.R.; Fernández, M.D. Linear and Nonlinear Mixed Models to Determine the Growth Curves of Weaned Piglets and the Effect of Sex on Growth. Agriculture 2024, 14, 79. https://doi.org/10.3390/agriculture14010079
Besteiro R, Arango T, Rodríguez MR, Fernández MD. Linear and Nonlinear Mixed Models to Determine the Growth Curves of Weaned Piglets and the Effect of Sex on Growth. Agriculture. 2024; 14(1):79. https://doi.org/10.3390/agriculture14010079
Chicago/Turabian StyleBesteiro, Roberto, Tamara Arango, Manuel R. Rodríguez, and María D. Fernández. 2024. "Linear and Nonlinear Mixed Models to Determine the Growth Curves of Weaned Piglets and the Effect of Sex on Growth" Agriculture 14, no. 1: 79. https://doi.org/10.3390/agriculture14010079
APA StyleBesteiro, R., Arango, T., Rodríguez, M. R., & Fernández, M. D. (2024). Linear and Nonlinear Mixed Models to Determine the Growth Curves of Weaned Piglets and the Effect of Sex on Growth. Agriculture, 14(1), 79. https://doi.org/10.3390/agriculture14010079