Evaluation of the Essential Oils Used in the Production of Biopesticides: Assessing Their Toxicity toward Both Arthropod Target Species and Beneficial Pollinators
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Analysis Regarding the Effect of the Essential Oils as Biopesticides
3.2. The Main Essential Oils Currently Used as Biopesticides
- 1.
- Citronella oil is extracted from Cymbopogon nardus L. and Cymbopogon winterianus Jowitt ex Bor [17,18]. PC Code 021901 (First Registration 1965: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. It is not approved for use in the EU (EU Pesticides Database); Expiry of Approval: 31 August 2022. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances [20] (accessed on 13 November 2023).
- 2.
- Lemongrass oil is extracted from Cymbopogon flexuosus (Nees ex Steud.) Will.Watson and Cymbopogon citratus (DC.) Stapf PC Code (Pesticide Chemical Code) 040502 (First Registration 1972: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. It is not approved for use in the EU (EU Pesticides Database) [20].
- 3.
- Clove oil is extracted from Syzygium aromaticum (L.) Merr. & L.M.Perry (Myrtaceae) (syn Eugenia caryophyllata Thunb.); the main constituent is eugenol; PC Code 102701 (First Registration 1983: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. Clove oil and eugenol are approved for use in the EU (EU Pesticides Database) [20].
- 4.
- Thyme oil usually originates from Thymus vulgaris L., but it can also be extracted from other species of the genus Thymus, as T. pectinatus Fisch. & C.A.Mey., and T. capitatus (L.) Hoffmanns. & Link [58]. PC Code 597800 (First Registration 2004: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. Thyme oil is not approved for use in the EU, but its constituent, thymol, is approved (EU Pesticides Database) [20].
- 5.
- Mint oil—the main species from which this oil is extracted are spearmint (Mentha spicata L.), peppermint (M. × piperita L.), and corn mint (M. canadensis L.) (Lamiaceae), the last being cultivated exclusively for obtaining the essential oil [6]. PC Code 128800 (First Registration 2000: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. Only spearmint oil is approved for use in the EU (EU Pesticides Database) [20]; peppermint oil is not approved.
- 6.
- Cinnamon oil—the main biologically active substances are cinnamaldehyde and eugenol. For cinnamaldehyde PC Code is 040506 (First Registration in 1994: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. Cinnamon oil is not approved for use in the EU, but its constituent, cinnamaldehyde, is pending for approval (EU Pesticides Database) [20].
- 7.
- Rosemary oil—from Salvia rosmarinus Spenn. (Rosmarinus officinalis L.) (Lamiaceae); PC Code 597700 (First Registration 1998: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. It is not approved for use in the EU (EU Pesticides Database) [20].
- 8.
- Oregano oil—mainly extracted from Origanum vulgare L. (Lamiaceae); PC Code 004300 (First Registration 2011: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. It is not approved for use in the EU (EU Pesticides Database) [20]. Oregano extract is used in the production of the biopesticide Banaforce 21 Od. (Aspeagro Global SL, Mutxamel, Spain).
- 9.
- Sweet orange oil is extracted from Citrus × aurantium f. aurantium (L.) Osbeck (syn. Citrus sinensis); PC Code 040517 (First Registration 1974: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. It is approved for use in the EU (EU Pesticides Database) [20].
- 10.
- Eucalyptus oil—PC Code 040503 (First Registration 1994: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. It is not approved for use in the EU (EU Pesticides Database) [20].
- 11.
- Tea tree oil—PC Code 028853 (First Registration 2014: Source EPA, https://www.epa.gov (accessed on 13 November 2023)) [19]. It is not approved for use in the EU (EU Pesticides Database) [20].
4. Discussion
- The origin of the essential oil: The oils used experimentally are obtained from very diverse sources by the researchers; in some cases, they are procured from trade or from industrial production [88]. In this case, it is not always possible to know the exact species from which the oil was extracted. Given the significant variability in oil components, which depends on factors such as species, variety, area of origin, climatic conditions, and extraction method, it is understandable to obtain different results in the experiments conducted [114,118,126].
- Performing treatments in the laboratory or in the open field: Most experimental studies are conducted under laboratory conditions [58,93,145,150], with fewer directly in the field [55,65] or comparatively (in the laboratory and field) [108]. The latter emphasizes the idea that laboratory studies cannot always be extrapolated to field conditions; in order to certify a certain effect of an oil (both against harmful species and against the non-target ones, especially the useful ones), additional investigations are necessary.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Beyond Organic Farming—Harnessing Biodiversity-Friendly Landscapes. Trends Ecol. Evol. 2021, 36, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Gostin, I.N.; Oprica, L.; Onofrei, M.; Anton, S.G. The Impact of Organic Farming on the Environment, with Accent to the Changes Occurring in Agroecosystems. In Organic Farming, Ecomarket and Their Capitalization through the Entrepreneurial Initiative, Course for Trainers; Platania, M., Jeločnik, M., Gostin, I.N., Eds.; Alexandru Ioan Cuza University: Iaşi, Romania, 2020; pp. 145–163. ISBN 978-86-6269-083-8. [Google Scholar]
- Norris, R.F.; Kogan, M. Ecology of interactions between weeds and arthropods. Annu. Rev. Entomol. 2005, 50, 479–503. [Google Scholar] [CrossRef] [PubMed]
- Devrnja, N.; Milutinović, M.; Savić, J. When Scent Becomes a Weapon—Plant Essential Oils as Potent Bioinsecticides. Sustainability 2022, 14, 6847. [Google Scholar] [CrossRef]
- Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Pandey, A.K. Prospective of Essential Oils of the Genus Mentha as Biopesticides: A Review. Front. Plant Sci. 2018, 9, 1295. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef] [PubMed]
- EPA. What Are Biopesticides? 2023. Available online: https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides (accessed on 16 December 2023).
- Liu, X.; Cao, A.; Yan, D.; Ouyang, C.; Wang, Q.; Li, Y. Overview of Mechanisms and Uses of Biopesticides. Int. J. Pest Manag. 2021, 67, 65–72. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Spochacz, M.; Adamski, Z. The Role of Botanical Treatments Used in Apiculture to Control Arthropod Pests. Apidologie 2022, 53, 27. [Google Scholar] [CrossRef]
- Gupta, I.; Singh, R.; Muthusamy, S.; Sharma, M.; Grewal, K.; Singh, H.P.; Batish, D.R. Plant Essential Oils as Biopesticides: Applications, Mechanisms, Innovations, and Constraints. Plants 2023, 12, 2916. [Google Scholar] [CrossRef]
- Isman, M.B.; Machial, C.M. Chapter 2 Pesticides Based on Plant Essential Oils: From Traditional Practice to Commercialization. In Advances in Phytomedicine; Elsevier: Amsterdam, The Netherlands, 2006; Volume 3, pp. 29–44. ISBN 978-0-444-52241-2. [Google Scholar]
- Isman, M.B. Commercial Development of Plant Essential Oils and Their Constituents as Active Ingredients in Bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Cibu, B.; Delcea, C.; Domenteanu, A.; Dumitrescu, G. Mapping the Evolution of Cybernetics: A Bibliometric Perspective. Computers 2023, 12, 237. [Google Scholar] [CrossRef]
- Telaumbanua, M.; Savitri, E.A.; Shofi, A.B.; Suharyatun, S.; Wisnu, F.K.; Haryanto, A. Plant-Based Pesticide Using Citronella (Cymbopogon nardus L.) Extract to Control Insect Pests on Rice Plants. IOP Conf. Ser. Earth Environ. Sci. 2021, 739, 012071. [Google Scholar] [CrossRef]
- Subramanya, S.; Sumanth, K.; Gupta, P.K.; Chayapathy, V.; Keshamma, E.; Murugan, K. Formulation of Green Nanoemulsions for Controlling Agriculture Insects. In Bio-Based Nanoemulsions for Agri-Food Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 165–176. ISBN 978-0-323-89846-1. [Google Scholar]
- EPA. Biopesticide Active Ingredients. 2023. Available online: https://www.epa.gov/ingredients-used-pesticide-products/biopesticide-active-ingredients (accessed on 16 December 2023).
- EU Pesticides Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances (accessed on 16 December 2023).
- Verma, R.S.; Singh, S.; Padalia, R.C.; Tandon, S.; Kt, V.; Chauhan, A. Essential Oil Composition of the Sub-Aerial Parts of Eight Species of Cymbopogon (Poaceae). Ind. Crops Prod. 2019, 142, 111839. [Google Scholar] [CrossRef]
- Oliveira, T.A.S.; Vieira, T.M.; Esperandim, V.R.; Martins, C.H.G.; Magalhães, L.G.; Miranda, M.L.D.; Crotti, A.E.M. Antibacterial, Antiparasitic, and Cytotoxic Activities of Chemical Characterized Essential Oil of Chrysopogon zizanioides Roots. Pharmaceuticals 2022, 15, 967. [Google Scholar] [CrossRef]
- Kaur, H.; Bhardwaj, U.; Kaur, R. Cymbopogon nardus Essential Oil: A Comprehensive Review on Its Chemistry and Bioactivity. J. Essent. Oil Res. 2021, 33, 205–220. [Google Scholar] [CrossRef]
- Bayala, B.; Coulibaly, A.Y.; Djigma, F.W.; Nagalo, B.M.; Baron, S.; Figueredo, G.; Lobaccaro, J.-M.A.; Simpore, J. Chemical Composition, Antioxidant, Anti-Inflammatory and Antiproliferative Activities of the Essential Oil of Cymbopogon nardus, a Plant Used in Traditional Medicine. Biomol. Concepts 2020, 11, 86–96. [Google Scholar] [CrossRef]
- EPA, BIOMITETM, For Mite Control on Agricultural Crops, Ornamental Plants and in Professional Landscape Settings. 2004. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/070057-00001-20040420.pdf (accessed on 16 December 2023).
- Papulwar, P.P.; Rathod, B.U.; Dattagonde, N.R. Studies on Insecticidal Properties of Citronella Grass (Lemon Grass) Essential Oils against Gram Pod Borer (Helicoverpa armigera). Int. J. Chem. Stud. 2018, 2, 44–46. [Google Scholar]
- Ibrahim, S.S.; Abou-Elseoud, W.S.; Elbehery, H.H.; Hassan, M.L. Chitosan-Cellulose Nanoencapsulation Systems for Enhancing the Insecticidal Activity of Citronella Essential Oil against the Cotton Leafworm Spodoptera littoralis. Ind. Crops Prod. 2022, 184, 115089. [Google Scholar] [CrossRef]
- Xavier, V.M.; Message, D.; Picanço, M.C.; Chediak, M.; Júnior, P.A.S.; Ramos, R.S.; Martins, J.C. Acute Toxicity and Sublethal Effects of Botanical Insecticides to Honey Bees. J. Insect. Sci. 2015, 15, 137. [Google Scholar] [CrossRef]
- Xavier, V.M.; Message, D.; Picanço, M.C.; Bacci, L.; Silva, G.A.; Benevenute, J.S. Impact of Botanical Insecticides on Indigenous Stingless Bees (Hymenoptera: Apidae). Sociobiology 2010, 56, 713–726. [Google Scholar]
- Trongtokit, Y.; Rongsriyam, Y.; Komalamisra, N.; Apiwathnasorn, C. Comparative Repellency of 38 Essential Oils against Mosquito Bites. Phytother. Res. 2005, 19, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Songkro, S.; Hayook, N.; Jaisawang, J.; Maneenuan, D.; Chuchome, T.; Kaewnopparat, N. Investigation of Inclusion Complexes of Citronella Oil, Citronellal and Citronellol with β-Cyclodextrin for Mosquito Repellent. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 339–355. [Google Scholar] [CrossRef]
- Nicodemo, D.; Nogueira Couto, R.H. Use of Repellents for Honeybees (Apis mellifera L.) in Vitro in the Yellow Passion-Fruit (Passiflora edulis Deg) Crop and in Confined Beef Cattle Feeders. J. Venom. Anim. Toxins Incl. Trop. Dis. 2004, 10, 77–85. [Google Scholar] [CrossRef]
- El-Helaly, A.A.; EL-Masarawy, M.S.; El-Bendary, H.M. Using Citronella to Protect Bees (Honeybee Apis mellifera L.) from Certain Insecticides and Their Nano Formulations. Braz. J. Biol. 2021, 81, 899–908. [Google Scholar] [CrossRef]
- Siswanto; Trisawa, I.M. The Influence of Cropping Pattern of Pepper with Citronella and Lemongrass to the Insect Diversity and Insect Pests Population. IOP Conf. Ser. Earth Environ. Sci. 2021, 653, 012076. [Google Scholar] [CrossRef]
- Caballero-Gallardo, K.; Scudeler, E.L.; Carvalho Dos Santos, D.; Stashenko, E.E.; Olivero-Verbel, J. Deleterious Effects of Cymbopogon nardus (L.) Essential Oil on Life Cycle and Midgut of the Natural Predator Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Insects 2023, 14, 367. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Hassan, N.N.; Alfuhaid, N.A.; Amer, A.; Awad, M. Insights into the Toxicity, Biochemical Activity, and Molecular Docking of Cymbopogon citratus Essential Oils and Citral on Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 2023, 116, 1185–1195. [Google Scholar] [CrossRef]
- Khalil, M.S.; Halawa, S.M.; Azab, M.M.; Morsy, A.R. Toxicity and Biochemical Effects of Citronella, Mustard and Sage Essential Oils and Their Nanoemulsions against Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Benha J. Appl. Sci. 2023, 8, 79–88. [Google Scholar] [CrossRef]
- Moustafa, M.; Awad, M.; Amer, A.; Hassan, N.; Ibrahim, E.-D.; Ali, H.; Akrami, M.; Salem, M. Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects 2021, 12, 737. [Google Scholar] [CrossRef] [PubMed]
- Ngongang, M.D.T.; Eke, P.; Sameza, M.L.; Mback, M.N.L.N.; Lordon, C.D.; Boyom, F.F. Chemical Constituents of Essential Oils from Thymus vulgaris and Cymbopogon citratus and Their Insecticidal Potential against the Tomato Borer, Tuta absoluta (Lepidoptera: Gelechiidae). Int. J. Trop. Insect. Sci. 2022, 42, 31–43. [Google Scholar] [CrossRef]
- Ganjewala, D.; Gupta, A.K. Lemongrass (Cymbopogon flexuosus Steud.) Wats Essential Oil: Overview and Biological Activities. Recent Prog. Med. Plants 2013, 37, 235–271. [Google Scholar]
- Majewska, E.; Kozłowska, M.; Gruczyńska-Sękowska, E.; Kowalska, D.; Tarnowska, K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation—A Review. Pol. J. Food Nutr. Sci. 2019, 69, 327–341. [Google Scholar] [CrossRef]
- Alves, M.D.S.; Campos, I.M.; Brito, D.D.M.C.D.; Cardoso, C.M.; Pontes, E.G.; Souza, M.A.A.D. Efficacy of Lemongrass Essential Oil and Citral in Controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a Post-Harvest Cowpea Insect Pest. Crop Prot. 2019, 119, 191–196. [Google Scholar] [CrossRef]
- Agwunobi, D.O.; Pei, T.; Wang, K.; Yu, Z.; Liu, J. Effects of the Essential Oil from Cymbopogon citratus on Mortality and Morphology of the Tick Haemaphysalis longicornis (Acari: Ixodidae). Exp. Appl. Acarol. 2020, 81, 37–50. [Google Scholar] [CrossRef]
- Sabahi, Q.; Hamiduzzaman, M.M.d.; Barajas-Pérez, J.S.; Tapia-Gonzalez, J.M.; Guzman-Novoa, E. Toxicity of Anethole and the Essential Oils of Lemongrass and Sweet Marigold to the Parasitic Mite Varroa destructor and Their Selectivity for Honey Bee (Apis mellifera) Workers and Larvae. Psyche J. Ent. 2018, 2018, 6196289. [Google Scholar] [CrossRef]
- Giménez-Martínez, P.; Ramirez, C.; Mitton, G.; Meroi Arcerito, F.; Ramos, F.; Cooley, H.; Fuselli, S.; Maggi, M. Lethal Concentrations of Cymbopogon nardus Essential Oils and Their Main Component Citronellal on Varroa destructor and Apis mellifera. Exp. Parasitol. 2022, 238, 108279. [Google Scholar] [CrossRef]
- Sombra, K.E.S. Selectivity of Essential Oils to the Egg Parasitoid Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). RCA 2022, 53, e20207789. [Google Scholar] [CrossRef]
- Durán-Lara, E.F.; Valderrama, A.; Marican, A. Natural Organic Compounds for Application in Organic Farming. Agriculture 2020, 10, 41. [Google Scholar] [CrossRef]
- Maggi, M.D.; Ruffnengo, S.R.; Gende, L.B.; Sarlo, E.G.; Eguaras, M.J.; Bailac, P.N.; Ponzi, M.I. Laboratory Evaluations of Syzygium aromaticum (L.) Merr. et Perry Essential Oil against Varroa destructor. J. Essent. Oil Res. 2010, 22, 119–122. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, C.M.; Melathopoulos, A.P.; Winston, M.L. Laboratory Evaluation of Miticides to Control Varroa jacobsoni (Acari: Varroidae), a Honey Bee (Hymenoptera: Apidae) Parasite. J. Econ. Entomol. 2000, 93, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Majeed Kadhim, H.; Hamzah Hadi, M.; Abaed Hassoni, A. Study of the Effectiveness of Essential Oils (Anise, Clove) Solution in Controlling Varroa Mites (Varroa destructor) on Honey Bees Apis mellifera. Al-Qadisiyah J. Agric. Sci. 2022, 12, 130–136. [Google Scholar] [CrossRef]
- Neupane, A.C.; Sapakuka, S.; Tao, P.; Kafle, L. Repellancy and Contact Toxicity of Clove Bud Oil and Its Constituents against German Cockroaches, Blatella germanica (Dictyoptera: Blattellidae), under Laboratory Conditions. Int. J. Pest. Manag. 2020, 66, 289–297. [Google Scholar] [CrossRef]
- Sahu, D.M.; Singh, K.P. Developmental Inhibitory Effect of the Syzygium aromaticum Essential Oil on the Postembryonic Stages of a Polyphagous Pest, Pericallia ricini (Lepidoptera: Arctiidae). Invertebr. Reprod. Dev. 2022, 66, 147–156. [Google Scholar] [CrossRef]
- El Gohary, E.G.E.; Farag, S.M.; El-Sayed, A.A.; Khattab, R.R.; Mahmoud, D.M. Insecticidal Activity and Biochemical Study of the Clove Oil (Syzygium aromaticum) Nano- Formulation on Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fish. 2021, 25, 227–239. [Google Scholar] [CrossRef]
- Allam, S.F.; Mahmoud, M.A.E.A.; Hassan, M.F.; Mabrouk, A.H. Field Application of Six Commercial Essential Oils against Date Palm Mite, Phyllotetranychus aegypticus (Acari: Tenuipalpidae) in Egypt. Persian J. Acarol. 2020, 9, 377–389. [Google Scholar]
- Sasikala, J.; Narendiran, N.J.; Packiam, S.M.; Elumalai, K. Insecticidal Activity of Syzygium aromaticum and Cinnamomum cassia Plant Volatile Oil against the Pulse Beetle, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Uttar Pradesh J. Zool. 2019, 39, 96–105. [Google Scholar]
- Ibrahim, S.S. Polyethylene Glycol Nanocapsules Containing Syzygium aromaticum Essential Oil for the Management of Lesser Grain Borer, Rhyzopertha dominica. Food Biophys. 2022, 17, 523–534. [Google Scholar] [CrossRef]
- Radev, Z. Influence of Essential Oil of Thymus pulegioides L. Harvested in Forest Area on Myzus persicae S. in Tobacco and Apis mellifera L. For. Ideas 2022, 28, 298–300. [Google Scholar]
- Hossain, M.A.; Alrashdi, Y.B.A.; Touby, S.A. A Review on Essential Oil Analyses and Biological Activities of the Traditionally Used Medicinal Plant Thymus vulgaris L. Intern. J. Sec. Metab. 2022, 9, 103–111. [Google Scholar] [CrossRef]
- Barros, F.A.P.; Radünz, M.; Scariot, M.A.; Camargo, T.M.; Nunes, C.F.P.; De Souza, R.R.; Gilson, I.K.; Hackbart, H.C.S.; Radünz, L.L.; Oliveira, J.V.; et al. Efficacy of Encapsulated and Non-Encapsulated Thyme Essential Oil (Thymus vulgaris L.) in the Control of Sitophilus zeamais and Its Effects on the Quality of Corn Grains throughout Storage. Crop Prot. 2022, 153, 105885. [Google Scholar] [CrossRef]
- Wu, L.; Huo, X.; Zhou, X.; Zhao, D.; He, W.; Liu, S.; Liu, H.; Feng, T.; Wang, C. Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents against Carmine Spider Mite (Tetranychus cinnabarinus (Boisduval)). Molecules 2017, 22, 1873. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Jeon, Y.-J.; Lee, C.-H.; Chung, N.; Lee, H.-S. Insecticidal Toxicities of Carvacrol and Thymol Derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., Newly Recorded Pest. Sci. Rep. 2017, 7, 40902. [Google Scholar] [CrossRef] [PubMed]
- Parekh, F.; Daughenbaugh, K.F.; Flenniken, M.L. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees (Apis mellifera). Front. Immunol. 2021, 12, 747848. [Google Scholar] [CrossRef] [PubMed]
- Abou-Shaara, H.; Jack, C.; Ellis, J.D. The Impact of Smoke and Fogged/Vaporized Thyme Oil on Honey Bee (Apis mellifera) Survival and Behavior in Vitro. J. Apic. Res. 2023, 62, 643–645. [Google Scholar] [CrossRef]
- Mohammed, A.J.; Fhad, K.A.R. Evaluation of Oils and Extracts of Some Natural Materials in The Management of Varroa jacobsoni Oudemans Mites On Apis mellifera Honey Bees In Basrah Province. Nat. Vol. Essent. Oil 2022, 9, 561–574. [Google Scholar]
- Mráz, P.; Žabka, M.; Hoštičková, I.; Kopecký, M.; Bohatá, A.; Tomčala, A.; Hýbl, M. Effect of Selected Botanical Compounds on Ascosphaera apis and Apis mellifera. Ind. Crops Prod. 2023, 197, 116649. [Google Scholar] [CrossRef]
- Begna, T.; Ulziibayar, D.; Bisrat, D.; Jung, C. Acaricidal Toxicity of Four Essential Oils, Their Predominant Constituents, Their Mixtures against Varroa Mite, and Their Selectivity to Honey Bees (Apis cerana and A. mellifera). Insects 2023, 14, 735. [Google Scholar] [CrossRef]
- Da Silva, I.M.; Zanuncio, J.C.; Brügger, B.P.; Soares, M.A.; Zanuncio, A.J.V.; Wilcken, C.F.; Tavares, W.D.S.; Serrão, J.E.; Sediyama, C.S. Selectivity of the Botanical Compounds to the Pollinators Apis mellifera and Trigona hyalinata (Hymenoptera: Apidae). Sci. Rep. 2020, 10, 4820. [Google Scholar] [CrossRef] [PubMed]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Chanotiya, C.S.; Dubey, N.K. Antifungal, Antiaflatoxigenic, and Insecticidal Efficacy of Spearmint (Mentha spicata L.) Essential Oil. Int. Biodeter. Biodegr. 2014, 89, 29–36. [Google Scholar] [CrossRef]
- Bi, S.; Liu, L.; Jia, M.; Feng, B.; Wan, J.; Zhou, Y.; Liu, Y.; Liu, J.; Zhu, Q. Exploring Insecticidal Properties and Acetylcholinesterase Inhibition by Three Plant Essential Oils against the Cheese Skipper Piophila casei (Diptera: Piophilidae). Ind. Crops Prod. 2023, 203, 117198. [Google Scholar] [CrossRef]
- Pavlidou, V.; Karpouhtsis, I.; Franzios, G.; Zambetaki, A.; Scouras, Z.; Mavragani-Tsipidou, P. Insecticidal and Genotoxic Effects of Essential Oils of Greek Sage, Salvia fruticosa, and Mint, Mentha pulegium, on Drosophila melanogaster and Bactrocera oleae (Diptera: Tephritidae). J. Agric. Urban. Entomol. 2004, 2, 39–49. [Google Scholar]
- Al-Antary, T.M.; Belghasem, I.H. Effect of Mint Oil against the Green Peach Aphid Myzus persicae Sulzer (Homoptera: Aphididae) Using Four Solvents. Adv. Environ. Biol. 2017, 11, 61–68. [Google Scholar]
- Prasannakumar, N.R.; Jyothi, N.; Saroja, S.; Lokesha, A.N. Insecticidal Properties of Ocimum basilicum and Mentha piperita Essential Oils against South American Tomato Moth, Phthorimaea absoluta (Meyrick) (Lepidoptera: Gelichiidae). Pestic. Biochem. Phy. 2023, 190, 105329. [Google Scholar] [CrossRef] [PubMed]
- Aglagane, A.; Laghzaoui, E.-M.; Soulaimani, B.; Er-Rguibi, O.; Abbad, A.; Mouden, E.H.E.; Aourir, M. Acaricidal Activity of Mentha suaveolens subsp. timija, Chenopodium ambrosioides, and Laurus nobilis Essential Oils, and Their Synergistic Combinations against the Ectoparasitic Bee Mite, Varroa destructor (Acari: Varroidae). J. Apic. Res. 2022, 61, 9–18. [Google Scholar] [CrossRef]
- Youssef, D.A.A.; Abdelmegeed, S.M. Polymer-Based Encapsulation of Peppermint Oil (Mentha piperita) Nanoemulsion and Its Effects on Life and Some Physiological Activities of Honeybees Apis mellifera (Hymenoptera: Apidae). Egypt. Pharm. J. 2021, 20, 313–322. [Google Scholar]
- Helaly, E.; Ali, M.A.; Ghazala, N. Evaluation of Some Essential Oils Against Wax Moth Larvae (Lepedoptera: Galleria mellonlla L.) and Adult Honeybee Workers (Hymenoptera: Apis mellifera L). Arab. Univ. J. Agric. Sci. 2022, 30, 157–162. [Google Scholar] [CrossRef]
- Ariana, A.; Ebadi, R.; Tahmasebi, G. Laboratory Evaluation of Some Plant Essences to Control Varroa destructor (Acari: Varroidae). Exp. Appl. Acarol. 2002, 27, 319–327. [Google Scholar] [CrossRef]
- Ghasemi, V.; Moharramipour, S.; Tahmasbi, G.H. Laboratory Cage Studies on the Efficacy of Some Medicinal Plant Essential Oils for Controlling Varroosis in Apis mellifera (Hym.: Apidae). Syst. Appl. Acarol. 2016, 21, 1681. [Google Scholar] [CrossRef]
- Pătruică, S.; Lazăr, R.N.; Buzamăt, G.; Boldea, M. Economic Benefits of Using Essential Oils in Food Stimulation Administrated to Bee Colonies. Agriculture 2023, 13, 594. [Google Scholar] [CrossRef]
- Baker, B.P.; Grant, J.A. Cinnamon and Cinnamon Oil Profile, Active Ingredient Eligible for Minimum Risk Pesticide Use. In New York State Integrated Pest Management (IPM Program); Cornell University Library: Geneva, NY, USA, 2018; pp. 2–16. [Google Scholar]
- Ravindran, P.; Shylaja, M.; Nirmal Babu, K.; Krishnamoorthy, B. Botany and crop improvement of cinnamon and cassia. In Cinnamon and Cassia—The Genus Cinnamomum; Ravindran, P.N., Babu, K.N., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Pandey, A.; Chattopadhyay, P.; Banerjee, S.; Pakshirajan, K.; Singh, L. Antitermitic Activity of Plant Essential Oils and Their Major Constituents against Termite Odontotermes assamensis Holmgren (Isoptera: Termitidae) of North East India. Int. Biodeterior. Biodegrad. 2012, 75, 63–67. [Google Scholar] [CrossRef]
- Subekti, N. Saniaturrohmah. Toxicity of Essential Oils against Termite Macrotermes gilvus Hagen (Blattodea: Termitidae). J. Phys. Conf. Ser. 2020, 1567, 032053. [Google Scholar] [CrossRef]
- Jumbo, L.O.V.; Haddi, K.; Faroni, L.R.D.; Heleno, F.F.; Pinto, F.G.; Oliveira, E.E. Toxicity to, Oviposition and Population Growth Impairments of Callosobruchus maculatus Exposed to Clove and Cinnamon Essential Oils. PLoS ONE 2018, 13, e0207618. [Google Scholar] [CrossRef]
- Gonzales Correa, Y.D.C.; Faroni, L.R.A.; Haddi, K.; Oliveira, E.E.; Pereira, E.J.G. Locomotory and Physiological Responses Induced by Clove and Cinnamon Essential Oils in the Maize Weevil Sitophilus zeamais. Pestic. Biochem. Phys. 2015, 125, 31–37. [Google Scholar] [CrossRef]
- Lee, E.-J.; Kim, J.-R.; Choi, D.-R.; Ahn, Y.-J. Toxicity of Cassia and Cinnamon Oil Compounds and Cinnamaldehyde-Related Compounds to Sitophilus oryzae (Coleoptera: Curculionidae). J. Econ. Ent. 2008, 101, 1960–1966. [Google Scholar] [CrossRef]
- Kim, J.R.; Jeong, I.H.; Lee, Y.S.; Lee, S.G. Insecticidal Activity of Cinnamon Essential Oils, Constituents, and (E)-Cinnamaldehyde Analogues against Metcalfa pruinosa Say (Hemiptera: Flatidae) Nymphs and Adults. Korean J. Appl. Ent. 2015, 54, 375–382. [Google Scholar] [CrossRef]
- Hýbl, M.; Bohatá, A.; Rádsetoulalová, I.; Kopecký, M.; Hoštičková, I.; Vaníčková, A.; Mráz, P. Evaluating the Efficacy of 30 Different Essential Oils against Varroa destructor and Honey Bee Workers (Apis mellifera). Insects 2021, 12, 1045. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical Composition and Antimicrobial Activity of the Essential Oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef]
- Özcan, M.M.; Chalchat, J.-C. Chemical Composition and Antifungal Activity of Rosemary (Rosmarinus officinalis L.) Oil from Turkey. Int. J. Food Sci. Nutr. 2008, 59, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Miresmailli, S.; Isman, M.B. Efficacy and Persistence of Rosemary Oil as an Acaricide Against Twospotted Spider Mite (Acari: Tetranychidae) on Greenhouse Tomato. J. Econ. Entomol. 2006, 99, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Bensoussan, N.; Santamaria, M.E.; Zhurov, V.; Diaz, I.; Grbić, M.; Grbić, V. Plant-Herbivore Interaction: Dissection of the Cellular Pattern of Tetranychus urticae Feeding on the Host Plant. Front. Plant Sci. 2016, 7, 1105. [Google Scholar] [CrossRef] [PubMed]
- Krzyżowski, M.; Baran, B.; Łozowski, B.; Francikowski, J. The Effect of Rosmarinus officinalis Essential Oil Fumigation on Biochemical, Behavioral, and Physiological Parameters of Callosobruchus maculatus. Insects 2020, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Maggi, M.; Gende, L.; Russo, K.; Fritz, R.; Eguaras, M. Bioactivity of Rosmarinus officinalis Essential Oils against Apis mellifera, Varroa destructor and Paenibacillus larvae Related to the Drying Treatment of the Plant Material. Nat. Prod. Res. 2011, 25, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, B.; Marques, A.; Ramos, C.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical Composition and Bioactivity of Different Oregano (Origanum vulgare) Extracts and Essential Oil. J. Sci. Food Agric. 2013, 93, 2707–2714. [Google Scholar] [CrossRef]
- Azizi, A.; Yan, F.; Honermeier, B. Herbage Yield, Essential Oil Content and Composition of Three Oregano (Origanum vulgare L.) Populations as Affected by Soil Moisture Regimes and Nitrogen Supply. Ind. Crops Prod. 2009, 29, 554–561. [Google Scholar] [CrossRef]
- Almadiy, A.A.; Nenaah, G.E. Essential Oil of Origanum vulgare, Its Nanoemulsion and Bioactive Monoterpenes as Eco-Friendly Novel Green Pesticides for Controlling Aedes aegypti, the Common Vector of Dengue Virus. J. Essent. Oil Res. 2022, 34, 424–438. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Craker, L.E.; Salami, A.; Nazeri, V.; Sang, H.; Maggi, F. Effect of Prolonged Water Stress on Essential Oil Content, Compositions and Gene Expression Patterns of Mono- and Sesquiterpene Synthesis in Two Oregano (Origanum vulgare L.) Subspecies. Plant Physiol. Biochem. 2017, 111, 119–128. [Google Scholar] [CrossRef]
- Peschiutta, M.L.; Arena, J.S.; Ramirez Sanchez, A.; Gomez Torres, E.; Pizzolitto, R.P.; Merlo, C.; Zunino, M.P.; Merlo, C.; Zunino, M.P.; Omarini, A.B.; et al. Effectiveness of Mexican Oregano Essential Oil from the Dominican Republic (Lippia graveolens) against Maize Pests (Sitophilus zeamais and Fusarium verticillioides). AgriScientia 2016, 33, 89–97. [Google Scholar] [CrossRef]
- Eesiah, S.; Yu, J.; Dingha, B.; Amoah, B.; Mikiashvili, N. Preliminary Assessment of Repellency and Toxicity of Essential Oils against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) on Stored Organic Corn Grains. Foods 2022, 11, 2907. [Google Scholar] [CrossRef] [PubMed]
- Plata-Rueda, A.; Santos, M.H.D.; Serrão, J.E.; Martínez, L.C. Chemical Composition and Insecticidal Properties of Origanum vulgare (Lamiaceae) Essential Oil against the Stored Product Beetle, Sitophilus granarius. Agronomy 2022, 12, 2204. [Google Scholar] [CrossRef]
- Ayvaz, A.; Sagdic, O.; Karaborklu, S.; Ozturk, I. Insecticidal Activity of the Essential Oils from Different Plants Against Three Stored-Product Insects. J. Insect Sci. 2010, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Licciardello, F.; Muratore, G.; Suma, P.; Russo, A.; Nerín, C. Effectiveness of a Novel Insect-Repellent Food Packaging Incorporating Essential Oils against the Red Flour Beetle (Tribolium castaneum). Innov. Food Sci. Emerg. Technol. 2013, 19, 173–180. [Google Scholar] [CrossRef]
- Sabahi, Q.; Gashout, H.; Kelly, P.G.; Guzman-Novoa, E. Continuous Release of Oregano Oil Effectively and Safely Controls Varroa destructor Infestations in Honey Bee Colonies in a Northern Climate. Exp. Appl. Acarol. 2017, 72, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, V.; Paymal, N.; Quinton, C.; Tomi, F.; Luro, F. Investigations of the Chemical Composition and Aromatic Properties of Peel Essential Oils throughout the Complete Phase of Fruit Development for Two Cultivars of Sweet Orange (Citrus sinensis (L.) Osb.). Plants 2022, 11, 2747. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, N.; Chen, H.; Zhong, B.; Yang, A.; Kuang, F.; Ouyang, Z.; Chun, J. Fumigant Activity of Sweet Orange Essential Oil Fractions Against Red Imported Fire Ants (Hymenoptera: Formicidae). J. Econ. Entomol. 2017, 110, 1556–1562. [Google Scholar] [CrossRef] [PubMed]
- Rajasekharreddy, P.; Rani, P.U. Toxic Properties of Certain Botanical Extracts against Three Major Stored Product Pests. J. Biopestic. 2010, 3, 586–589. [Google Scholar]
- Laudani, F.; Campolo, O.; Caridi, R.; Latella, I.; Modafferi, A.; Palmeri, V.; Sorgonà, A.; Zoccali, P.; Giunti, G. Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide. Insects 2022, 13, 1150. [Google Scholar] [CrossRef]
- Gholamian, E.; Razmjou, J.; Bani Hashemian, S.M.; Sabouri, A. Genetic Structure of Populations of Aphis gossypii (Hemiptera: Aphididae) on Citrus Trees in Northern Iran. Eur. J. Entomol. 2018, 115, 7–14. [Google Scholar] [CrossRef]
- Fuselli, S.R.; Maggi, M.; De La Rosa, S.B.G.; Principal, J.; Eguaras, M.J.; Fritz, R. In Vitro Antibacterial and Antiparasitic Effect of Citrus Fruit Essential Oils on the Honey Bee Pathogen Paenibacillus larvae and the Parasitic Mite Varroa destructor. J. Apic. Res. 2009, 48, 77–78. [Google Scholar] [CrossRef]
- Souza, C.O.; Teixeira, V.W.; Cruz, G.D.S.; Guedes, C.A.; Nascimento, J.C.D.S.; Cavalcanti Lapa Neto, C.J.; Teixeira, Á.A.C. Toxicology, Histophysiological and Nutritional Changes in Apis mellifera (Hymenoptera: Apidae) Submitted to Limonene and Natural Pesticides in Comparison to Synthetic Pesticides. J. Apic. Res. 2023. [Google Scholar] [CrossRef]
- Polito, F.; Fratianni, F.; Nazzaro, F.; Amri, I.; Kouki, H.; Khammassi, M.; Hamrouni, L.; Malaspina, P.; Cornara, L.; Khedhri, S.; et al. Essential Oil Composition, Antioxidant Activity and Leaf Micromorphology of Five Tunisian Eucalyptus Species. Antioxidants 2023, 12, 867. [Google Scholar] [CrossRef] [PubMed]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus Essential Oil as a Natural Pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Danna, C.; Malaspina, P.; Cornara, L.; Smeriglio, A.; Trombetta, D.; De Feo, V.; Vanin, S. Eucalyptus Essential Oils in Pest Control: A Review of Chemical Composition and Applications against Insects and Mites. Crop Prot. 2024, 176, 106319. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Naseri, B.; Abedi, Z.; Setzer, W.N.; Changbunjong, T. Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.). Insects 2022, 13, 517. [Google Scholar] [CrossRef] [PubMed]
- Kouki, H.; Amri, I.; Souihi, M.; Pieracci, Y.; Trabelsi, I.; Hamrouni, L.; Flamini, G.; Hirsch, A.M.; Mabrouk, Y. Chemical Composition, Antioxidant, Herbicidal and Antifungal Activities of Leaf Essential Oils from Three Tunisian Eucalyptus Species. J. Plant Dis. Prot. 2023, 130, 1411–1422. [Google Scholar] [CrossRef]
- Mossi, A.J.; Astolfi, V.; Kubiak, G.; Lerin, L.; Zanella, C.; Toniazzo, G.; Oliveira, D.D.; Treichel, H.; Devilla, I.A.; Cansian, R.; et al. Insecticidal and Repellency Activity of Essential Oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). J. Sci. Food Agric. 2011, 91, 273–277. [Google Scholar] [CrossRef]
- Čmiková, N.; Galovičová, L.; Schwarzová, M.; Vukic, M.D.; Vukovic, N.L.; Kowalczewski, P.Ł.; Bakay, L.; Kluz, M.I.; Puchalski, C.; Kačániová, M. Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil. Plants 2023, 12, 1076. [Google Scholar] [CrossRef]
- Bourakna, Z.; Righi, K.; Assia Righi, F. GC/MS Analysis of Eucalyptus globulus L. (Myrtaceae) Leaves Essential Oil from Algeria and Their Insecticidal Activity Against Adults of Bactrocera oleae (Rossi) (Diptera; Tephritidae). J. Essent. Oil-Bear. Plants 2022, 25, 876–887. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Ashmawy, N.A.; Elansary, H.O.; El-Settawy, A.A. Chemotyping of Diverse Eucalyptus Species Grown in Egypt and Antioxidant and Antibacterial Activities of Its Respective Essential Oils. Nat. Prod. Res. 2015, 29, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Ogunwande, I.A.; Olawore, N.O.; Adeleke, K.A.; Konig, W.A. Chemical Composition of the Essential Oils from the Leaves of Three Eucalyptus Species Growing in Nigeria. J. Essent. Oil Res. 2003, 15, 297–301. [Google Scholar] [CrossRef]
- Rekioua, N.; Boumendjel, M.; Taibi, F.; Samar, M.F.; Jemaa, J.M.B.; Benaliouch, F.; Negro, C.; Nicoli, F.; De Bellis, L.; Boushih, E.; et al. Insecticidal effect of Eucalyptus globulus and Rosmarinus officinalis essential oils on a stored food pest Ephesti-akuehniella (Lepidoptera, Pyralidea). Cell. Mol. Biol. 2022, 68, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Sadraoui, A.I.; Sadraoui, R.; Guesmi, F.; Soltani, A.; Amari, R.; Chaib, S.; Boushih, E.; Fajraoui, A.; Mediouni, B.J.J. Chemical Composition, Antioxidant and Antimicrobial Activities of Eucalyptus cinerea Essential Oil with Its Insecticidal Effect Against Ceratitis capitata Adults. Int. J. Environ. Res. 2023, 17, 47. [Google Scholar] [CrossRef]
- Dhaouadi, F.; Bargougui, A.; Maamer, S.; Amri, I.; Msaad Guerfali, M.; Hamrouni, L.; Flamini, G.; Mejri, N. Chemical Composition and Insecticidal Activity of Two Eucalyptus Essential Oils against the Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). J. Plant Dis. Prot. 2023, 130, 483–493. [Google Scholar] [CrossRef]
- Kalvandi, Z.; Nazemi Rafie, J.; Sadeghi, A.; Salimi, A.; Kalvandi, R.; Negahban, M. Study on Tribolium confusum Herbest. Susceptibility to Eucalyptus globulus Labill. Essential Oil Nanocapsule. Iranian J. Med. Arom. Plants Res. 2023, 39, 213–223. [Google Scholar]
- Gende, L.; Maggi, M.; Van Baren, C.; Di Leo, A.; Bandoni, A.; Fritz, R.; Eguaras, M. Antimicrobial and Miticide Activities of Eucalyptus globulus Essential Oils Obtained from Different Argentine Regions. Span. J. Agric. Res. 2010, 8, 642. [Google Scholar] [CrossRef]
- Ribeiro, A.V.; Farias, E.D.S.; Santos, A.A.; Filomeno, C.A.; Santos, I.B.D.; Barbosa, L.C.A.; Picanço, M.C. Selection of an Essential Oil from Corymbia and Eucalyptus Plants against Ascia monuste and Its Selectivity to Two Non-Target Organisms. Crop Prot. 2018, 110, 207–213. [Google Scholar] [CrossRef]
- Ghasemi, V.; Moharramipour, S.; Tahmasbi, G. Biological Activity of Some Plant Essential Oils against Varroa destructor (Acari: Varroidae), an Ectoparasitic Mite of Apis mellifera (Hymenoptera: Apidae). Exp. Appl. Acarol. 2011, 55, 147–154. [Google Scholar] [CrossRef]
- Aleksic Sabo, V.; Knezevic, P. Antimicrobial Activity of Eucalyptus camaldulensis Dehn. Plant Extracts and Essential Oils: A Review. Ind. Crops Prod. 2019, 132, 413–429. [Google Scholar] [CrossRef]
- Atmani-Merabet, G.; Fellah, S.; Belkhiri, A. Comparative Study of Two Eucalyptus Species from Algeria: Chemical Composition, Toxicity and Acaricidal Effect on Varroa destructor. Curr. Issues Pharm. Med. Sci. 2020, 33, 144–148. [Google Scholar] [CrossRef]
- Khan, A.; Vaibhav, K.; Javed, H.; Tabassum, R.; Ahmed, M.d.E.; Khan, M.M.; Khan, M.B.; Shrivastava, P.; Islam, F.; Siddiqui, M.S.; et al. 1,8-Cineole (Eucalyptol) Mitigates Inflammation in Amyloid Beta Toxicated PC12 Cells: Relevance to Alzheimer’s Disease. Neurochem. Res. 2014, 39, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Borotová, P.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Tvrdá, E.; Kačániová, M. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants 2022, 11, 558. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Canale, A.; Flamini, G.; Cioni, P.L.; Demi, F.; Ceccarini, L.; Macchia, M.; Conti, B. Biotoxicity of Melaleuca alternifolia (Myrtaceae) Essential Oil against the Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae), and Its Parasitoid Psyttalia concolor (Hymenoptera: Braconidae). Ind. Crops Prod. 2013, 50, 596–603. [Google Scholar] [CrossRef]
- Ismail, S.M.; Hassan, N.A.; Wahba, T.F.; Shaker, N. Chemical Composition and Bioactivities of Melaleuca alternufolia Essential Oil and Its Main Constituents against Spodoptera littoralis (Boisaduval, 1833). Bull. Natl. Res. Cent. 2022, 46, 157. [Google Scholar] [CrossRef]
- Şimşek, Ş.; Gökçe, A.; Hassan, E. Evaluation of Tea Tree Oil Formulations Contact and Stomach Toxicity against the Egyptian Cotton Leafworm, Spodoptera littoralis (Boisduval, 1883) (Lepidoptera: Noctuidae). Turk. J. Zool. 2022, 46, 467–476. [Google Scholar] [CrossRef]
- Zimmermann, R.C.; Aragão, C.E.D.C.; Araújo, P.J.P.D.; Benatto, A.; Chaaban, A.; Martins, C.E.N.; Amaral, W.D.; Cipriano, R.R.; Zawadneak, M.A.C. Insecticide Activity and Toxicity of Essential Oils against Two Stored-Product Insects. Crop Prot. 2021, 144, 105575. [Google Scholar] [CrossRef]
- Abramson, C.; Wilson, M.; Singleton, J.; Wanderley, P.; Wanderley, M.; Michaluk, L. Citronella Is Not a Repellent to Africanized Honey Bees Apis mellifera L. (Hymenoptera: Apidae). BioAssay 2006, 1. [Google Scholar] [CrossRef]
- Kumar, J.; Patyal, S.K.; Mishra, R.C. Evaluation of Some Essential Oils as Repellents to the Indian Honeybee Apis Cerana Indica 1. Gustatory Repellency and Toxicity. J. Apic. Res. 1986, 25, 256–261. [Google Scholar] [CrossRef]
- De Pedro, L.; Sanchez, J.A. Natural Repellents as a Method of Preventing Ant Damage to Microirrigation Systems. Insects 2022, 13, 395. [Google Scholar] [CrossRef]
- Radev, Z.; Dzhurmanski, A.; Stanev, S. Bioinsecticidal Effect of Origanum vulgare subsp. hirtum (Link) Essential Oil Vapours on Myzus persicae Sulzer in Tobacco and Apis mellifera L. C. R. Acad. Bulg. Sci. 2023, 76, 1137–1142. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Piras, C.; Palma, E.; Cringoli, G.; Musolino, V.; Lupia, C.; Perri, M.R.; Statti, G.; Britti, D.; et al. In Vitro Evaluation of Acute Toxicity of Five Citrus spp. Essential Oils towards the Parasitic Mite Varroa destructor. Pathogens 2021, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.R.; O’Neal, S.T.; Bernier, U.R.; Bloomquist, J.R.; Anderson, T.D. Terpenoid-Induced Feeding Deterrence and Antennal Response of Honey Bees. Insects 2020, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Cappa, F.; Baracchi, D.; Cervo, R. Biopesticides and Insect Pollinators: Detrimental Effects, Outdated Guidelines, and Future Directions. Sci. Total Environ. 2022, 837, 155714. [Google Scholar] [CrossRef] [PubMed]
- Bava, R.; Castagna, F.; Palma, E.; Marrelli, M.; Conforti, F.; Musolino, V.; Carresi, C.; Lupia, C.; Ceniti, C.; Tilocca, B.; et al. Essential Oils for a Sustainable Control of Honeybee Varroosis. Vet. Sci. 2023, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Catania, R.; Lima, M.A.P.; Potrich, M.; Sgolastra, F.; Zappalà, L.; Mazzeo, G. Are Botanical Biopesticides Safe for Bees (Hymenoptera, Apoidea)? Insects 2023, 14, 247. [Google Scholar] [CrossRef] [PubMed]
- Attia, R.G.; Khalil, M.M.H.; Hussein, M.A.; Fattah, H.M.A.; Rizk, S.A.; Ma’moun, S.A.M. Cinnamon Oil Encapsulated with Silica Nanoparticles: Chemical Characterization and Evaluation of Insecticidal Activity Against the Rice Moth, Corcyra cephalonica. Neotrop. Entomol. 2023, 52, 500–511. [Google Scholar] [CrossRef]
- Dajic Stevanovic, Z.; Sieniawska, E.; Glowniak, K.; Obradovic, N.; Pajic-Lijakovic, I. Natural Macromolecules as Carriers for Essential Oils: From Extraction to Biomedical Application. Front. Bioeng. Biotechnol. 2020, 8, 563. [Google Scholar] [CrossRef]
- Challa, G.K.; Firake, D.M.; Behere, G.T. Bio-Pesticide Applications May Impair the Pollination Services and Survival of Foragers of Honey Bee, Apis cerana Fabricius in Oilseed Brassica. Environ. Pollut. 2019, 249, 598–609. [Google Scholar] [CrossRef]
- Andrade, L.H.D.; Oliveira, J.V.D.; Breda, M.O.; Marques, E.J.; Lima, I.M.D.M. Effects of Botanical Insecticides on the Instantaneous Population Growth Rate of Aphis gossypii Glover (Hemiptera: Aphididae) in Cotton. Acta Sci. Agron. 2012, 34, 119–214. [Google Scholar] [CrossRef]
- González-Gómez, R.; Otero-Colina, G.; Villanueva-Jiménez, J.A.; Santillán-Galicia, M.T.; Peña-Valdivia, C.B.; Santizo-Rincón, J.A. Effects of Neem (Azadirachta indica) on Honey Bee Workers and Queens, While Applied to Control Varroa destructor. J. Apic. Res. 2016, 55, 413–421. [Google Scholar] [CrossRef]
Essential Oil | Species | Effect | Reference | Other Observations |
---|---|---|---|---|
Citronella oil | Apis melifera | It increases mortality in adults but not in larvae; body mass decreases. | [28] | Changes foraging activities. |
It is non-repellent for Africanized honeybees. | [137] | |||
It is repellent for honeybees in natural conditions. | [33] | Recommended for use together with neonicotinoid pesticides. | ||
Apis cerana indica | LC50 = 61.1 (µg/bee) | [138] | ||
Nannotrigona testaceicornis | 2% mortality observed after six days of contact exposure with the oil at the recommended concentration. | [29] | No repellent effects. | |
Tetragonisca angustula | 75% mortality recorded after six days of contact exposure with the oil at the recommended concentration. | [29] | No repellent effects. | |
Pheidole pallidula | Significantly repellent in liquid form. | [139] | ||
Lemongrass oil | Apis melifera | Low toxicity for larvae and adults (LD50 = 12,900 and 54,844 µg/mL), | [44] | |
Low toxicity for adults (LC50 = 13.11 μL/mL at 24 h). | [45] | |||
Clove oil | Apis melifera | Low mortality—3% at 48 h at a concentration of 1 mg/cage. | [50] | |
Weak insecticidal effect (20 and 40 mg/mL induced a mortality of 4 and 6.58% at 15 h). | [51] | After 64 h, the insecticidal effect is no longer registered. | ||
Selectivity ratio at 72 h = 2.218 (on Varroa destructor). | [88] | |||
Thyme oil | Apis mellifera | Essential oil delivered by fogging significantly increased caged bee mortality. | [64] | |
Immunostimulant and reduced levels of viral infection at a concentration of 0.16 ppb. | [63] | |||
LD50 was 0.79 µL/cage. | [66] | |||
High toxicity of 100% at A concentration of 2 μL∙L−1. | [58] | Essential oil from Thymus pulegioides. | ||
LC50 5.08 s µL/L air. | [128] | Oils from Thymus kotschyanus. | ||
LD50 = 3.3%. | [68] | Tymus vulgaris; topical exposure. | ||
LD50 7.9 µg/bee. | [67] | Thymus schimperi. | ||
Apis cerana | 2946 µg/Ml. | [67] | Thymus schimperi. | |
Mint Oil | Apis melifera | Decrease in the amount of proteins and lipids in the insect’s body. | [75] | The negative effect is accentuated by use of the oil in the encapsulated form in nanoparticles. Mentha piperita. |
Low pollinator toxicity. | [68] | Mentha piperita. | ||
Slight increase in mortality of adult workers. | [76] | |||
Oil at concentration of 2% generated a mortality rate of only 2% in bees. | [77] | Mentha spicata. | ||
10.13% mortality in honeybees at 5.5 μL/L. | [78] | Mentha longifolia. | ||
Selectivity ratio at 72 h = 9.651 (on Varroa destructor). | [88] | |||
Trigona hyalinata | Low pollinator toxicity; LD50 = 21.61%. | [68] | Topical exposure; commercial oil. | |
Cinnamon oil | Apis melifera | High degree of toxicity. | [66] | |
Selectivity ratio of 2.461 at 4 h and 2.960 at 48 h. | [88] | |||
Rosemary oil | Apis melifera | LC50 for honeybees is similar to that for V. destructor. | [94] | |
Oil at a concentration of 2% generated a mortality rate of 4% in bees (vs. 0.7% in control). | [77] | |||
Oregano oil | Apis melifera | Selectivity ratio of 1.985 at 4 h and 5.830 at 72 h. | [88] | |
Administration with electric vaporizer (with a rate of 2.13 g/day) does not induce significant mortality. | [104] | |||
2 µL/L induces a mortality of 100%. | [140] | O. vulgare subsp. hirtum (67.4% carvacrol). | ||
Sweet orange oil | Apis melifera | No significant mortality at a concentration of 1 to 40 µL/cage. | [110] | |
No significant mortality at a concentration of 1 mg/mL and 2 mg/mL. | [111] | |||
No significant mortality at a concentration of 0.5–2 mg/mL. | [141] | |||
No significant mortality at a concentration 1 to 40 µL/cage, | [110] | |||
Eucalyptus oil | Apis melifera | 4% mortality at a concentration of 20 μL per cage at 72 h, | [126] | Complete exposure method. |
LC50 = 3.1 µL/L air, | [128] | Fumigation; E. camaldulensis oil. | ||
5.5 µL/L air caused 12% mortality in honeybees after 10 h of exposure. | [78] | E. camaldulensis oil. | ||
Apis cerana indica | LC50 = 55.20 (µg/bee). | [134] | ||
Nannotrigona testaceicornis | 0% mortality after six days of exposure by contact with the recommended concentration. | [29] | No repellent effects. | |
Tetragonisca angustula | 50% mortality after six days of exposure by contact with the recommended concentration. | [29] | No repellent effects. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gostin, I.N.; Popescu, I.E. Evaluation of the Essential Oils Used in the Production of Biopesticides: Assessing Their Toxicity toward Both Arthropod Target Species and Beneficial Pollinators. Agriculture 2024, 14, 81. https://doi.org/10.3390/agriculture14010081
Gostin IN, Popescu IE. Evaluation of the Essential Oils Used in the Production of Biopesticides: Assessing Their Toxicity toward Both Arthropod Target Species and Beneficial Pollinators. Agriculture. 2024; 14(1):81. https://doi.org/10.3390/agriculture14010081
Chicago/Turabian StyleGostin, Irina Neta, and Irinel Eugen Popescu. 2024. "Evaluation of the Essential Oils Used in the Production of Biopesticides: Assessing Their Toxicity toward Both Arthropod Target Species and Beneficial Pollinators" Agriculture 14, no. 1: 81. https://doi.org/10.3390/agriculture14010081
APA StyleGostin, I. N., & Popescu, I. E. (2024). Evaluation of the Essential Oils Used in the Production of Biopesticides: Assessing Their Toxicity toward Both Arthropod Target Species and Beneficial Pollinators. Agriculture, 14(1), 81. https://doi.org/10.3390/agriculture14010081